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This document has been issued to make available to software safety practitioners a guidebook 
for assessing software systems for software’s contribution to safety and techniques for 
analyzing and applying appropriate safety techniques and methods to software.  Software 
developers and software safety engineers are the primary focus; however, software assurance 
(SA) engineers, project managers, system engineers, and system safety engineers will also 
find this guidebook useful.   

The document:  

Provides an overview of general software safety and good software engineering  
practices which contribute to software system safety.  

 Provides the means to scope and tailor the software safety and software engineering 
activities to obtain the most cost effective, best quality, and safest products. 

Provides analyses, methods and guidance which can be applied during each phase of 
the software life cycle.  Multiple checklists and examples are provided as well as 
specific instructions for applying FMEA/CIL and FTA to software. 

Includes development approaches, safety analyses, and testing methodologies that lead 
to improved safety in the software product.  

Procuring NASA Enterprise Programs or Centers shall review this document for applicability 
to NASA contracts as well as for applicability to its internal activities. 

Questions concerning the application of this publication to specific procurements or requests 
should be referred to the NASA Enterprise Program or Center. 

This guidebook cancels NASA-GB-1740.13-96, NASA Guidebook for Safety Critical 
Software Analysis and Development. 

   

 

 

        /s/ 

Bryan O’Connor 
Associate Administrator for 
Safety and Mission Assurance  
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Foreword 
This guidebook was created to provide specific information and guidance on the process of 
creating and assuring safe software.  In our modern world, software controls much of the 
hardware (equipment, electronics, and instruments) around us.  Sometimes hardware failure 
can lead to a loss of human life.  When software controls, operates, or interacts with such 
hardware, software safety becomes a vital concern 

The audience for this guidebook is diverse.  Software developers and software safety 
engineers are the primary focus.  Software assurance (QA) engineers, project managers, 
system engineers, and system safety engineers will also find this guidebook useful.  Section 
1.5 of the Introduction provides guidance on sections of particular interest to the various 
disciplines. 

This guidebook is meant to be more than just a collection of development techniques and 
analyses.  The goal is to open the reader to new ways of thinking about software from a safety 
perspective.  This guidebook points out things to look for (and look out for) in the 
development of safety-critical software.  The guidebook includes development approaches, 
safety analyses, and testing methodologies that lead to improved safety in the software 
product.  

While the focus of this guidebook is on the development of software for safety-critical 
systems, much of the information and guidance is also appropriate to the creation of mission-
critical software.   
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Chapter 1 Introduction 
This NASA Software Safety Guidebook was prepared by the NASA Glenn Research Center, 
Safety and Assurance Directorate, under a Center Software Initiative Proposal (CSIP) task for 
the National Aeronautics and Space Administration. 

NASA-STD-8719.13A, “NASA Software Safety Standard,” [1] prepared by NASA 
Headquarters addresses the “who, what, when and why” of software safety analyses.  This 
Software Safety Guidebook addresses the “how to.”  

Section 1.5 provides a roadmap to using this guidebook.  The roadmap describes the 
information in each chapter and shows software developers, project managers, software 
assurance personnel, system engineers, and safety engineers which sections are relevant for 
their disciplines.   

1.1 Scope 
The focus of this document is on analysis, development, and assurance of safety-critical 
software, including firmware (e.g. software residing in non-volatile memory, such as ROM, 
EPROM, EEPROM, or flash memory) and programmable logic.  This document also 
discusses issues with contractor-developed software. It provides guidance on how to address 
creation and assurance of safety-critical software within the overall software development, 
management, risk management, and assurance activities. 

Techniques and analyses are described in varying levels of detail throughout the guidebook, 
depending on the amount of information available.  For techniques or analyses are that are 
new, the guidebook attempts to give a flavor of the technique or procedure and provides 
sources for more information.  Opinions differ widely concerning the validity of some of the 
various techniques, and this guidebook attempts to present these opinions without prejudging 
their validity.  In most cases, there are few or no metrics as of yet, to quantitatively evaluate 
or compare the techniques.  This guidebook addresses the value added versus cost of each 
technique with respect to the overall software development and assurance goals.  Without 
strong metrics, such evaluations are somewhat subjective and should not be taken as the 
definitive answer.  Each technique or analysis should be considered in the context of the 
specific project. 

This guidebook is meant to be more than just a collection of development techniques and 
analyses.  The goal is to encourage the reader to think about software with “an eye for safety.” 
Some familiarity with the NASA methodologies for system safety analysis and software 
development will assist in following this guidebook, though no experience with either is 
assumed or required.  Acronyms and definitions of terminology used in this guidebook are 
contained in Appendix B. 

1.2 Purpose 
The purpose of this guidebook is to aid organizations involved in the development and 
assurance of safety-critical software.  Software developers will find information on the 
creation of safer software, as well as introduction to the NASA process for system (and 
software) safety.  Software safety personnel are given an introduction to the variety of 
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techniques and analyses available for assuring that the software is safer, as well as 
information on good development practices.  Project managers, system safety, software 
assurance engineers, and systems engineers may also find this guidebook useful.  Some 
knowledge of software development processes is helpful in understanding the material 
presented in this guidebook. 

This guidebook concentrates on software development and acquisition and the associated 
tasks and analyses.  While the focus is on the development of software for safety-critical 
systems, much of the information and guidance is also appropriate to the creation of mission-
critical software.  Guidance on the acquisition of software, either commercial off-the-shelf or 
created under contract, is given in Chapter 12.   

1.3 Acknowledgments  
Much of the material presented in this Guidebook has been based directly or indirectly on a 
variety of sources (NASA, government agencies, technical literature sources), as well as  
containing original material previously undocumented.  All the sources are too numerous to 
list here, but are appropriately referenced throughout. 

A special acknowledgment is owed to engineers of the NASA/Caltech Jet Propulsion 
Laboratory of Pasadena, California, whose inputs and suggestions have been used verbatim or 
slightly modified in several sections of this Guidebook. 

 

We also thank: 

• The Software Productivity Consortium for permission to reproduce “The Frameworks 
Quagmire” diagram.   

• Rick Hower for permission to use information from his website on “Software QA and 
Testing Frequently-Asked-Questions”, http://www.softwareqatest.com/. 

• Denis Howe for permission to quote from ”The Free On-Line Dictionary of 
Computing”,   http://foldoc.doc.ic.ac.uk/foldoc/index.html 

• Philip J. Koopman for permission to quote from “A Brief Introduction to Forth.” 

• Paul E. Bennett for permission to reproduce his “Design for Safety” checklist. 

 

Our gratitude goes to the many NASA engineers and contractors who reviewed drafts of the 
guidebook and provided input and advise as well as encouragement. 

1.4 Associated Documents 
Documents detailing software safety standards, software development standards, and 
guidebooks are listed in Appendix A.2: Information.  Included are NASA standards for 
software, as well as IEEE and military standards. 
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1.5 Roadmap of this Guidebook 
This guidebook provides information for several diverse disciplines: software development, 
system and software safety, software assurance, project management, and systems 
engineering.  Each of these disciplines has an associated graphic symbol, used throughout the 
document to assist the reader in locating relevant information.  When an entire section is 
appropriate for a specific discipline, the symbol will be placed after the section title.  When a 
paragraph within a section is applicable, the symbol will be placed to the left of the paragraph.  
In addition, tailoring information will be indicated by this symbol: 

 

Section 1.5.1 provides the symbols that are associated with each discipline, along with a brief 
description of the discipline.  Section 1.5.2 provides a brief description of the contents of each 
Chapter in this guidebook. 

1.5.1  Disciplines and Symbols 
Discipline/Symbol Responsibilities 

Software 
Development 

The task of developing safe software falls squarely on the shoulders 
of the software developer (also referred to as the software engineer), 
who creates the “code” that must be safe.  Almost all sections of this 
guidebook are relevant to the software development discipline. 

Software Safety 
(including System 
Safety) 

 

The software safety tasks may be performed system safety 
personnel, software assurance personnel, or by a separate software 
safety engineer.  The goal is to assure that the final software, when 
integrated into the system, is safe.  This goal is accomplished 
through education of project team members, analysis of the software 
products, test verification, and other techniques.  Almost all sections 
of this guidebook are relevant to the software safety discipline. 

Software Assurance Software assurance personnel make sure that the software produced 
meets the applicable quality standards.  Standards include both 
process (how the software was developed) and product (how good is 
the actual software).  The software assurance engineer may perform 
some of the safety analyses, if that is negotiated by the project. 

Project and/or 
Software Management 

Developing a safe system requires informed involvement of the 
project manager.  A culture where good practices are rewarded and 
“systems thinking” is encouraged helps in the creation of a safe 
system.  Many of the topics in this guidebook are technical and 
detailed.  The project manager is pointed to sections that are more 
general in nature.  In addition, sections that point out potential 
problems, difficulties, or concerns are also flagged for the project 
manager.   

Systems Engineering 

 

 

A systems engineer may wish to read this guidebook for a better 
understanding of how software fits into the entire system.   
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1.5.2 Chapter Description  
Chapter 2 describes the concepts of system safety and the role of software in safety-critical 
systems.  The chapter provides software developers and others with an understanding of the 
system safety process.  System safety engineers may wish to review this chapter for 
information on the various types of software that should be considered in a system safety 
context. 

Chapter 3 gives a more in-depth look at software safety.  It provides guidance on how to 
scope the safety effort and tailor the processes and analyses to the required level of effort. 

Chapter 4 provides an overview of the software development process.  System safety 
engineers and project managers unfamiliar with the software development process will find 
this chapter useful.  Software developers, software assurance engineers, and software safety 
engineers should review the chapter to make sure they are familiar with all the concepts.  
Other discipline experts may wish to skim the chapter, or use the table of contents to locate 
specific subsections of interest. 

Chapters 5 through 10 describe development activities and assurance analyses for each 
lifecycle phase.  While this guidebook uses the waterfall lifecycle phases (Concept, 
Requirements, Design, Implementation, Test, and Operations) to describe associated software 
safety activities, this guidebook does not imply a strict adherence to that lifecycle.  The ideas 
of concept (planning the project), requirements (deciding what to build), design (deciding 
how to build it), implementation (actually building the software/system), test (making sure it 
works) and operations (using what was built) apply to all lifecycles.  Maintenance of software 
is viewed as a reduced scope of all these phases with good configuration management of  
problems and upgrades as well as appropriate root cause analyses and corrective action when 
required.  Retirement of safety critical software is a phase not often thought of but perhaps 
should be. 

Chapter 5 focuses on activities performed during the concept phase of the project.  Activities 
and analyses for both development and safety are discussed. 

Chapter 6 focuses on activities performed during the requirements phase of the project.  
Activities and analyses for both development and safety are discussed.  Requirements 
management, determination of critical requirements, and other very important concepts are 
included in this chapter. 

Chapter 7 focuses on activities performed during the design phase of the project.  Activities 
and analyses for both development and safety are discussed. 

Chapter 8 focuses on activities performed during the implementation phase of the project.  
Activities and analyses for both development and safety are discussed. 

Chapter 9 focuses on activities performed during the testing phase of the project.  Activities 
and analyses for both development and safety are discussed. 

Chapter 10 focuses on activities performed during the operations and maintenance phase of 
the project.  Activities and analyses for both development and safety are discussed. 
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Chapter 11 is a collection of specific problem areas.  Selection of programming language, 
operating system, and development tools is one such area.  Innovative technologies, such as 
distributed computing, autonomous systems, and embedded web, are also included.  Much of 
this chapter will be of interest to software developers.  Safety and software assurance 
engineers may wish to skim this chapter to obtain a better understanding of software issues. 

Chapter 12 discusses the acquisition of software.  Both COTS/GOTS (commercial and 
government off-the-shelf) software and software created under contract are considered.  

Chapter 13 provides a look ahead to some evolving areas of software safety.  

Appendix A contains reference and resource information. 

Appendix B provides definitions of commonly used terms and a list of acronyms. 

Appendices C through G provide details on five analysis techniques (Software Fault Tree 
Analysis, Software Failure Modes and Effects Analysis, Requirements State Machine, 
Preliminary Hazard Analysis, and Reliability Modeling). 

Appendix H contains a collection of checklists. 
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Chapter 2 Software and System Safety 
Safety is not the sole responsibility of the System Safety engineer.  Creating a safe system is a 
team effort and safety is everyone’s responsibility. Software is a vital part of most systems.  It 
controls hardware and provides mission-critical data.  Software must be safe. 

But how do you know if any of your software is “safe” or “unsafe”?  What are the hazards that 
software may contribute to, or that software may control?  Why should you even care about 
software safety? 

When a device or system can lead to injury, death, the destruction or loss of vital equipment, or 
damage to the environment, system safety is paramount.  The system safety discipline focuses on  
“hazards” and the prevention of hazardous situations.  Hardware or software that can lead to a 
hazard, or is used to control or mitigate a hazard, comes under that category.  Software has 
become a vital and integral part of most systems.  Software can respond quickly to potential 
problems, provide more functionality than equivalent hardware, and can even be changed in 
flight!  The promise of software, however, must be tempered with the consequences of its failure.  
The software safety discipline expands beyond the immediate software used in hazard control or 
avoidance to include all software that can impact hazardous software or hardware.  All such 
software is “safety-critical”. 

Project managers, systems engineers, software engineers, software assurance personnel, and 
system safety personnel all play a part in creating a safe system.   

2.1 Hazardous and Safety-critical Software 
“Software does not fail – it just does not perform as intended.” Dr. Nancy Leveson, MIT 

2.1.1 What is a Hazard? 
A hazard is the presence of a potential risk situation that can result in or contribute to a mishap.  
Every hazard has at least one cause, which in turn can lead to a number of effects (e.g., damage, 
illness, failure). 

A hazard cause may be a defect in hardware or software, a human operator error, or an 
unexpected input or event which results in a hazard.  A hazard control is a method for preventing 
the hazard, reducing the likelihood of the hazard occurring, or the reduction of the impact of that 
hazard .  Hazard controls use hardware (e.g. pressure relief valve), software (e.g. detection of 
stuck valve and automatic response to open secondary valve), operator procedures, or a 
combination of methods to avert the hazard.  

For every hazard cause there must be at least one control method, usually a design feature 
(hardware and/or software) or a procedural step.  Examples of hazard causes and controls are 
given in Table 2-1 Hazard Causes and Controls - Examples.  Each hazard control will require 
verification, which may be via test, analysis, inspection, or demonstration.  For NASA, critical 
hazard causes require two independent controls.  Catastrophic hazard causes require three 
independent controls. 

Software can be used to detect and control hazards, but software failures can also contribute to 
the occurrence of hazards.  Some software hazard causes can be addressed with hardware hazard 
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controls, although this is becoming less and less practical as software becomes more complex.  
For example, a hardwired gate array could be preset to look for certain predetermined hazardous 
words (forbidden or unplanned) transmitted by a computer, and shut down the computer upon 
detecting such a word.  In practice, this is nearly impossible today because thousands of words 
and commands are usually sent on standard buses. 

Table 2-1 Hazard Causes and Controls - Examples 

Cause Control Example of Control Action 

Hardware Hardware Pressure vessel with pressure relief valve. 

Hardware Software Fault detection and safing function; or arm/fire checks which activate 
or prevent hazardous conditions. 

Hardware Operator Operator opens switch to remove power from failed unit. 

Software Hardware Hardwired timer or discrete hardware logic to screen invalid 
commands or data.  Sensor directly triggering a safety switch to 
override a software control system.  Hard stops for a robotic arm. 

Software Software Two independent processors, one checking the other and intervening 
if a fault is detected.  Emulating expected performance and detecting 
deviations. 

Software Operator Operator sees control parameter violation on display and terminates 
process. 

Operator Hardware Three electrical switches in series in a firing circuit to tolerate two 
operator errors. 

Operator Software Software validation of operator-initiated hazardous command.  
Software prevents operation in unsafe mode. 

Operator Operator Two crew members, one commanding and the other monitoring. 

2.1.2 How Can Software be Hazardous? 
Software, by itself, cannot injure you.  But software does not exist by itself.  It operates in an 
electronic system (computer) and often controls other hardware.  Software is hazardous if it can 
directly lead to a hazard or is used to control a hazard. 

 Hazardous software includes all software that is a hazard cause. 

 Is a hazard control. 

 Provides information upon which safety-critical decisions are made. 

 Is used as a means of failure/fault detection. 

2.1.3 What is Safety-Critical Software? 
Safety-critical software includes hazardous software (which can directly contribute to, or control 
a hazard).  It also includes all software that can influence that hazardous software.  
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Software is considered safety-critical if it controls or monitors hazardous or safety-critical 
hardware or software.  Such software usually resides on remote, embedded, and/or real-time 
systems.  For example, software that controls an airlock or operates a high-powered laser is 
hazardous and safety-critical.  Software that monitors a fire-detection system is also safety-
critical.   

Software that provides information required for a safety-related decision falls into the safety-
critical category.  If a human must shut down a piece of hardware when the temperature goes 
over a threshold, the software that reads the temperature and displays it for the human operator is 
safety-critical.  All the software along the chain, from reading the hardware temperature sensor, 
converting the value to appropriate units, to displaying the data on the screen are safety-critical. 

Software that performs off-line processes may be considered safety-critical as well.  For 
example, software that verifies a software or hardware hazard control must operate correctly.  
Failure of the test software may allow a potential hazard to be missed.  In addition, software 
used in analyses that verify hazard controls or safety-critical software must also function 
correctly, to prevent inadvertently overlooking a hazard.  Modeling and simulation programs are 
two types of off-line software that may be safety-critical.  Very often we rely on our software 
models and simulators to predict how part or all of a system may react. The system may be 
modeled to represent  stressed or  “normal” operations.  Based on those modeled reactions, 
changes may be made in the design of the hardware, software, and/or operator procedures.  If the 
system model fails to properly depict safety critical situations, design errors may go undetected.  

If the software resides with safety-critical software on the same physical platform, it 
must also be considered safety-critical unless adequately partitioned from the safety-
critical portion.  Non-safety-critical software (such as a data massaging algorithm) could 
lock up the computer or write over critical memory areas when sharing a CPU or any 
routines with the safety-critical software.  Techniques such as firewalls and partitioning 
can be used to ensure that the non-safety-critical software does not interrupt or disrupt the 
safety-critical functions and operations.  

In summary, software is safety-critical if it performs any of the following: 

o Controls hazardous or safety-critical hardware or software. 

o Monitors safety-critical hardware or software as part of a hazard control. 

o Provides information upon which a safety-related decision is made. 

o Performs analysis that impacts automatic or manual hazardous operations. 

o Verifies hardware or software hazard controls. 

o Can prevent safety-critical hardware or software from functioning properly. 

2.1.4 How Does Software Control Hazards? 
In the past, hardware controls were the primary method used to control (i.e. prevent) hardware 
hazards.  Today, because of the complexity of systems, it may not be feasible to have only 
hardware controls, or to have any hardware controls at all.  Now, many hardware hazard causes 
are addressed with software hazard controls.  Often this is because of the quick reaction time 
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needed to respond to a failure or the complexity of detecting possible faults and errors before 
they become failures.  

Some examples of software controls are: 

• Monitor hazardous hardware (via instrumentation) and execute a corrective action if 
deviations are outside of established limits.  For example, turn off a power supply (or 
reduce power) when it is in an over-voltage condition. 

• Monitor potential hazardous conditions (e.g. temperature) and warn operators.  For 
example, sound an alarm when the pressure goes above a predefined threshold. 

• Inhibit certain activities in operational states that could lead to a hazardous event, such as 
preventing a chamber door from being opened during experiment sequences while toxic 
gases are present. 

2.1.5 Relationship Between Software and Hardware Controls 
NASA relies primarily on hardware controls, in conjunction with software controls, to prevent 
hazards.  Hardware controls are well known and understood, and have a better “track record” 
than software.  However, software is often the first line of defense, monitoring for unsafe 
conditions and responding appropriately.  The software may perform an automatic safing 
operation, or provide a message to a human operator, for example.  The hardware control is the 
backup to the software control.  If the software fails to detect the problem or does not respond 
properly to alleviate the condition, then the hardware control is triggered.   

Using a pressurized system as an example, the software monitors a pressure sensor.  If the 
pressure goes over some threshold, the software would respond by stopping the flow of gas into 
the system by closing a valve.  If the software failed, either by not detecting the over-
pressurization or by not closing the valve, then the hardware pressure relief valve would be 
triggered once the pressure reached a critical level. 

While software controls can be, and are, used to prevent hazards, they must be 
implemented with care.  Special attention needs to be placed on this software during the 
development process.  When there are no hardware controls to back up the software, the 
software must undergo even more rigorous development and testing.  This guidebook 
provides guidance for the development, analysis, and testing of all such software.  The 
amount of effort to develop and assure safety-critical software will be determined by the 
degree of criticality of the software, as described in Chapter 3. 

2.1.6 Caveats with Software Hazard Controls 
When software is used to control a hazard, some care must be made to isolate it from the hazard 
cause it is controlling.  For a hazard cause outside of the computer-processing arena (e.g. stuck 
valve), the hazard control software can be co-located with the regular operations software.  
Partitioning of the hazard control software is recommended.  Otherwise, all of the software must 
be treated as safety-critical because of potential “contamination” from the non-critical code. 

If the hazard cause is erroneous software, then the hazard control software can reside on a 
separate computer processor from the one where the hazard/anomaly might occur.  Another 
option would be to implement a firewall or similar system to isolate the hazard control software, 
even though it shares the same processor as that where the potential hazard cause may occur.   
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If the hazard cause is a processor failure, then the hazard control must be located on another 
processor, since the failure would most likely affect its own software’s ability to react to that 
CPU hardware failure.  This is a challenging aspect of software safety, because multiprocessor 
architectures are costly and can add significant complexity (which in itself can increase the 
possibility of software failures).  A single computer is inherently zero failure tolerant.  Many 
system designers believe that computers fail safe, whereas NASA experience has shown that 
computers may exhibit hazardous failure modes.  Another fallacy is to believe that upon any 
fault or failure detection, the safest action is always to shut down a program or computer 
automatically.  Instead, this action could cause a more serious hazardous condition. Consider 
shutting down a computer which is your only means of monitoring, detecting, or controlling 
many potential hazards due to one program or module failure.  Self detection and isolation of the 
problem area may be much less hazardous, allowing the problem to be corrected or mitigated.  

2.1.7 What is Fault or Failure Tolerance? 
A fault is any change in the state of an item which is considered anomalous and may warrant 
some type of corrective action.  A failure is the inability of a system or component to perform its 
required functions within specified performance requirements.   
 A fault may or may not lead to a failure. 
 One or more faults can become a failure. 
 All failures are the result of one or more faults. 

Fault tolerance is the ability of the system to withstand an unwanted event and maintain a safe 
and operational condition.  It is determined by the number of faults that can occur in a system or 
subsystem without the occurrence of a failure.  Fault and failure tolerance are often used 
synonymously, though they are different.   

Fault tolerance usually is concerned with detecting and recovering from small defects 
before they can become larger failures.  Error detection and handling is one example of 
fault-tolerant coding practices.  Failure tolerance is concerned with maintaining the 
system in a safe state despite a failure within the system.  Creating failure tolerance 
requires a system-wide approach to the software and hardware design, so that a failure 
does not lead to an unsafe state.  Depending on the failure and the failure tolerance 
mechanism, the system may operate normally or with reduced functionality. 

System failure or fault tolerance is often described as the number of failures or faults the system 
can handle and continue functioning at some level.  A one failure tolerant system can continue 
functioning after a single failure has occurred.  A second failure would lead to a failed system or 
the system in an unsafe state.  Likewise, a two failure tolerant system requires three failures 
before the system becomes unsafe or fails to continue normal operations.   

While a failed system is not good, it may still be safe.  Failure tolerance becomes a safety issue 
when the failures occur in hazard controls.  To prevent a hazard, at least one control must be 
functioning at all times.  NASA, based on extensive experience with spacecraft flight operations, 
has established levels of failure tolerance based on the hazard severity level necessary to achieve 
acceptable levels of risk. 

• Catastrophic Hazards must be able to tolerate two hazard control failures. 
• Critical Hazards must be able to tolerate a single hazard control failure. 
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2.2 The System Safety Program 
A System Safety Program Plan is a prerequisite to performing development or analysis of safety-
critical software.  The System Safety Program Plan outlines the organizational structure, 
interfaces, and the required criteria for analysis, reporting, evaluation, and data retention to 
provide a safe product.  This safety plan describes forms of analysis and provides a schedule for 
performing a series of these system and subsystem level analyses throughout the development 
cycle.  It also addresses how the results of safety analyses will be communicated  and the sign-
off/approval process for all activities.  A Safety Program Plan is usually created and maintained 
at an organizational or “programmatic” level.  Within NASA, a program may have one or many 
projects. At the project level, there should also exist a safety plan which describes for that project 
how it will incorporate the programmatic plan requirements as well as those specific to the 
project. 

Figure 2-1 Hazard Analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

Step 6: 
Perform a 
System Hazard 
Analysis (SHA) 
– another type 
of specific 
assessment. 

Step 5: 
Investigate 
hazards 
associated 
with  the 
interfaces. 

Step 4: 
Perform a 
Subsystem 
Hazard 
Analysis 
(SSHA) – 
more specific 
to the 
subsystem. 

Step 3: 
Development 
breaks the 
system down into 
subsystems. 

Step 2: 
Perform a 
Preliminary 
Hazard Analysis 
(PHA) – a general 
type of assessment. 
Identify all 
potential hazards 
for that system. Step 1: 

Gather 
information 
on the system 
– hardware 
and software. 

As System 
Matures, KEEP
ON GOING 

2.2.1 System Safety Process 
System safety analyses follow the life cycle of the system development efforts.  The system is 
comprised of the hardware, the software, and the interfaces between them (including human 
operators).  What generally happens in the beginning of project development is that the hardware 
is conceived to perform the given tasks and the software concept is created that will operate 
and/or interact with the hardware.  As the system develops and gains maturity, the types of safety 
analyses go from a single, overall assessment to ones that are more specific. 

While software is often considered a subset of the complete system (a subsystem), it is actually a 
“coexisting” system, acting with and upon the hardware system.  Because software often 
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commands, interprets, stores and monitors the system functions, it should always be considered 
in a systems context.   

The System Safety Project Plan should describe interfaces within the assurance disciplines as 
well as the other project disciplines.  In practical terms, that means that all parties involved in the 
project should decide who is doing what analyses.  Depending mostly on where the expertise 
resides, different organizations may be responsible for performing the necessary analyses.  For 
instance, the software assurance engineer may perform all the software safety analyses and the 
software developer will perform any software development analyses.  In a larger organization, or 
for a very critical project, there will usually be a separate software safety engineer who performs 
the software safety and development analyses.  If the project uses an Independent Verification 
and Validation (IV&V) team, they will review the analyses plus possibly perform some 
additional analyses.  All analyses and tasks should be complementary and supportive, regardless 
of which group (development, assurance, safety, IV&V) has the responsibility.  The analyses and 
tasks may be distributed between the groups, and within each discipline, according to the 
resources and expertise of the project personnel.  The project manager along with the appropriate 
safety and mission assurance organization must assure coverage and support for the needed 
safety tasks. 

Concurrent engineering can help to provide better oversight, allowing information and 
ideas to be exchanged between the various disciplines, reduce overlapping efforts, and 
improve communications throughout the project.  Safety and assurance personnel bring a 
safety “point of view” to a project, and should be included at the earliest possible stage.  
The information obtained and rapport established by being an early member of the team 
will go a long way in solving problems later in the project.  Designing in safety from the 
beginning is far easier, more elegant, and cheaper than late-stage alterations or additions 
intended to work the safety features in after the rest of the system is designed.  

The Software System Safety Handbook [7] produced by the Department of Defense has an 
excellent reference to system safety from a risk management perspective.  Chapter 3 of that 
document goes into detail about how risk and system safety are intertwined.  Chapter 4 describes 
planning a software safety program, including hazard analyses.  Appendix E of that document 
details generic requirements and guidelines for software development and test. 

2.2.2 System Safety and Software Development 
System safety within NASA has its own set of tasks, independent of the software development 
lifecycle.  These tasks include: 

• Creating Safety Data Packages that describe the instrument (hardware, software, and 
operations) and provide information on any safety hazards, controls, or mitigations. 

• Conducting safety reviews through out the system lifecyle, usually Phase 0/1, Phase II, 
and Phase III.  For all Shuttle and  ISS sub-systems as well as their payloads, these 
reviews are conducted at Johnson Space Center before the Shuttle or ISS Safety Panel. 
However, local review panels may be established as pre-cursors as well as for other 
programs, facilities and projects.  

• Conducting safety verification activities, including completing the Safety Verification 
Tracking Log prior to launch.  The completed log shows that all safety features, controls,  
and fail safes are working as required.  
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Software safety engineers, as well as other members of the project team, will provide 
information and input to the system safety engineer.   

Figure 2-2 illustrates the relationship between the basic System Safety life cycle (on top), the 
system lifecycle, and the software lifecycle.  Although the tasks shown in this slide are 
specifically shown against the backdrop of the waterfall lifecycle, the information is still quite 
usable for any lifecycle model. Figure 2-2 is a pictorial representation only and should not be 
used to determine time, length of, or relationship in size for the various phases. 

Figure 2-2 Safety, System and Software Timeline 
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System safety activities are discussed in the next section in general terms.  For more information 
on the NASA Space Shuttle and ISS system safety process, see NSTS 1700.7B, Safety Policy 
and Requirements for Payloads Using the Space Transportation System; NSTS 22254, 
Methodology for Conduct of Space Shuttle Program Hazard Analyses; NSTS 18798, 
Interpretations of NSTS Payload Safety Requirements; and JSC 26943, Guidelines for the 
Preparation of Payload Flight Safety Data Packages and Hazard Reports.   
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2.3 Safety Requirements and Analyses 
The first step to any safety analysis is asking the right questions: What could go wrong? Why 
won’t it? What if it did? Everyone involved in each activity throughout the life cycle of the 
system should think about all the ways the system or software can fail, how to prevent the failure 
from occurring, and how to prevent or mitigate an accident if the failure occurred..  Everyone has 
a different viewpoint and will see different hazards, different ways the system can fail, and new 
ways to prevent failures from occurring. 

Depending on the program or project, there are many applicable safety requirements. In general, 
there are two types of safety requirements:  1) imposed by standards and regulations and 2)  
technically specific to the project and its operating environments.  The requirements levied from 
standards, either established internally by the organization, or externally by government or 
industry must be sited within the project documentation as well as any tailoring for the specific 
project. These should be specifically written into any contracts or sub-contracts. Such 
requirements provide the minimum boundaries that must be met to ensure that the system is safe 
and will not cause harm to people, itself, other systems, or the environment. Safety requirements 
can include those specific to NASA, the FAA, the Department of Transportation (DOT), and 
even the Occupational Health and Safety Administration (OSHA). 

Once the regulatory and standard safety requirements have been identified,  the available specific 
system information is gathered to determine the project specific safety requirements.  Usually, 
these will be derived from the first safety analysis performed during system concept and 
beginning requirements phase.  A common assessment tool used during this beginning activity is 
the Preliminary Hazard Analysis (PHA).  This analysis tool will be discussed in more detail in 
Section 2.3.1 and Appendix F.  The results of the PHA are a list of hazard causes and a set of 
candidate hazard controls, that are taken forward as inputs to the system and software safety 
requirements flow-down process. 

System hazard controls should be traceable to system requirements.  If controls identified 
by the PHA are not in the system specification, safety requirements to control the hazards 
should be added to that document, to assure that the software specification derived from 
the system specification will include the necessary safety requirements. 

At least one software requirement is generated for each software hazard control.  Each 
requirement is incorporated into the Software Requirements Specification (SRS) as a safety-
critical software requirement. 

 

Any software item identified as a potential hazard cause, contributor, control, or
mitigation, whether controlled by hardware, software or human operator, is
designated as safety-critical, and subjected to rigorous software quality assurance,
analysis, and testing.  Safety-critical software is also traced through the software safety
analysis process until the final verification.  Thus, safety critical requirements need to
be identified as such to insure future changes, as well as verification processes, take
them into appropriate consideration. 
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2.3.1 Preliminary Hazard Analysis (PHA) 
Before any system with software can be analyzed or developed for use in hazardous operations 
or environments, a system PHA must be performed.  Once initial system PHA results are 
available, safety requirements are derived and flow down into the hardware and software 
requirements.  As the specifications and design take shape,   subsystem and component hazard 
analyses can begin.  The PHA is the first source of “specific” system safety requirements and 
may even go so far as to point to specific software safety requirements (i.e., unique to the 
particular system architecture).  It is a prerequisite to performing any software safety analysis as 
it defines the overall hazards for the system. 

It is then a matter of determining software’s role in potentially contributing to those hazards, or 
in controlling or mitigating them. When performing a PHA, it is important to consider how the 
software interacts with the rest of the system.  Software is the heart and brains of most modern 
complex systems, controlling and monitoring almost all operations.  When the system is 
decomposed into sub-elements, how the software relates to each component should be 
considered.  The PHA should also look at how components may feed back to the software (e.g. 
failed sensor leading the software to respond inappropriately). 

The PHA is the first of a series of system level hazard analyses, whose scope and methodology is 
described in NPG 8715.3, NASA Safety Manual [4], and NSTS-22254, Methodology for 
Conduct of Space Shuttle Program Hazard Analyses [6].  

Appendix F describes the PHA process in more detail.  Software safety engineers or others who 
may be assisting in a PHA should read that appendix.  The software developer should skim the 
appendix, noting the information on software hazard controls and must work/must not work 
functions. 

Note that the PHA is not a NASA-specific analysis, but is used throughout industry.  IEEE 1228, 
Software Safety Plans, also requires that a PHA be performed. 

2.3.2 Risk Levels 
Hazard analyses, such as the PHA, are not primarily concerned with whether the hazard is likely 
to occur or not.  All hazards are bad, even if their occurrence is highly improbable.  However, 
unlimited time and money are usually not available to address all possible hazards.  The hazards 
must somehow be prioritized.  This prioritization leads to the concept of risk. 

Risk is the combination of 1) the probability (qualitative or quantitative) that a program or 
project will experience an undesired event such as safety mishap, compromise of security, or 
system component failure; and 2) the consequences, impact, or severity of the undesired event 
were it to occur. 

Each project or program needs to define a set of “hazard severity” levels, using definitions 
prescribed in Agency policy, procedures, and standards.  Organization-wide definitions should 
be used, if available and appropriate.  Having a common language helps when team members 
from different disciplines discuss the system and software hazards, causes, and controls.  The 
following definitions of hazard severity levels in Table 2-2 are from NPG 8715.3 and are 
included as an example. 
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Table 2-2 Risk Definitions 

Catastrophic Critical 

Loss of human life or permanent 
disability; loss of entire system; 
loss of ground facility; severe 
environmental damage 

Severe injury or temporary 
disability; major system or 
environmental damage 

Moderate Negligible 
 

Minor injury; minor system 
damage 

No injury or minor injury; some 
system stress, but no system 
damage 

 

 

Likely Probable   

The event will occur 
frequently, such as greater 
than 1 out of 10 times. 

The event will occur several 
times in the life of an item. 

Possible Unlikely Improbable 
Likely to occur some time in 
the life of an item. 

Remote possibility of 
occurrence during the life of 
an item. 

Very rare, possibility is like 
winning the lottery 

As with the hazard severity definitions, each project or program needs to define the “likelihood 
of occurrence” of the hazard.  Likelihood may be expressed in quantified probabilities or as a 
qualitative measure.  Keep in mind that the possibility that a given hazard may occur is usually 
based on engineering judgment and not on hard numbers, especially where software is 
concerned.  The definitions of likelihood of occurrence in Table 2-2 are provided as an example 
only, and are based on NPG 8715.3 and “Software Safety Hazard Analysis”[8]. 

Combining these two concepts (severity and likelihood) leads to a single risk index value for the 
hazard.  This allows hazards to be prioritized and risks to be managed.  Highly likely and severe 
hazards require a rigorous development and analysis environment.  Improbable and negligible 
hazards require little or no extra attention, beyond the good engineering, programming, and 
assurance practices used by the project team.  

The System Risk Index, based on the above severity levels and likelihood of occurrence, 
is shown in Table 2-3 Hazard Prioritization - System Risk Index.  This is an example 
only.  Each program, project, or organization should create a similar risk index, using 
their definitions of severity and likelihood. 
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Table 2-3 Hazard Prioritization - System Risk Index 

Severity Levels Likelihood of Occurrence 

 Likely Probable Possible Unlikely Improbable 

Catastrophic 1 1 2 3 4 

Critical 1 2 3 4 5 

Moderate 2 3 4 5 6 

Negligible 3 4 5 6 7 

1 = Highest Priority (Highest System Risk), 7 = Lowest Priority (Lowest System Risk) 

Prioritizing the hazards is important for determining allocation of resources and acceptance of 
risk.  For NASA, hazards with the highest risk, Level 1, are not permitted in a system design.  A 
system design exhibiting “1” for hazard risk index must be redesigned to eliminate or mitigate 
the hazard probability of occurrence and/or severity level to within an acceptable range.  The 
lowest risk indices, "5" and above, require minimal, if any, safety analysis or controls.  For the 
Levels 2, 3, and 4, the amount of safety analysis required increases with the level of risk.  The 
extent of a safety effort is discussed within Chapter 3, where three levels of safety analysis -
Minimum, Moderate, and Full - are described.  The three levels of safety analysis correspond to 
risk as follows: 

Table 2-4 System Risk Index 

System 
Risk Index Class of Safety Activities Recommended 

1 Not Applicable as is (Prohibited) 

2 Full 

3 Moderate 

4,5* Minimum 

6,7 None (Optional) 

*Level 5 systems fall between Minimum and Optional, and should be evaluated to determine the class of safety 
activities required. 

2.3.3 NASA Policy for Hazard Elimination and Control 
The NASA policy towards hazards of Risk Index 2, 3 or 4/5 is defined in NPG 8715.3, 
paragraph3.4.  Hazards are mitigated according to the following stated order of precedence: 

• Eliminate Hazards 
Hazards are eliminated where possible.  This is best accomplished through design, such 
as by eliminating an energy source.  For example, software could have the ability to 
affect a pressure control.  If software access to the control is not needed, and 
malfunctioning software could lead to a hazard, then preventing software’s access to 
the control removes the possibility of software’s contribution to the hazard.  From a 
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system perspective, hazard elimination would be in the form of choosing a design 
solution that does not require hazardously high pressure. 

• Design for Minimum Hazards 
Hazards that cannot be eliminated must be controlled.  For those hazards, the PHA 
evaluates what can cause the hazards, and suggests how to control them.  Control by 
design is preferred.  The hazard may be minimized by providing failure tolerance (e.g. 
by redundancy - series and/or parallel as appropriate), by providing substantial margins 
of safety, or by providing automatic safing.  For example, software verifies that all 
conditions are met prior to ignition of rocket engines. 

• Incorporate Safety Devices 
An example of a safety device is a fire detection and prevention system that detects and 
interacts with a fire event.  Software may be a part of these devices, and may also 
provide one of the triggers for the safety devices, such as turning on a sprinkler system, 
sounding an alarm, or flooding the area with an oxygen suppression gas. 

• Provide Caution And Warning  
Software may monitor one or more sensors and trigger a caution or warning alarm or 
announcement.  Any software used in these caution and warning devices is safety-
critical. 

• Develop Administrative Procedures and Training 
Control by procedure is sometimes allowed, where sufficient time exists for a flight 
crewmember or ground controller to perform a safing action. The concept of “time to 
criticality” is an important design aspect of the software/hardware/human interaction in 
controlling safety critical situations. 

2.3.4 Software Subsystem Hazard Analysis 
The PHA identifies hazards at the system level.  Some subset of these hazards will involve 
software.  The Software Subsystem Hazard Analysis determines which of the hazards (including 
hazard causes, controls, mitigations, or verifications) have software as a component.   

At the beginning of a project, the design is high-level and fluid.  While some software 
functional areas may be identified early on, many more will become apparent as the 
design matures.  It is vital to revisit this analysis regularly, as more detail emerges.  Also, 
a shift of functionality from hardware to software is common during the design process.  
As the design progresses and possibly changes, system, software, safety and assurance 
engineering must consider the potential impact to safety.  The system and/or software  
safety engineers update this analysis as the design and implementation progress, or when 
the system changes. 

The procedure for a Software Subsystem Hazard Analysis is fairly simple.  The hazards listed on 
the Preliminary Hazard List (PHL) are examined for a software component.  Those that have 
software as a cause, control, mitigation, or verification are put on a Software Hazard List.  The 
system and software specifications are examined to verify that the software functions identified 
on the hazard list are included as safety-critical requirements. 
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Software may impact a hazard in several ways. 

 Software failure may lead to a hazard occurring (hazard cause).  For example, 
software may incorrectly command a mechanical arm to move past its operational limit, 
resulting in the arm damaging nearby equipment or causing injury.  A failure in a data 
conversion function could incorrectly report a temperature value, allowing a furnace door 
to be opened when the temperature inside is at a dangerous level. 

 Failure of a software hazard control may allow a hazard to occur.  Software that 
monitors pressure and opens a valve when it reaches a threshold may be a hazard control.  
Failure of that software would allow an over-pressurization of the vessel and a potential 
for a rupture or other hazard. 

 Software safing mode (move from hazardous to non-hazardous state) may fail.  
Failure of the software to detect or shut down a runaway electromechanical device (such 
as a robotic arm or scan platform) is an example of such an impact. 

 Software used to mitigate the consequences of accident may fail.  As an example, 
software controlling the purging of toxic gases (which resulted from a failure in some 
other portion of the system) may fail, allowing the gases to remain in the chamber or be 
vented inappropriately to the outside air. 

 Software used to verify hazard hardware or software hazard controls may fail.  
Failure in this situation would be due to invalid results (either verifying a control when it 
really failed or failing a control when it actually works).  “False positives” may allow a 
potentially hazardous system to be put into operation. 

When conducting the Software Subsystem Hazard Analysis, it is important to consider many 
types of failures.  Examples of failures to consider are: 

• Sensors or actuators stuck at some value (all zeros, all ones, some other value) 
• Value above or below range 
• Value in range but incorrect 
• Physical units incorrect 
• Wrong data type or data size 
• Incorrect operator input 
• Overflow or underflow in calculation 
• Algorithm incorrect 
• Shared data corrupted 
• Out of sequence event  
• Failure to meet timing requirement 
• Memory usage problems 
• Data overflow due to inappropriate data packet or data arrives too quickly 
• Data sampling rate not sufficient to detect changes 
• One task failing to release shared resource 
• Deadlocking in a multitasking system 
• Effects of either system or computer hardware failures on the software 
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“Software Safety Hazard Analysis” [94], prepared for the US Nuclear Regulatory Commission, 
is an excellent reference for details on performing the Software Subsystem Hazard Analysis. 

Software safety analyses are conducted throughout the development cycle of the 
software.  It is important to reexamine software’s role and safety impact throughout 
the system development phases.   Software’s role is often altered to accommodate 
system changes or work around hardware problems. Additions to the system’s 
functionality can result in additions and/or changes to the hazards as well as functionality.  
As the software changes, hazard contributions may be added, deleted, or their criticality 
modified. These changes to the safety-critical software functionality must be reflected in 
the requirements, design, implementation, and verification of the system and software. 

The following sections describe these various software safety analyses.  Chapter 3 provides 
guidance on tailoring the number of analyses required to match the risk of the software hazards.  
Other software safety analyses, such as Software Fault Tree Analysis (SFTA), Software Failure 
Modes and Effects Analysis (SFMEA), requirements Criticality Analysis (CA), and specification 
analysis, are described in Chapters 5 through 10. 
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Chapter 3 Software Safety Planning 
If the Preliminary Hazard Analysis (PHA) reveals that any software is safety-critical, a software 
safety process must be initiated.  This chapter describes how to plan the software safety effort, 
and how to tailor it according to the level of risk of the system and software.   

Determination of the level of safety risk inherent in the system was presented in Section 2.3.2 
Risk Levels.  This chapter focuses on the risk level of the software.  Once the risk level is 
determined (i.e., a risk index is assigned), the amount of effort that must be expended to assure 
safe software can be estimated. 

Figure 3-1 Participants in  a Successful Safety Process 
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Each discipline involved in the project has a role to play in the creation of safe software.   

• The project manager maintains a high-level overview of the whole process, works with 
the team to include the extra software development and analysis tasks in the schedule and 
budget, and can be called on to help in negotiations between team members.  When 
questions arise as to the necessity of a particular analysis or development technique, the 
project manager is usually the final authority.  Ultimately, the Project Manager 
determines the amount and types of risk they are willing to accept for their project.  They 
may be required to work with, utilize, and pay for a certain amount of Independent 
Verification and Validation, but they determine the balance of overall safety analyses, 
verification,  and validation to take place.   SMA and IV&V provide an independent 
reporting path to assure that an appropriate amount of safety analysis, design and 
verification does take place.  
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• Systems engineers are responsible for designing the system and partitioning the elements 
between hardware and software.  Because they see the “big picture,” they have a unique 
perspective.  System developers can make sure that safety-critical elements are not 
overlooked in the initial analyses.  As system elements shift from hardware to software 
later in the design process, these engineers can make sure that the criticality of the design 
component is also transferred. 

• System safety engineers determine what components of the system are hazardous.  They 
look at the system as a whole entity, but also need to understand how the different 
elements function (or fail to function).   

• Software safety engineers build on the work of the system safety engineers.  They look 
closely at the requirements and development process to verify that software safety 
requirements are present and  being designed in.  They perform analyses and tests to 
verify the safety of the software.  The software safety engineer works in conjunction with 
the system safety organization to develop software safety requirements, distribute those 
safety requirements to the software developers, and monitor their implementation.  The 
software safety engineer also analyzes software products and artifacts to identify new 
hazards and new hazard causes to be controlled, and provides the results to the system 
safety organization to be integrated with the other (non-software) subsystem analyses. 

• Software developers are the “in the trenches” engineers who design, code, and often test 
the system.  They are responsible for implementing all the requirements in the software 
system.  Software developers can have a great impact on the safety of the software by the 
design chosen and by implementing defensive programming techniques.  

• Software Assurance engineers work with the software developers and software safety 
engineers to assure that safe software is created.  They monitor development processes, 
assure the traceability of all requirements, perform or review  analyses, witness or 
perform tests, and provide an “outside view” of both the software process and products.   

• Independent Verification and Validation (IV&V).   For all NPG 7120.5 and all safety 
critical projects, the project manager  is required to perform a self assessment of the 
project software and report the findings to the NASA IV&V Facility and local SMA 
organization.  (See NPD/NPG 8730.1, Software Independent Verification and Validation 
Policy/Guidance.)  The IV&V Facility may then perform their own review and  present 
the project manager with their estimate for additional analyses.  IV&V  is in addition to 
software assurance and software safety and not a replacement for those roles. 

In a small team, there may not be a separate software safety engineer.  The software assurance 
engineer, the system safety engineer, the system developer, or someone from the software 
development team may take on this role, depending on the individual’s expertise.  Several people 
working cooperatively may also share the software safety role. 

Software assurance functions within the overall project and software development processes and 
can be a key factor in developing safer software. For safety, the objectives of the software 
assurance process are to:  

• Develop software that has fewer defects (and therefore fewer safety-related defects).  
Software assurance and IV&V can provide guidance on best practices and process 
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improvements that may reduce the required effort to develop the software and/or the 
number of inherent defects. 

• Find the defects earlier in the lifecycle, when they are less costly to correct.  

• Assure the safety of the software, contributing to the assurance of system safety.  

• Help the project stay within budget and schedule by eliminating problems and risk early 
on. 

• Reduce the software-related risks (safety, reliability, mission success, etc.) 

Chapter 4 presents an overview of the software development process, including various life-
cycle models.  Chapters 5 through 10 discuss the various analysis and development tasks used 
throughout the software development life cycle.  The division of the tasks and analyses into 
conception, requirements, design, implementation, verification, and maintenance phases does not 
imply a waterfall lifecycle.  These concepts are applicable to all lifecycles, though at different 
times and to varying degrees. 

3.1 Scoping  the Software for the Safety Effort 
The System Risk Index specified the hazard risk for the system as a whole.  The software 
element of the system inherits from the system risk, modified by the extent with which the 
software controls, mitigates, or interacts with the hazardous elements.  In addition, the 
complexity of the software and the development environment play a role. Merging these two 
aspects is not an exact science, and the information presented in this section is meant to guide the 
scoping and then tailoring of the safety effort.  The numerous charts provided are to be used only 
as a starting point when determining the level of safety effort. 

The process of scoping the software safety effort begins with the determination of how much 
software is involved with the hazardous aspects of the system.  The PHA, Software Hazard 
Analysis, Software Risk Assessments, and other analyses provide information for determining 
whether systems and subsystems should be initially categorized as safety-critical.   

Scoping the software safety effort can be accomplished by following three steps: 

1.  Identify safety-critical software  

2.  Determine safety-critical software criticality (i.e., how critical is it?) 

3.  Determine the extent of development effort and oversight required 

 

The third scoping step actually leaves the project manager with choices in how to meet the 
needed development and oversight levels.  Using the information gained from the scoping 
process, as well as input from the safety and assurance engineers,  the project manager can better 
tailor  the effort and oversight needed for a particular project.   

3.1.1 Identify Safety-Critical Software 
Before deciding how to apply software safety techniques to a project, it is important to first 
determine if there is even a safety concern.  The initial criteria for determining if software is 
safety-critical is found in section 2.1.3. 
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Reliability is also a factor when determining whether software is safety-critical.  Most aerospace 
products are built up from small, simple components to make large, complex systems.  
Electronic components usually have a small number of states and can be tested exhaustively, due 
to their low cost, to determine their inherent reliability. Mechanical components have similar 
means to determine their predictable, usable life span when used within predefined 
environmental and operational limits.  Reliability of a large hardware system is determined by 
developing reliability models using failure rates of the components that make up the system.  
Reliability and safety goals of hardware systems can usually be reached through a combination 
of redundant design configurations and selection of components with suitable reliability ratings. 

Reliability of software can be hard to determine, and as yet, is mostly qualitative and not 
quantitatively expressed.  Software does not wear out or break down.  It may have a large 
number of states that cannot be fully tested.  For example, an important difference between 
hardware and software is that many of the mathematical functions implemented by software are 
not continuous functions, but functions with an arbitrary number of discontinuities.  Although 
mathematical logic can be used to deal with functions that are not continuous, the resulting 
software may have a large number of states and lack regularity.  It is usually impossible to 
establish reliability values and prove correctness of design by testing all possible states of a 
medium to large (more than 40,000-50,000 lines of code) software system within a reasonable 
amount of time.   

Much of the software used within NASA is “one-off” code, that is written once for a particular 
operation/mission and then never used again.  That is, there is little to no reuse and thus there is 
little record of long term use to provide statistics on software reliability.  Even code used several 
times, such as that for  the Shuttle operations, is often modified.  Reliability estimation requires 
extensive software testing. Except in the rare cases where formal methods are used to capture the 
requirements and/or design, testing can only commence after preliminary code has been 
generated, typically late in the development cycle.   At that point, exhaustive testing is not in the 
schedule or budget.  As a result, it is very difficult to establish accurate reliability and design 
correctness values for software. 

If the inherent reliability of software cannot be accurately measured or predicted, and most 
software designs cannot be exhaustively tested, the level of effort required to meet safety goals 
must be determined using other characteristics of the system.  The following characteristics have 
a strong influence on the ability of software developers to create reliable, safe software: 

• Degree of Control: The degree of control that the software exercises over safety-
critical functions in the system.  

Software that can cause a hazard if it malfunctions is considered safety-critical 
software.  Software which is required to either recognize hazardous conditions and 
implement automatic safety control actions, provide a safety-critical service, or inhibit a 
hazardous event, will require more software safety resources and detailed assessments 
than software which is only required to recognize hazardous conditions and notify a 
human operator to take necessary safety actions.  Human operators must then have 
redundant sources of data independent of software, allowing them to detect and 
correctly react to misleading software data before a hazard can occur. 
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Fatal accidents have occurred involving poorly designed human computer interfaces, 
such as the Therac-25 X-ray machine [9].  In cases where an operator relies only on 
software monitoring of critical functions, then a complete safety effort is required. 

• Complexity: The complexity of the software system.  Greater complexity increases the 
chances of errors. 

The number of safety related software requirements for hazards control increases 
software complexity.  Some rough measures of complexity include the number of 
subsystems controlled by software and the number of interfaces between 
software/hardware, software/user and software/software subsystems.  Interacting, 
parallel executing processes also increase complexity.  Note that quantifying system 
complexity can only be done when a high level of design maturity exists (i.e., detail 
design or coding phases).  Software complexity can be estimated based on the number 
and types of logical operations it performs.  Complexity metrics are further discussed in 
section 7.4.8. 

• Timing criticality: The timing criticality of hazardous control actions.  
The speed at which a system with software hazard control must react is a major factor.  
Does control need to be exercised faster than a human or mechanical system can react?  
With the advent of software control, faults can be detected and countered prior to 
becoming full failures.  Thus, even embedded real-time software systems which need 
microseconds to react to some critical situations can be designed to detect and avoid 
hazards as well as control them one they occur.  How fast must the system respond? 
That depends on the system. For example, spacecraft that travel beyond Earth orbit 
need a turnaround time of possibly hours or days in order to notify a ground human 
operator of a possible hazard and wait for return commands on how to proceed.  That is 
likely to exceed the time it takes for the hazard to occur. Thus, on-board software 
and/or hardware must deal with the situation autonomously. 

You’ve determined 1) the function that software is to perform is safety critical, 2)  the needed 
level of control, 3) the system complexity, and 4) the required time to react to prevent a hazard 
from occurring. The next step is to define the degree of the software criticality, which will 
translate to the level of software safety effort.   

3.1.2 Determine Software Safety- Criticality 
Once software has been identified as safety-critical, further analyses such as the Software Failure 
Modes and Effects Analyses  (SFMEA) or Software Fault Tree Analyses (SFTA) will help to 
determine the criticality rating. 

The following sections describe how to determine the software risk index.  This is an extension 
of the system risk index shown in Table 2-3.  The level of software risk will determine the extent 
of the software safety effort.  Software with low risk will require less effort (analyses, tests, 
development activities) than software that is high-risk.  This exercise will need to be refined as 
the design architecture and implementation  reveal how the functionality is modularized, or not.  
At first, it may be determined that all the software is safety critical, and that may be the final 
answer.  However, if the safety critical functions can be encapsulated or  segregated to some 
degree within certain routines or objects, then a more refined safety design and analysis approach 
can be made. 
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3.1.2.1 Software Control Categories 
The degree of control the software exercises over system functions is one factor in determining 
the extent of the safety effort required.  A reference source of definitions for software control 
categories is from MIL-STD-882C.  MIL-STD-882C [10] has been replaced by MIL-STD-882D, 
which does not reference the software control categories.  MIL-STD-882C categorized software 
according to its degree of control of the system, as follows:   

Table 3-1  MIL STD 882C Software Control Categories 
Software 
Control 
Category 

Degree of Control 

IA.  Software exercises autonomous control over potentially hazardous hardware systems, 
subsystems or components without the possibility of intervention to preclude the 
occurrence of a hazard.  Failure of the software, or a failure to prevent an event, leads 
directly to a hazard's occurrence. 

IIA. Software exercises control over potentially hazardous hardware systems, subsystems, 
or components allowing time for intervention by independent safety systems to 
mitigate the hazard.  However, these systems by themselves are not considered 
adequate. 

IIB.  Software item displays information requiring immediate operator action to mitigate a 
hazard.  Software failures will allow, or fail to prevent, the hazard's occurrence. 

IIIA. Software item issues commands over potentially hazardous hardware systems, 
subsystems or components requiring human action to complete the control function.  
There are several, redundant, independent safety measures for each hazardous event. 

IIIB. Software generates information of a safety-critical nature used to make safety-critical 
decisions.  There are several redundant, independent safety measures for each 
hazardous event. 

IV.  Software does not control safety-critical hardware systems, subsystems or components 
and does not provide safety-critical information. 

Complexity also increases the possibility of errors. Errors lead to the possibility of fault, which 
can lead to failures.  The following chart builds on what we have from MIL-STD 882C and takes 
into consideration the complexity of the software.  The chart also relates back to the system risk 
index discussed in Section 2.3.2 Risk Levels and has already eliminated System Risk Index level 
1 (prohibited) and levels beyond 5 (negligible risk).  The software category links the complexity 
of the software, the control that the software exerts on a system, the time to criticality, and the 
system risk index.  This information is used to create a Software Risk Matrix (see Table 3-3).  
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Table 3-2 Software Control Categories 

Software Control 
Categories  

Descriptions 

IA  Partial or total autonomous control of safety-critical functions by software. 

(System Risk Index 2) Complex system with multiple subsystems, interacting parallel processors, or multiple 
interfaces. 

 Some or all safety-critical functions are time critical. 

IIA & IIB*  Control of hazard but other safety systems can partially mitigate. 

Detects hazards, notifies human operator of need for safety actions. 

(System Risk Index 3) Moderately complex with few subsystems and/or a few interfaces, no parallel processing. 

 Some hazard control actions may be time critical but do not exceed time needed for adequate 
human operator or automated system response. 

IIIA & III B*  Several mitigating systems prevent hazard if software malfunctions. 

Redundant sources of safety-critical information. 

(System Risk Index 4) Somewhat complex system, limited number of interfaces. 

 Mitigating systems can respond within any time critical period.  

IV No control over hazardous hardware. 

No safety-critical data generated for a human operator. 

(System Risk Index 5) Simple system with only 2-3 subsystems, limited number of interfaces. 

 Not time-critical. 

Note: System risk index number is taken from Table 2-3 Hazard Prioritization - System Risk Index 
* A = software control of hazard.  B = Software generates safety data for human operator 

3.1.2.2 Software Risk Matrix 
The Software Risk Matrix is established using the hazard categories for the columns and the 
Software Control Categories (Table 3-2 above) for the rows.  The next matrix relates the 
software control of a hazard to the system severity levels.  A Software Risk Index is assigned to 
each element of the matrix, just as System Risk Index numbers are assigned in the Hazard 
Prioritization - System Risk Index (Table 2-3) matrix. 

NOTE: The Software Risk Index is NOT the same as the System Risk Index, though the two may 
appear similar.  The difference is mainly that the System Risk Index of 1 (prohibited) has already 
been eliminated. 

Unlike the System Risk Index, a low index number from the Software Risk Matrix does not 
mean that a design is unacceptable.  Rather, it indicates that greater resources need to be applied 
to the analysis and testing of the software and its interaction with the system. 
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Table 3-3 Software Risk Matrix 

Hazard Category* 
Software Control 
Category Catastrophic Critical Moderate Negligible or 

Marginal 

IA 
(System Risk Index 2) 

1 1 3 4 

IIA & IIB 
(System Risk Index 3) 

1 2 4 5 

IIIA & IIIB 
(System Risk Index 4) 

2 3 5 5 

IV 
(System Risk Index 5) 

3** 4** 5 5 

Note: System risk index number is taken from Table 2-3 Hazard Prioritization - System Risk Index 
* Hazard Category definitions are provided in Table 2-2. 

** All software in a safety-critical system must be evaluated.  If software has the potential to compromise system safety 
elements, then it must be treated as safety-critical. 

The interpretation of the Software Risk Index is given in Table 3-4.  The level of risk 
determines the amount of analysis and testing that should be applied to the software. 

Table 3-4 Software Risk Index 

Software Risk Index Risk Definition 

1 High Risk: Software controls catastrophic or critical 
hazards 

2 Medium Risk: Software control of catastrophic or 
critical hazards is reduced, but still significant. 

3-4 Moderate Risk: Software control of less significant 
hazards 

5 Low Risk: Negligible hazard or little software control 
 
Figure 3-2 shows the relationships among the various risk indices and software criteria.  The 
System Risk Index feeds into the Software Risk Index, modified by the software categories.  The 
modification relates to how much control the software has over the hazard, either potentially 
causing the hazard or in controlling or mitigating the hazard.  Note that the Software Risk Index 
relates to only a subset of the System Risk Index, because the riskiest level (System Index 1) is 
prohibited, and the levels with the least system risk do not require a safety effort. 
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Figure 3-2 Relationship of Risk Indices 

3.1.3 Determine the Safety Effort and Oversight Required 

3.1.3.1 Determine Extent of Safety Effort 
The Software Risk Index (Table 3-3) determines the level of required software safety effort for a 
system (Table 3-5 Required Software Safety Effort).  The mapping is essentially: Software Risk 
Index 1 = full effort, Software Risk Index 2 and 3 = moderate effort, and Software Risk Index 4 
and 5 = minimum effort.  However, if the Software Risk Index is 2,  consider whether it is a 
“high” 2 (closer to level 1 – more risk).  A high 2 should follow the full safety effort, or 
somewhere between full and moderate.  Also, if the Software Risk Index is a high 4, then the 
safety effort falls into the moderate category.   

Note that category IV software, which does not participate in any hazardous functions, may still 
require a minimum software safety effort.  Normally, no safety effort would be needed for such 
software.  However, with catastrophic and critical hazards, non-safety-critical software should be 
evaluated for possible failures and unexpected behavior that could lead to the hazard or to the 
compromise of a hazard control or mitigation.  

Further explanation of Full, Moderate, and Minimum software safety effort is found in Section 
3.2. 
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Table 3-5 Required Software Safety Effort 

Software Category Hazard Severity Level from Table 2-2 

See Table 3-3 Catastrophic Critical Moderate Negligible / Marginal 

IA 
(Software Risk Index 1) 

Full Full Moderate Minimum 

IIA & IIB 
(Software Risk Index 2/3) 

Full Moderate Minimum Minimum 

IIIA & IIIB 
(Software Risk Index 4/5) 

Moderate Moderate Minimum None 

IV 
Software does not directly 
control hazardous operations. 

Minimum Minimum None None 
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WARNING:  Requirements are subject to change as the system design progresses!  Often
items that were assigned to hardware are determined to be better (or more cheaply) developed
in software.  Some of those items may be safety-critical.  As system elements are redistributed,
it is vital to revisit the software safety effort determination.  If the new requirements lead to
software controlling hazardous hardware, then more effort needs to be applied to the software
safety program.   
 

3.1.3.2 Oversight Required 
The level of software quality assurance and independent oversight required for safety assurance 
depends on the system risk index as follows: 

Table 3-6 Degree of Oversight vs. System Risk 

oftware Risk 
ndex 

System Risk Index Degree of Oversight 

1 Not applicable (Prohibited) 

 2 Fully independent IV & V1 organization, as well as in-house SA 

 3 In house SA organization; Possible software IA1 

 4 In house SA organization 

,5 5-7 Minimal in house Software Assurance (SA) 

                                                      
1 NASA NPG 8730.x (draft) “Software Independent Verification and Validation (IV&V) Management” 
details the criteria  for determining if a project requires IV&V or Independent Assessment (IA).  This NPG 
should be followed by all NASA projects when establishing the level of IV&V or IA required. 
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The level of oversight indicated in the preceding table is for safety purposes, not for mission 
success.  The oversight required for a project would be the greater of that required for either 
mission success or safety purposes. 

A full-scale software safety development effort is typically performed on a safety-critical flight 
system, (e.g., a human space flight vehicle, or high value one-of-a-kind spacecraft or aircraft, 
critical ground control systems, critical facilities, critical ground support equipment, payloads on 
expendable vehicles.).  Other types of aerospace systems, such as non-critical ground control 
systems, facilities, and ground support equipment, or unmanned payloads on expendable 
vehicles, often use less rigorous development programs.  In these cases, subsets of the software 
safety development and analysis tasks can be used. 

3.2 Tailoring the Software Safety Effort 
Once the scope of the software safety effort has been determined, it is time to tailor it to a given 
project or program.  The safety activities should be sufficient to match the software development 
effort and yet ensure that the overall system will be safe. 

The scope of the software development and software safety effort is dependent on risk.  Software 
safety tasks related to lifecycle phases are listed within the development phase chapters 
(Chapters 5 through 10) of this guidebook.  A recommendation2 is given for each technique or 
analysis and each software safety effort level (full, moderate, and minimum).  Software 
developers may employ several techniques for each development phase, based on a project's 
level of software safety effort.  At the very minimum, a project must review all pertinent 
specifications, designs, implementations, tests, engineering change requests, and problem/failure 
reports to determine if any hazards have been inadvertently introduced.  Software assurance 
activities should always verify that all safety requirements can be traced to specific design 
features, to specific program sets or code elements, and to specific tests conducted to exercise 
safety control functions of software (See Section 6.6.1 Software Safety Requirements Flow-down 
Analysis).   

Each NASA project, regardless of its level of safety-criticality, must perform an IV&V 
evaluation at the beginning of the project, and whenever the project changes significantly.  
NPD 8730.4  describes the process and responsibilities of all parties.  IV&V provides for 
independent evaluation of the project software, including additional analyses and tests 
performed by the IV&V personnel.  This is in addition to any analyses and tests 
performed by the project Software Assurance. 

If your system will include off-the-shelf software (COTS, GOTS), reused software from another 
project, or software developed by a contractor, refer to Chapter 12 Software Acquisition.  

                                                      
2  

Recommendation Codes 
 Mandatory  Highly Recommended 
 Recommended  Not Recommended 

"Not Recommended" are expensive relative to the required level of effort and the expected benefits. 
"Recommended" techniques may be performed if extra assurance of safety or mission success is desired. 
"Highly Recommended" entries should receive serious consideration for inclusion in system development. 
If not included, it should be shown that safety is not compromised.  “Mandatory” are required. 
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Additional analyses and tests may need to be performed, depending on the criticality of the 
acquired software and the level of knowledge you have about how it was developed and tested.  
The level of safety effort may be higher if the COTS/reused/contracted software is safety-critical 
itself or interacts with the safety-critical software. 

Sections 3.2.1 through 3.2.4 below help determine the appropriate methods for software 
quality assurance, software development, and software safety for full, moderate, and 
minimum safety efforts.  Ultimately, the categorization of a project’s software and the 
range of selected activities must be negotiated and approved by project management, 
software development, software quality assurance, and software systems safety personnel 
together.   

Other techniques, which are not listed in this guidebook, may be used if they can be shown to 
produce comparable results.  Ultimately, the range of selected techniques must be negotiated and 
approved by project management, software development, software quality assurance, and 
software systems safety.  

The following software activities can be tailored: 

Development The use of safety features such as firewalls, arm-fire commanding, etc. 
depends on where it is best applied and needed.  The degree to which 
each of these activities is performed is related to the software risk.  
Software Safety features should be reflected in the requirements. 

Analysis There are many types of analyses that can be completed during 
software development.  Every phase of the lifecycle can be affected by 
increased analysis as a result of safety considerations.  The analyses 
can range from Requirements Criticality Analysis to Software Fault 
Tree Analysis of the design to Formal Methods. 

Inspections Inspections can take place in a number of settings and with varying 
products (requirements to test plans).  The number of inspections and 
products is dependent on the risk related to the system. 

Reviews The number of formal reviews and the setting up of delta reviews can 
be used to give the organization more places to look at the products as 
they are being developed. 
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Verification and 
Validation Activities 

Verification checks that the system is being “built right” by 
determining whether the products of a given phase of software 
development fulfill the requirements established during the previous 
phase.  Verification methods include analysis, review, inspection, 
testing, and auditing.  Validation checks that the “right product” is 
being built, with testing as the usual primary method.  

The number of tests, amount of code subjected to detailed testing, and 
the level of test coverage can be tailored.  The frequency of Software 
Assurance and Safety audits of development processes and products, as 
well as the number of products to be audited, can also be tailored.  
Analyses, inspections, and reviews are discussed in the paragraphs 
above. 

 

3.2.1 “Full” Software Safety Effort 
Systems and subsystems that have severe hazards which can escalate to major failures in a very 
short period of time require the greatest level of software safety effort.  Some examples of these 
types of systems include life support, fire detection and control, propulsion/pressure systems, 
power generation and conditioning systems, and pyrotechnics or ordnance systems.  These 
systems may require a formal, rigorous program of quality and safety assurance to ensure 
complete coverage and analysis of all requirements, design, code, and tests.  Safety analyses, 
software development analyses, safety design features, and Software Assurance (SA) oversight 
are highly recommended.  In addition, IV&V activities may be required. 

3.2.2 “Moderate” Software Safety Effort 
Systems and subsystems which fall into this category typically have either 1) a limited hazard 
potential or 2) the response time for initiating hazard controls to prevent failures is long enough 
to allow for human operators to respond to the hazardous situation.  Examples of these types of 
systems include microwave antennas, low power lasers, and shuttle cabin heaters.  These systems 
require a rigorous program for safety assurance of software identified as safety-critical.  Non-
safety-critical software must be regularly monitored to ensure that it cannot compromise safety 
controls or functions.  Some analyses are required to assure there are no “undiscovered” safety-
critical areas that may need software safety features.  Some level of Software Assurance 
oversight is still needed to assure late design changes do not affect the safety criticality. 

A project of this level may require IV&V. However, it is more likely to require a 
software Independent Assessment (IA).   

Software independent assessment (IA) is defined as a review of and analysis of the 
program/project’s system software development lifecycle and products.  The IA differs in scope 
from a full IV&V program in that IV&V is applied over the lifecycle of the system whereas an 
IA is usually a one time review of the existing products and plans.  In many ways, IA is an 
outside audit of the project’s development process and products (documentation, code, test 
results, and others). 
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3.2.3 “Minimum” Software Safety Effort 
For systems in this category, either the inherent hazard potential of a system is very low or 
control of the hazard is accomplished by non-software means.  Failures of these types of systems 
are primarily reliability concerns.  This category may include such things as scan platforms and 
systems employing hardware interlocks and inhibits.  Software development in these types of 
systems must be monitored on a regular basis to ensure that safety is not inadvertently 
compromised or that features and functions are added which make the software safety-critical.  A 
formal program of software safety is not usually necessary.  Of course, good development 
practices and SA are always necessary.  The development activities and analyses in described in 
Chapters 5 through 10 can provide increased reliability as well as safety, and for a minimal 
effort. 

3.2.4 Projects with Mixed Levels of Effort 
Not all projects fall into neat categories for classification.  Some projects may be large and 
complex, but with a small portion of safety-critical, low risk software.  Other projects may be 
small, but a significant portion of the software is safety-critical and high risk.   

Not all the software within a project needs to be treated in an identical way.  Safety-critical 
software components can have different levels of software safety effort applied to them.  High-
risk safety-critical software components may undergo a “full” safety effort, while low risk 
safety-critical components may only undergo the “minimum” safety effort tasks and analyses.   

Too often smaller projects argue that they have no safety-critical software out of concern 
that the label will lead to massive amounts of work.  This is not the case.  Partitioning the 
safety-critical software from code that is not safety-critical allows the safety effort to be 
applied only to that safety-critical portion.  Further tailoring of the software safety 
program to match the risk from the safety-critical portion may lead to a reduced, or at 
least more focused, safety effort.  The extent of the software safety effort can be 
negotiated between the project manager, software developers, software assurance 
engineers, and system or software safety engineers.  
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Chapter 4 Safety-Critical Software Development 

 

We all want systems with software products that work reliably, provide required 
functionality, and are safe.  The software we create must not allow hazardous events to 
occur, and must be capable of returning the system to a safe state when it has veered into 
dangerous territory.  Software designers must be aware of the safety implications of their 
design, and software engineers must implement that design with care.  Safety must be in the 
forefront of everyone’s mind. 
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A structured development environment and an organization using state of the art
methods are prerequisites to developing dependable safety-critical software. 
The cardinal rules for safety are: 

♦ No single event or action shall be allowed to initiate a potentially hazardous event. 

♦ When an unsafe condition or command is detected, the system shall  

o Inhibit the potentially hazardous event sequence. 

o Initiate procedures or functions to bring the system to a predetermined “safe”
state. 
afe software does not just “happen”.  It is crafted by a team of software engineers and designers 
om well-understood requirements.  The software products are analyzed by the developer, software 
surance engineers, and software safety engineers.  The final code is tested, either by the 
veloper, assurance personnel, or a separate test organization.  The whole process is overseen by a 
anager cognizant of the entire project.  All disciplines contribute to the production of safer 
ftware. 

his chapter provides an overview of a safety-oriented software development process.  System 
fety engineers unfamiliar with software development, and software developers unfamiliar with 
fety-critical systems, are the intended audience.  

.1 Crafting Safer Software 
Five Rules for Creating Safer Software 

1. Communicate 

2. Have and Follow Good Software Engineering Practices and Procedures 

3. Perform Safety and Development Analyses 

4. Incorporate Appropriate Software Development Methodologies, Techniques & 
Design Features 

5. Caveat Emptor 
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4.1.1 Communication 
Communication is an intangible process that can greatly improve the safety of the software and 
the system being created.  Communication is more than just verbal exchange.  It includes 
documentation, notes, email, video, and any other form of communication. It is important that all 
team members communicate regularly.  Some goals of communication are to: 

• Prevent misunderstandings.  Everyone on the team makes assumptions as part of their 
work, but the assumptions are not always the same.  For example, the electronic design 
engineer may order the bits high-to-low, but the software engineer may interpret them 
low-to-high.  Communication – verbal or written – prevents this type of problem. 

• Identify risks before they become problems.  Communication is the center of the Risk 
Management paradigm (see NPR 8000.4, Risk Management Procedures and Guidelines).  
Brainstorming is often used to identify project risks.  People from varying backgrounds 
and points-of-view see different risks.  A diverse team, skilled in communication, will 
usually find better solutions to the problems.   

• Provide insight into the reasoning behind design decisions.  Knowing the reasons why 
a design decision was made can prevent problems when the design is changed down the 
road in response to a requirements change, or when “fixes” are introduced into the 
system. 

• Make team members aware of anomalies, problems, or other issues.  Prior to 
established baselines, anomaly or problem tracking is often minimal or non-existent.  
Regular communication provides an informal tracking system.  It also promotes a cross-
disciplinary approach to problems.  For example, if the operators make similar mistakes, 
perhaps the graphical display needs to be made more user friendly. 

• Provide management with a qualitative insight into the state of the project.  Besides 
giving a feel for the progress, communication allows management to spot some problems 
early.  Grumbling among the developers may indicate personality problems, management 
problems, or the effects of too much schedule pressure, for example.  An informal 
communication channel between software safety and management may allow resolution 
of safety concerns before the problem gets out of hand. 

• Help engineers grow in knowledge and experience.  The quality of the team members 
has a direct effect on the safety and reliability of the software.  Communication helps 
junior engineers learn from the experiences of more senior engineers. 

Communication is one aspect of human factors in safety-critical systems.  Human factors are 
discussed in more detail in section 11.9. 
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4.1.2 Good Software Engineering Practices and Procedures 
Before beginning software development, processes and methodologies need to be 
selected from those available.  No one process or methodology is a “silver bullet.”  
Intelligent selection needs to be done, matching the process with the needs, resources, 
and talents of the software development team.  “Cutting edge” techniques or processes 
may not be the best choice, unless time and budget exist to allow extensive training of the 
development and assurance teams.  Staying with a well understood process often 
produces better (i.e. safer and more reliable) software than following the process-of-the-
year.   

This guidebook cannot go into great detail on how to craft good software. Several important 
elements of a good development process are discussed in the following sections.  The references 
below are just a few examples, and are provided to give a starting point for those interested in 
learning more about software engineering.   

• Software Engineering: A Practitioner's Approach by Roger Pressman, 5th Edition (2001) 

• Software Engineering 5th Edition, by I. Sommerville (1996) 

• Software Systems Engineering by Andrew Sage and James D. Palmer. 

• Software Engineering: The Production of Quality Software by Shari Pfleeger, 2nd 
Edition (1991) 

• Classic and Object-Oriented Software Engineering, 3rd Edition, by Stephen R. Schach 
(1996) 

• Code Complete: A Practical Handbook of Software Construction, by S. McConnell 
(1993)  

• Object-Oriented Software Engineering: A Use-Case Driven Approach, by I. Jacobson 
(1997)  

4.1.3 Perform Safety and Development Analyses 
Well-crafted software is not the only prerequisite for safe software.  Safety analyses are used to 
verify that the software properly addresses the safety issues.  As designs change, or the design is 
implemented in code, analyses verify that no new hazards were introduced.  Software 
development analyses are used to confirm that the design or code does what is needed, especially 
within the safety-critical areas.   

Safety and development analyses are discussed in Chapters 5 through 10, coordinated with the 
phase of the software development.  For each phase, tailoring information is provided to select 
the most appropriate analyses for the project.   

4.1.4 Incorporate Appropriate Methodologies, Techniques, and Design Features 
There are many development methodologies, techniques, and design features that can help create 
safer software.  This guidebook does not provide an exhaustive list of all such areas.  However, 
the following sections detail some of the development and design techniques and methodologies 
for crafting safer software: 
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Section 4.2.1 Software Lifecycles 
Section 4.2.2 Design Methodologies 
Section 4.2.2.3 Formal Methods 
Section 4.2.2.5 Design patterns 
Section 4.3.8 Software Development Capability Frameworks 
Section 4.5 Software Configuration Management 
Section 4.6 Programming for Safety 
Section 6.5.2 Fault and Failure Tolerance 
Section 6.5.5 Formal Inspections 
Sections 7.4.4 and 11.1 Language selections 
Sections 7.4.4 11.2, 11.3 
and 11.4 Tool and Operating System selections 

Sections 7.4.5 and 8.4.1 Coding Checklists, Standards, and Language restrictions 
Section 7.4.6 Defensive Programming 
Section 8.4.3 Refactoring 
Section 11.9.3 Interface Design/Human Factors 
Section 12.1.2 Integrating COTS software 

 

4.1.5 Caveat Emptor 
“Buyer Beware.”  COTS software and hardware are extremely common in most systems.  Even 
if the software is developed in-house, the tools used (e.g., compiler, editor, debugger) are usually 
purchased.  Operating systems are rarely created by the development team, but are usually 
procured from a commercial vendor or selected from those freely available. 

Safety is usually not on anyone’s mind when they select a compiler, editor, or other tool, 
but it should be.  All software must be considered potentially flawed.  This isn’t a cause 
for panic, however.  Understanding how the software tool, library, operating system, or 
other element could fail is important in guarding against such a failure.  Knowing that a 
potential failure could impact the safety of the system is the most important aspect.  
Don’t become complacent when safety is involved! 

Chapter 12 discusses issues and concerns with off-the-shelf, reused, and contracted software in 
more detail.  

4.2 The Software Development Process 

Software engineering, like mechanical, electrical, civil, or structural engineering, requires a 
disciplined process.  No one would consider building a bridge, or a spacecraft, without using the 
rules for development that have become second nature to developers of hardware.  With software 
being so flexible and “easy” to alter, it is even more important to have a disciplined and planned 
approach for software. 
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Creating any software involves more than just coding.  For safety-critical software, having and 
following an appropriate development methodology that includes requirements analysis, design, 
and verification is essential. 

A thorough software development process helps assure that: 

• All the requirements are understood, well documented, and incorporated in the software 

• The needed functionality is indeed incorporated into the system and all elements work 
together without conflict 

• Analysis and testing have assured the viability of the product under less than friendly 
conditions. 

The steps to a good software development process are: 

• Choose a Process 
o Lifecycle (Section 4.2.1) 
o Design Methodology (Section 4.2.2) 

• Manage the process (Section 4.3) 
o Metrics 
o Tasks 
o Products 
o Tools & Methods  

• Tailor the process in a plan (Section 4.4) 

 

At the very minimum, a project team must review all pertinent specifications, designs,
implementations, tests, engineering change requests, and problem/failure reports to
determine if any hazards have been introduced. 

In the software development process, software engineers ideally perform the following functions: 

• Work with systems engineers, safety engineers, and assurance engineers to help 
formulate the software functionality and determine the role of software in this 
project/product.  Most of this will be done at the project concept stage, though hardware 
and software functions may be redistributed during the system design phase.  During the 
concept phase, when everything is flexible, is the time to propose possible technical 
innovations and approaches.  It is also the time to begin to formulate the management 
plans and development plans for the software. 

• Complete software management and development plans.  A software management plan 
will include schedules, deliverables, reviews, and other details.  The development plan 
will contain the lifecycle, methodology, language, standards, and techniques to be used to 
specify, design, test, manage configuration, and deliver the software.  The level of detail 
in these documents can be tailored to match the complexity and criticality of the 
software. 

• Analyze requirements and create the software specification.  The system requirements 
that pertain to software must be specified and included in a software requirements 
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document (also called a software specification).  Any additional requirements (including 
safety requirements), standards and guidelines chosen must also be included.  Analysis of 
those requirements assures that all requirements are included and that they are achievable 
and verifiable. 

• Create a design that implements the requirements.  Analyses assure that the design will 
be able to meet the functional and performance requirements. 

• Implement the design (code) and perform unit testing. 

• Test the software.  Tests include integration, functional, stress, load, and other varieties of 
system tests.  Final acceptance testing is performed when the system is ready to be 
delivered. 

While the software engineers are creating the software, software safety engineers perform their 
own set of tasks.  These activities include:  

• Perform analyses, or verify the analyses of others.  Provide inputs to hazard reports, 
tracking matrices, and safety checklists.  The analysis work will stretch out over the life 
of the software development activity and into the operations or maintenance phase.  For 
highly safety-critical software, many analyses will be performed by the safety engineer. 

• Implement the tasks that “fall out” of the analyses.  This includes making sure that a 
missed safety requirement is actually included in the software requirements and flows 
down to the current development phase.  Tracking requirements and maintaining 
traceability or verification matrices are also implementation activities. 

• Verify the changes.  After the problem was fixed, the software safety engineer needs to 
verify that the problem was corrected (usually via inspection or test) and change its 
tracking status to “closed.”  The engineer also makes sure that the fix does not have a 
negative effect on any other portions of the system. 

• Suggest changes to the software development and verification activities to increase 
safety. Examples include Formal Inspections of safety-critical code and enhanced safety 
testing to verify the software does not have undesired effects. 

 

NAS
• A good software development process, understood and followed, greatly increase the odds of
developing safer, more reliable software. 
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This guidebook makes no recommendation for a specific lifecycle model.  Each has its strengths 
and weaknesses, and no one model is best for all situations.  It is important to intelligently 
evaluate the potential lifecycles and select one that best matches the product you are producing.  
Standards or organizational policy may dictate a particular lifecycle model.  Also, keep in mind 
that the familiar may be the best choice, because of reduced uncertainty in how to implement the 
process. 

4.2.1.1 Waterfall Model 
The first publicly documented software development model is the classic Waterfall model.  It 
was developed to help cope with the increasing complexity of aerospace products.  The Waterfall 
model is documentation driven and linear (sequential).  It is probably the best known of the 
lifecycle models. 

The Waterfall model is characterized by a strict (more or less) one-way flow structure.  It 
consists of up to seven phases, each with products and activities.  The usual phases are: Concept, 
Requirements (Analysis), Design, Implementation (Code), Testing, and Operation 
(Maintenance).  The Design phase is sometimes broken up into Architectural (high-level) and 
Detailed design phases. 

Figure 4-1 Waterfall Lifecycle Model 
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The overall system can have a top level Waterfall and the software, hardware, testing, and 
operations organizations, groups, or teams may each have their own lifecycle that feeds into and 
fits within the overall system lifecycle.  Specified activities and deliverables are called out for 
each phase and must be approved prior to moving into the next phase.  
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Notice that there are clear delineations between the phases of the waterfall lifecycle.  All phases 
start with deliverable(s) from a previous phase.  New deliverables are created and reviewed to 
determine if the current phase of the product is properly prepared to move to the next stage.  The 
product, as its current phase deliverables define it, is usually formally reviewed in either a 
system phase review (Systems Requirements Review, System Design Review, Preship Review) 
or may have lower level, internal phased reviews in place of, or in addition to, system reviews.  

This model is the most widely used and modified because it is graphically, and intellectually, 
easy to grasp.  The Waterfall lifecycle came from industry where the products are usually 
similar, the requirements are known upfront, and the products are created the same way time 
after time.  The model is seldom, if ever, followed exactly, especially in Research and 
Development (R&D) work.  Some problems with the waterfall model include: 

• Assumption that requirements can be specified up front. 
• Assumption that requirements and design do not change significantly (or often). 
• No products (other than documentation) delivered until late in the development cycle. 
• Team members “blocked” waiting for others to complete dependent tasks. 

Variations of the individual phases of the waterfall model are used in most of the other lifecycle 
models.  Even the deliverables are similar.  The main difference is that instead of one monolithic 
process, an iterative or repetitive approach is used.  

4.2.1.2 Rapid Prototyping 
A prototype is a model of a product or system, in part or in whole.  Depending on the purpose of 
the prototype, and the nature of the product, the prototype will demonstrate various aspects of the 
product, such as its interfaces, functionality, and so on.  It is used as “Proof of Concept” and as a 
means to undergo concept development when no clear approach is immediately evident. 

Usually, a portion of a system is prototyped up front (rapidly, with little strict development 
discipline) to prove out a possible design feature or technique.  Examples include testing out the 
feasibility of using web-based interfaces or read/write CD memory instead floppies, getting user 
feedback on a graphical interface design, or determining if planned hardware (or a software 
algorithm) can produce the required timing.   

Rapid prototyping is used in large extent to quickly see if something will work.  It is also used at 
times to quickly model the basics of an entire system to allow the user to see early on what the 
system will be like, what it will do, and how it will operate. 

In general the prototype should be built with the “20/80” rule in mind, such that it is usually the 
case that 20% of the functions in a system provide 80% of what the user wants.  The prototype 
should concentrate on these functions, allowing the user to get their specification tied down as 
soon as possible.  It is possible for the prototype to be a “full” working model, in which case it 
can be used in a live situation to see how the software performs, and what real users think of it.  
Once the concepts are all worked out and chosen, the final product is specified, designed, built, 
tested, and formally released using the information gained from the prototyping stage(s). 
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Figure 4-2 Rapid Prototyping   
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Problems and pitfalls with this model include: 

• Customers misunderstand the quality of the prototype.  The customer may see what 
appears to be a working system, and balk when informed that the system must be 
completely rewritten.  Explaining the concepts behind rapid prototyping to the customer 
up front can help prevent this problem.   

• Developer or management desire to not “recreate the wheel” leads to the prototype 
being used as the basis of the complete system.  Sometimes, the prototype appears to 
perform so well that it is felt there is no need to build the "real" system.  If this happens, 
some development organizations will just go ahead and add on the remaining 80% of the 
functions without implementing a thorough development process.   

• Choices made for the prototype may not be applicable for the complete system.  
Operating systems, languages, or tools may be chosen to get the prototype done quickly, 
but these choices may not be the best for the final system.  Evaluation may not be done to 
determine what is best, and the original choices may be used without question. 

Rapid prototyping is a valuable lifecycle method and should be considered when there is 
uncertainty about the best approach, equipment, or interaction.  What is learned from rapid 
prototyping should be feed into a thorough development process that provides the discipline of 
documentation, review, analysis, and thorough testing for a safer, more maintainable, robust 
finished product. 
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4.2.1.3 Spiral Model 
The spiral model combines the idea of iterative development (prototyping) with the systematic, 
controlled aspects of the waterfall model.  It allows for incremental releases of the product, or 
incremental refinement through each time around the spiral.  The spiral model also explicitly 
includes risk management within software development.  Identifying major risks, both technical 
and managerial, and determining how to lessen the risk helps keep the software development 
process under control. 

The spiral model is based on continuous refinement of key products for requirements definition 
and analysis, system and software design, and implementation (the code).  At each iteration 
around the cycle, the products are extensions of an earlier product.  This model uses many of the 
same phases as the waterfall model, in essentially the same order, separated by planning, risk 
assessment, and the building of prototypes and simulations. 

Documents are produced when they are required, and the content reflects the information 
necessary at that point in the process.  All documents will not be created at the beginning of the 
process, nor all at the end (hopefully).  Like the product they define, the documents are works in 
progress.  The idea is to have a continuous stream of products produced and available for user 
review. 

Figure 4-3 Spiral Lifecycle Model 
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The spiral lifecycle model allows for elements of the product to be added in when they become 
available or known.  This assures that there is no conflict with previous requirements and design.  
This method is consistent with approaches that have multiple software builds and releases and 
allows for making an orderly transition to a maintenance activity.  Another positive aspect is that 
the spiral model forces early user involvement in the system development effort.  For projects 
with heavy user interfacing, such as user application programs or instrument interface 
applications, such involvement is helpful.  

Starting at the center, each turn around the spiral goes through several task regions: 

• Determine the objectives, alternatives, and constraints on the new iteration. 

• Evaluate alternatives and identify and resolve risk issues. 

• Develop and verify the product for this iteration. 

• Plan the next iteration. 

Note that the requirements activity takes place in multiple sections and in multiple iterations, just 
as planning and risk analysis occur in multiple places.  Final design, implementation, integration, 
and test occur in iteration 4.  The spiral can be repeated multiple times for multiple builds.  

Using this method of development, some functionality can be delivered to the user faster than the 
waterfall method.  The spiral method also helps manage risk and uncertainty by allowing 
multiple decision points and by explicitly admitting that all of anything cannot be known before 
the subsequent activity starts. 

4.2.1.4 Incremental Development - Single Delivery 
The incremental development - single delivery model is effective for early development of some 
of the features of the software.  This model enables you to get those efforts that are risky started, 
and the concepts tested and accepted, early in the development process.  The increments are 
developed separately but integrated and delivered as a single system. Figure 4-4 shows the 
lifecycle phases of this model. 

Note that the model uses the same phases as those in the waterfall model. 

4.2.1.5 Incremental Development - Incremental Delivery 
Where the Incremental Development – Single Delivery model produced only one deliverable 
product (the final version), the Incremental Development – Incremental Delivery model produces 
products in stages.  This means that the system will have limited but partial functionality for 
some period of time.  An example would be an application with a Beta release, a Version 1, 
Version 2, and so on.  This lifecycle may be used if the customer wants some functions delivered 
early and can wait for other functions and refinements until later. Figure 4-5 shows the lifecycle 
phases of this model. 

Note again that this model uses the phases from the waterfall model. 
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Figure 4-4 Incremental Development Lifecycle – Single Delivery 
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Figure 4-5 Incremental Development Lifecycle – Incremental Delivery 
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The emphasis with an incremental delivery life cycle is that you can plan to release 
incrementally.  This allows the project to focus the resources and efforts accordingly.  All too 
often a single grand release is planned, but then the schedule slips, resources are not available, 
technical difficulties arise, or other problems occur.  The project may just ship whatever it has at 
the due date, promising a future update to complete the application or fix remaining problems.  
Using Incremental Development-Incremental Delivery can help avoid these problems. 
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4.2.1.6 Evolutionary Development 
In the evolutionary lifecycle model, new or enhanced functions are added to a functioning 
system iteratively.  Each development cycle builds on the experience from earlier increments, 
defining and refining the requirements for subsequent increments.  Increments are developed 
sequentially, rather than in parallel.  Within each incremental development cycle, there is a 
normal progression through analysis, design, code, test and implement, followed by operations 
and maintenance.  Experience with each finished release is incorporated in requirements for the 
next development cycle. 

From the customers' point of view, the system will "evolve" as increments are delivered over 
time.  From the developers' point of view, those requirements that are clear at the beginning of 
the project will dictate the initial increment, and the requirements for each development cycle 
there after will be clarified through the experience of developing prior increments.  Care must be 
taken to ensure that the evolving system architecture is both efficient and maintainable. 

Figure 4-6 Evolutionary Lifecycle Model 
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The benefits from using the evolutionary model are: 

• Early deliveries of portions of the system, even though some of the requirements are not 
yet decided. 

• Use of early releases as tools for requirements elicitation. 

Limitations of the evolutionary lifecycle model include: 

• It may be difficult to estimate costs and schedule at the start of the project when scope 
and requirements have not been established. 

• The overall elapsed time for the project may be longer than if the scope and requirements 
are established before any increments are developed. 

• Time apparently gained on the front end of a project because of early releases may be lost 
later because of the need for rework resulting from evolving requirements. 
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• Additional time must also be planned for integration and regression testing as increments 
are developed and added to the system. 

4.2.2 Design Methodologies 
A design is a meaningful engineering representation of something that is to be built.  It is a 
higher-level interpretation of what will actually be implemented in the source code.  Designs 
should be traceable back to a customer’s requirements.  They should also be assessed for quality 
against a set of predefined criteria for a good design.   

Analysis and design methods for software have been evolving over the years, each with its 
approach to modeling the needed worldview into software.  The following methodologies are 
most commonly used.  Specific methodologies under the main categories are just a sample of 
available methodologies. 

• Structured Analysis and Structured Design (SA/SD).  SA/SD methods were among the 
first to be developed.  They provided means to create and evaluate a “good” design.  Prior 
to the introduction of SA/SD processes, “code and debug” was the normal way to go 
from requirements to source code.  Even in this “object-oriented” time, SA/SD is still 
used by many. 

o Functional Decomposition 

o Data Flow (also called Structured Analysis) 

o Information Modeling 

• Object Oriented Analysis and Object Oriented Design (OOA/OOD).  OOA/OOD breaks 
the world into abstract entities called objects, which can contain information (data) and 
have associated behavior.  OOA/OOD has been around for nearly 30 years. In the last 
decade the majority of development projects have shifted to this collection of 
methodologies.  Object-orientation has brought real benefits to software development, but 
it is not a silver bullet. 

o Object-Oriented Analysis and Design (OOA/OOD) method (Coad & Yourdon) 

o Object Modeling Technique (OMT) (Rumbaugh et. al.) 

o Object-Oriented Analysis and Design with Applications (OOADA) (Booch) 

o Object-Oriented Software Engineering (OOSE) (Jacobson et. al.) 

o UML 

• Formal Methods (FM) and Model-based Development.  FM is a set of techniques and 
tools based on mathematical modeling and formal logic that are used to specify and 
verify requirements and designs for computer systems and software.  FM is also a process 
that allows the logical properties of a computer system (primarily software) to be 
predicted (in a process similar to numerical calculation) from a mathematical model of 
the system by means of a logical calculation.  

o Formal Specification 

o Formal Verification 

o Software models (with automatic code generation) 
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Which design methodology is best? The answer to that question depends on many 
project-specific variables.  What is the experience base of the software personnel?  Is 
there time and money, both for training and to absorb project schedule delays as the team 
comes up to speed on a new method or language?  Has object-oriented or structured 
design been used successfully in this problem domain? What external components must 
the software interface with?  Are there any contractual requirements or standards that 
specify or limit the methodology choices?  What tools are available to help with a chosen 
methodology, and how mature are they? These questions are just some that must be 
answered before selecting a design methodology.  Advantages and pitfalls for SA/SD, 
OOA/OOD, and FM are discussed in the paragraphs below.  Think seriously about the 
options and choose wisely.   

4.2.2.1 SA/SD 
Structured software development is a phrase with multiple meanings.  In a general sense, it 
applies to all methodologies for creating software in a disciplined, structured manner.  In the 
context of this section, however, “structured” refers to the various analysis and design methods 
that are not object-oriented.   

In the following discussion, “analysis” is defined as a process for evaluating a problem space (a 
concept or proposed system) and rendering it into requirements that reflect the needs of the 
customer.  “Design” is the process of taking those requirements and creating the desired system. 

Among the structured methods used, the most popular have been Functional Decomposition, 
Data Flow (or Structured Analysis), and Information Modeling. 

Functional Decomposition focuses on what functions and sub-functions the system needs to 
perform and the interfaces between those functions.  It is a technique for developing a program 
in which the problem is divided into more easily handled sub-problems, the solutions of which 
create a solution to the overall problem.  Functional decomposition is a “top-down” development 
methodology. 

Functional decomposition begins with the abstract (the functions the software must perform) and 
works toward the particular (algorithmic steps that can be translated directly into code).  The 
process begins by breaking the functionality into a series of major steps.  Each step is then 
further decomposed, until a level is reached where a step cannot be reasonably subdivided.  The 
result is usually a collection of “units” or components that perform a single sub-step of the 
process.  The relationship between the components is hierarchical. 

The general complaints with this method are that: 

• The functional capability is what most often changes during the design lifecycle and is 
thus very volatile. 

• It is often hard to see the connection between the proposed system as a whole and the 
functions determined to create that system. 

• Data plays a secondary role in support of actions to be performed. 

Structured Analysis (DeMarco [16], Yourdon [15]) became popular in the 1980’s and is still 
used by many.  The analysis consists of interpreting the system concept (or real world) into data 
and control terminology, graphically displayed as data flow diagrams.  Data dictionaries describe 
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the data, including where and how it is used.  A process specification captures the transaction 
and transformation information. 

The steps to performing a structured analysis are: 

• Start with the Data Flow Diagram. 

• Determine major flow from input to output. 

• Partition into input, central transform, and output processes. 

• Convert to high level structure chart. 

• Refine. 

• Validate using coupling and cohesion. 

This methodology has some problems in practical usage.  The flow of data and control from 
bubble (i.e. processes) to data store to bubble can be very hard to track.  Also, the number of 
bubbles can get to be extremely large.  One approach to avoiding this problem is to first define 
events from the outside world that require the system to react, then assign a bubble to that event.  
Bubbles that need to interact are then connected until the system is defined.  This can be rather 
overwhelming, so the bubbles are usually grouped into higher-level bubbles.   

The main difficulties in using this method have been: 

1. Choosing bubbles appropriately. 

2. Partitioning those bubbles in a meaningful and mutually agreed upon manner. 

3. The size of the documentation needed to understand the Data Flows. 

4. This method is still strongly functional in nature and thus subject to frequent change. 

5. Though “data” flow is emphasized, “data” modeling is not.  There is little understanding 
of just what the subject matter of the system is about. 

6. It is hard for the customer to follow how the concept is mapped into these data flows and 
bubbles.  It is also very hard for the designers who must shift the data flow diagram 
organization into a format that can be implemented. 

1. Services or processing requirements for each object are not addressed. 

2. Inheritance is not specifically identified. 

3. Poor interface structures (messaging) exist between objects. 

Modern structured analysis often combines elements from all three analysis methodologies 
(functional decomposition, structured analysis, and information modeling). 

Information Modeling, using entity-relationship diagrams, is really a forerunner for OOA.  The 
analysis first finds objects in the problem space, describes them with attributes, adds 
relationships, refines them into super and sub-types and then defines associative objects.  Some 
normalization then generally occurs.  Information modeling is thought to fall short of true OOA 
in that, according to Peter Coad & Edward Yourdon [17],  

4. Classification and assembly of the structures are not used as the predominate method for 
determining the system’s objects. 

NASA-GB-8719.13 62  



4.2.2.2 OOA/OOD 
Object Oriented Analysis and Design (OOA/OOD) represents the new paradigm for creating 
software.  OOA/OOD is viewed by many as the best solution to most problems.  Like the older 
SA/SD, OOA/OOD provides a way to model the real world in a defined, disciplined manner.  
OOA actually incorporates structured analysis techniques at a lower level, once the system is 
cast into objects or classes with attributes and methods (i.e. functions). 

1. Look at your problem in terms of individual, independent objects. 

2. Decompose your domain into objects.  Each object has some certain properties and a 
certain behavior or set of actions particular to each object. 

3. Organize your objects so that: 

b. They are defined in a hierarchical way so that objects in lower levels inherit 
automatically all properties and behavior of the objects in upper levels.  

c. Objects in lower levels may add or modify the properties or behavior that they 
have inherited.  

Modeling the real world into objects can have some advantages.  This methodology tends to 
follow a more natural human thinking process.  Also, objects,  if properly chosen, are the most 
stable perspective of the real world problem space and can be more resilient to change as the 
functions/services, data, and commands/messages are isolated and hidden from the overall 
system.   

OOA incorporates the principles of abstraction, information hiding, and inheritance, which are 
the three most “human” means of classification.  These combined principles, if properly applied, 
establish a more modular, bounded, stable, and understandable software system.  These aspects 
of OOA should make a system created under this method more robust and less susceptible to 
changes--properties that help create a safer software system design. 

Abstraction refers to concentrating on only certain aspects of a complex problem, system, idea, 
or situation in order to better comprehend that portion.  The perspective of the analyst focuses on 
similar characteristics of the system objects that are most important to them.  Later, the analyst 
can address other objects and their desired attributes or examine the details of an object and deal 
with each in more depth.  An object is defined by the attributes it has and the functions it 
performs on those attributes.  An abstraction can be viewed as a simplified description of a 

The Object-oriented (OO) paradigm says:  

a. They interact among each other by sending messages that may trigger actions on 
the object to which they arrive.  

For example, while over the course of the development lifecycle the number, as well as 
types, of functions (e.g., turn camera 1 on, download sensor data, ignite starter, fire 
engine 3) may change. The basic objects (e.g., cameras, sensors, starter, engines, 
operator) needed to create a system usually are constant.  That is, while there may now be 
three cameras instead of two, the new Camera-3 is just an instance of the basic object 
‘camera’.  OOA/OOD should not be confused with OO programming languages.  While 
an OO language is usually chosen to implement the design, it is not required.  A 
procedural language can be used to implement OOD.  
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system that emphasizes some of the system’s details or properties while suppressing others.  A 
good abstraction is one that emphasizes details that are significant to the reader or user and 
suppresses details that are, at least for the moment, immaterial or diversionary. 

Information hiding also helps manage complexity in that it allows encapsulation of requirements 
that might be subject to change.  In addition, it helps to isolate the rest of the system from some 
object specific design decisions.  Thus, the rest of the software system sees only what is 
absolutely necessary for the inner workings of any object. 

Inheritance “defines a relationship among classes [objects], wherein one class shares the 
structure or behavior defined in one or more classes.  Inheritance thus represents a hierarchy of 
abstractions, in which a subclass [object] inherits from one or more superclasses [ancestor 
objects].  Typically, a subclass augments or redefines the existing structure and behavior of its 
superclasses” [19]. 

Classification theory states that humans normally organize their thinking by: 

• Distinguishing between an entire object and its component parts (e.g., a rose bush 
versus its roots, flowers, leaves, thorns, andstems.) 

• Classification of objects as distinct and separate groups (e.g., trees, grass, cows, cats, 
politicians)  

In OOA, the first step is to take the problem space and render it into objects and their attributes 
(abstraction).  The second step is classifying an object into Assembly Structures, where an object 
and its parts are considered.  The third step includes organizing the problem space into 
Classification Structures.  This involves examining the problem space for generalized and 
specialized instances of objects (inheritance).  The purpose of all this classification is to partition 
the system into well-defined boundaries that can be individually and independently understood, 
designed, and revised.  However, despite “classification theory,” choosing what objects represent 
a system is not always that straightforward.  In addition, each analyst or designer will have their 
own abstraction, or view, of the system which must be resolved.  Shlaer and Mellor [87], 
Jacobson [88], Booch [19], and Coad and Yourdon [17] each offer a different look at candidate 
object classes, as well as other aspects of OOA/OOD.  These are all excellent sources for further 
introduction (or induction) into OOA and OOD.  OOA/OOD provides a structured approach to 
software system design and can be very useful in helping to bring about a safer, more reliable 
system. 

• Looking at an object and comparing its attributes to those experienced before (e.g. 
looking at a cat, humans tend to think of its size, color, temperament, or other attributes 
in relation to past experience with cats) 

While there is a growing number of OO “gurus” with years of practical experience, many 
OO projects are implemented by those with book-knowledge and little direct experience.  
Remember that  everything written in the OOA/OOD books are not the only correct way 
to do things. Adaptation of standard methods may be important in your environment.  As 
an example, a team of software designers who worked on the Mars Pathfinder mission 
[89] decided to use Object Oriented Design, though their developers had only book-
knowledge of the methodology.  Attempting to follow the design methodologies verbatim 
led to a rapidly increasingly complex set of objects.  The team eventually modified the 
design methodology by combining the “bottom up” approach they had been using with a 
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more “top down” division into subsystems.  The AIPS team [18] found that it took 6 
months for structured (procedural) developers to be productive in an object-oriented 
environment.  Once OO gurus were on the project, new developers progressed more 
quickly. 

Reference [101] provides a "cookbook," or design guide, to creating software based on use cases, 
while stressing software requirements, traceability, and testing.  Reference [102] describes the 
Dynamic Systems Development Method of software development.  DSDM provides a 
framework of controls and best practices for Rapid Application Development.  

Other examples of problems or concerns are: 

• Not every problem domain is a candidate for OOD.  Real-time or embedded systems, 
distributed computing, and rapidly evolving systems, among others, should evaluate 
whether OO is the right methodology for the domain. 

• It is difficult to determine “objects” for abstract entities.  Is wind an object, or the 
behavior of an air object? 

• Weakness in system decomposition.  Decomposing the real world into objects or 
classes is useful for modeling data-centric aspects of a system.  Other decompositions 
(e.g., by-feature; by-function) are better for modeling other aspects.  Without them, 
maintainability, comprehensibility, and reusability suffer.  

• Weakness in multi-team and decentralized development.  OOD leads to contention 
over shared, centralized classes.  It forces all developers to agree on a single domain 
model, rather than using models more appropriate to their tasks.  

• OO Testing methods are still an evolving science.  At the system level, testing an OO 
and structured system is identical.  “Unit testing” and “integration testing” for OO 
systems differs in some ways from structured or procedural software.  The best ways to 
test OO software is not well understood yet. 

Shah et al [20] describes additional pitfalls, both technical and managerial, when moving to 
OOD. 

OOA/OOD is not a silver bullet for software development.  Besides the steep learning curve 
for those unfamiliar with the methodology, other problems or pitfalls exist.  Many software 
development organizations have shown a significant increase in productivity when OO 
techniques were adopted.  However, it is not clear that all the benefits resulted strictly from the 
object-oriented philosophy.  In some cases, the extra focus on design provided most of the gain.  
Also, not all of the promised advantages have come about in practice.  Code reuse, touted as a 
major benefit of OO methodologies, has not been implemented to the extent originally expected. 

• Weakness in large-scale reuse and integration.  With its focus on small-scale objects, 
OOD does not provide sufficient mechanisms to achieve large-scale reuse or integration 
of off-the-shelf system components without significant prior planning.  

• Changing the OO model for evolving systems is not as easy as claimed.   Lubars et al 
[21] showed that for one system, the object model was simple to change as the system 
evolved, but the behavioral model was much more complex.  

NASA-GB-8719.13 65  



Unified Modeling Language (UML) 
UML is a language and methodology for specifying, visualizing, and documenting the 
development artifacts (design) of an object-oriented system.  The UML represents the unification 
of the Booch, Objectory, and OMT (spell) methods and is their direct and upwardly compatible 
successor.  It also incorporates ideas from many other methodologists, including Coad, Gamma, 
Mellor, Shlaer, and Yourdon. 

Relationships among classes come from the following set: 

• 

• 
• 
• 
• 

• 

Associations between classes means that they communicate via messages (calling each 
other’s methods). 
Aggregations are a specialized association, where one class “owns” the other. 

Generalizations represent an inheritance relationship between the classes. 
Dependencies are similar to associations, but while one class depends on another, it does 
not contain a pointer or reference to the other class. 
Realizations are relationships where one modeling element is the implementation 
(realization) of another.  

UML is quickly becoming the standard OO modeling language.  Tools already incorporate it, 
and some can even generate code directly from the UML diagrams.  UML has been adapted for 
real-time systems.  Many books now exist for learning UML, as well as on applying UML to 
specific environments or integrating it with other design methodologies. 

4.2.2.3 Formal Methods (FM) 
The NASA Formal Methods Guidebook [22] states: “Formal Methods (FM) consists of a set of 
techniques and tools based on mathematical modeling and formal logic that are used to specify 
and verify requirements and designs for computer systems and software.”  Formal Methods 
therefore has two parts – formal specification and formal verification.   

UML uses a variety of diagrams and charts to show the structure and relationships of an object-
oriented design.  Class diagrams show the individual classes and how they relate to each other, 
e.g. subclass, superclass, or contained within another class.  Each class box can contain some or 
all of the attributes (data) and operations (methods) of the class.   

Compositions show that one class is included within another class. 

Features of UML Types of diagrams 
Use cases and scenarios Use-case diagrams 
Object and class models Class diagrams 
State charts and other behavioral specifications State-machine diagrams  
Large-scale structuring Message-trace diagrams 
Design patterns Object-message diagrams 
Extensibility mechanisms Process diagrams 
 Module diagrams 
 Platform diagram 
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Software and system requirements are usually written in “human-readable” language.  This can 
lead to ambiguity, when a statement that is clear to one person is interpreted differently by 
another.  To avoid this ambiguity, requirements can be written in a formal, mathematical 
language.  This formal specification is the first step in applying FM. 

Formal verification provides the proof that the result (software) meets the formal specification.  
Verification is a progressive activity.  At each stage, the new product is formally verified to be 
consistent with the previous product.  For example, the detailed design is verified against the 
preliminary design, which was verified against the desired properties such as safety or security. 

In the production of safety-critical systems or systems that require high assurance, FM provides a 
methodology that gives the highest degree of assurance for a trustworthy software system.  FM 
has been used with success on NASA, military, and commercial systems that were considered 
safety-critical applications.  The benefits from the application of the methodology accrue to both 
safety and non-safety areas.  FM does not guarantee a precise quantifiable level of reliability. At 
present, FM is only acknowledged as producing systems that provide a high level of assurance. 

FM is used in several ways: 
a. As a way to assure the software after-the-fact 
b. As a way to assure the software in parallel. 
c. As a way to develop the software. 

“After the fact” software verification can increase the confidence in a safety-critical system.  
When the regular software development is completed, then the formal specification and 
verification begin.  The Software Assurance, Safety, or IV&V engineer converts the “human 
readable” requirements into a formal specification and proves properties about the specification.  
The code that implements the system may also be formally verified to be consistent with the 
formal specification.  With this approach, two separate development activities occur, increasing 
cost and schedule.  In addition, problems found at this late stage are costly to fix.    

“In parallel” software verification still uses two separate teams (software development and FM 
verification), but they operate in parallel during the whole process.  The development team uses 
the regular practices of good software development.  At the same time the FM team writes 
formal specifications for the system and verifies them.  While still costly, this method of assuring 
the software allows for quicker development.  Software errors are found earlier in the 
development cycle when they are less expensive to correct.  However, communication between 
the two teams is vital for this approach to work. 

Rather than two teams working in parallel, the software can be developed using FM exclusively.  
This is an integrated approach.  Requirements and design are written in a formal language.  The 
design is formally verified before code is generated.  This method is the least costly of the three, 
though the developers must be trained in FM for it to work. 

FM has not gained a wide acceptance among all industries, mostly due to the difficulty of 
the formal proofs.  A considerable learning curve must be surmounted for newcomers, 
which can be expensive.  Once this hurdle is surmounted successfully, some users find 
that it can reduce overall development lifecycle cost by eliminating many costly defects 
prior to coding.  In addition, many tools are now available to aid in using FM.  Also, the 
process of creating a formal specification, even without the mathematical proofs, can be 
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invaluable.  Removing ambiguity and uncertainty from the specification helps to prevent 
future errors when that specification is implemented. 

Lutz and Ampo [23] described their successful experience using formal specification and 
verification at the requirements level.  As a result of the Formal Specification, 37 issues were 
found in the requirements, including undocumented assumptions, inadequate off-nominal or 
boundary case behavior, traceability and inconsistency, imprecise terminology and logic errors.  
The project being used as a test subject was following an Object-oriented (OO) development 
process.  FM worked well with the OO approach. 

A new approach to “light” formal methods is the SpecTRM modeling language [109]. This 
language is human-readable and supports a safety-driven design process. “Under the hood” of 
the modeling language is a formal (mathematical) basis that supports formal and even automated 
analysis. In addition, the models can be executed, allowing dynamic analysis of the specified 
system's behavior before any code is written. The design of the formal modeling language 
emphasizes readability so it can serve as a model and as the specification of the software 
requirements. 

Detailed descriptions of FM are given in the NASA Formal Methods Guidebook [22].  In 
addition, the following publications are recommended reading as primers in FM:  Rushby [24], 
Miller, et al [25], and Butler, et al [26].  Anthony Hall [27] gives “Seven Myths of Formal 
Methods,” and discusses using formal specification of requirements without formal proofs in a 
real-world development environment.  Richard Kemmerer [28] shows how to integrate FM with 
the development process. 

The NASA Langley Formal Methods Group website (http://atb-
www.larc.nasa.gov/fm/index.html) provides good general information on the what and why of 
FM.  This website also provides links for more information.  The NASA FM page is 
http://eis.jpl.nasa.gov/quality/Formal_Methods/home.html. 

A quick search of the Internet produces links to many FM tools.  The web-site 
http://www.afm.sbu.ac.uk has a list of notations and tools, as well as other resources.  The FM 
page produced by Jonathan Bowen (http://www.afm.sbu.ac.uk/) also contains resources and tool 
information. 

The following list contains some of the tools available for FM.  Links to these can be found 
through the above URLs or via a search of the World Wide Web. 

• Theorem provers (ACL2, Boyer-Moore, HOL, Isabelle, JAPE, leant, LEGO, Nqthm, 
Otter, PVS, RRL, and SteP). 

• Specification languages and formal notations (Z, SDL, Algebraic Design Language 
(ADL), Calculus of Communicating Systems (CCS), Estelle, Esterel, Larch, LUSTRE, 
Murphi, OBJ and TAM. 

• Methods and Systems (B-Method, Circal, Evolving Algebras, KIV, LOTOS, Penelope, 
Refinement Calculus, RESOLVE, and VDM). 

• Others (ASLAN, Binary Decision Diagrams, NP-Tools, Nuprl, PVS, Specware, HyTech 
for embedded systems, LAMBDA for hardware/software co-design, Maintainer’s 
Assistant for re-engineering code, UNITY for parallel and distributed programs, and Trio, 
Kronos, TTM/RTTL, and UPPAAL for real-time systems). 
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4.2.2.4 Model-based Software Development 

The standard “requirements→design→code→unit, integration, and system test” development 
cycle becomes “requirements→model→verify (test) and debug→generate code→system test”. 
Unit and software integration testing is pushed up in the life cycle to the modeling phase. In 
theory, the model-driven approach allows developers to construct, test, and analyze their designs 
before they write any code.  

When the model is formally defined, it becomes “formal methods” ( ). Another 
growing trend in software engineering is to use the Unified Modeling Language (UML, 

Model-based software development focuses on creating a complete (and possibly formal) model 
of the software system.  Models are an abstract and high level description of the system, 
expressed as statements in some modeling language or as elements in a modeling tool. Unlike 
standard design documents, models can be executable (able to simulate the process flow within 
the system).  

section 4.2.2.3
section 

4.2.2.2) to describe the system. In many cases, tools can take the developed model and 
automatically generate the source code. 

One advantage of model-based development is moving some of the testing activities earlier in 
the life cycle. If major problems are found, they can be resolved with less impact on the budget 
or schedule of the project. Disadvantages include a reliance on the automatically generated 
source code (which may not be generated correctly) and the difficulty of knowing how well the 
model conforms to reality. Interactions between parts of the system may not be evident until the 
system is operational. Testing on the model should not replace thorough system testing. 

4.2.2.5 Design Patterns 
In software engineering, the wheel is reinvented on a regular basis.  Creating reusable software 
components is one way to avoid that reinvention process.  Design patterns are another.  Unlike 
reusable software, however, design patterns are not things (software components) but ideas.  
They are proven solutions to recurring problems in software engineering. 

The idea of software patterns derives from several sources: an architectural design movement 
conceived by Christopher Alexander, the literate programming3 concepts, and the documentation 
of best practices and lessons learned in all vocations.  Software engineering solutions to a 
problem are usually specific to the context of a particular system.  A pattern is a generalization 
from the specific solutions that captures the essential insight into the problem solution, as well as 
the context-specific elements.  Or, more succinctly, “a pattern is a named nugget of insight that 
conveys the essence of a proven solution to a recurring problem within a certain context amidst 
competing concerns”. [95] 

Software patterns are given names, which then become part of the vocabulary of software 
engineering.  One of the software patterns community’s goals is to create a body of literature to 
help software developers resolve recurring problems encountered throughout all of software 
development.  Patterns provide a shared language for communicating insight and experience 
about these problems and their solutions.  Formally codifying these solutions and their 
relationships captures this body of knowledge.  The primary focus of the patterns community is 
                                                      
3 Literate programming is a phrase coined by Donald Knuth to describe the approach of developing 
computer programs from the perspective of a report or prose. Literate programming is the combination of 
documentation and source together in a fashion suited for reading by human beings. [91] 
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not so much on technology as it is on creating a culture to document and support sound 
engineering architecture and design.  

Patterns have been used for many different domains, including organizations, processes, teaching 
and architecture.  At present, the software engineering community is using patterns largely for 
software architecture and design, and (more recently) software development processes and 
organizations. 

Software patterns have four basic elements: 

1. Pattern name.  
2. Problem description.  This explains the problem and its context, conditions that must be 

met, and when to apply the pattern. 

3. Solution.  This describes the elements that make up the design, their relationships, 
responsibilities, and collaborations. 

4. Consequences.  The results and trade-offs of applying the pattern, often program space 
and execution time trade-offs. 

Patterns provide proven solutions to specific problems where the solution is usually not obvious.  
The best patterns generate a solution to a problem indirectly.  Patterns describe deeper system 
structures and mechanisms, rather than modules.  Good patterns do more than just identify a 
solution; they also explain why the solution is needed.  

Resources for software patterns include: 

• Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, 
Richard Helm, Ralph Johnson, and John Vlissides, October 1994, ISBN 0-201-63361-2. 

• Pattern-Oriented Software Architecture: A System of Patterns by Frank Buschmann, 
Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal, 1996, ISBN 0-471-
95869-7. 

• Pattern Languages of Program Design (and follow-on volumes) contain selected 
papers from the conference on Patterns Languages of Program Design.  Addison-Wesley 
published the first volume in 1995. 

• Patterns home page, http://www.hillside.net/patterns/patterns.htm. 

• Portland Pattern Repository, http://c2.com/ppr/index.html. 

4.3 Managing the Process  
All software development must be managed if it is to be successful.  The degree of management 
and documentation varies with the complexity and size of the project.  A large, software-
intensive project may require a full-fledged, formal program whose details are found in a specific 
Software Management Plan.  A Software Management Plan describes the necessary software 
tasks, processes, methodologies, reviews, configuration management approach, reporting, 
documentation, and other elements of software management.  A small software project, without 
much criticality, will have a tailored process that does not overburden the project.  The software 
processes for a small project will usually be described inside a System Management Plan, rather 
than in separate documents. 
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Categorizing the project’s software and selecting the range of activities to perform must 
be negotiated early in the system development.  Project management, software 
developers, software assurance engineers, and software and/or systems safety engineers 
will be involved in the negotiations.   

First and foremost, everyone needs to agree on the degree of safety-criticality of the software.  
The level is based on several factors ranging from control over hazardous hardware to visibility 
of the system (and therefore a failure) to the outside world.  Chapter 3 describes how to 
determine the safety-criticality of the software. 

Starting a project with varying understandings of the criticality of the software system will 
usually lead to problems down the road.  The project manager does not want to have this issue 
raised repeatedly throughout the development period, as developers and software assurance 
continue to argue over the criticality of individual sections or the software as a whole.  

Along with the criticality level, the development and safety activities need to be negotiated.  
Tailoring the activities to the criticality level (risk index) is discussed in section 3.2.  Further 
tailoring information is provided in the “Tailoring Guidelines” sections of Chapters 5 through 10.  

Determining who will perform an activity is as important as what tasks will be 
implemented.  This is another area for negotiation, especially when there is no designated 
software safety engineer.  Team members may wear different “hats” at various times.  
The project manager should distribute the tasks according to the expertise and talents of 
the team members, keeping in mind that some activities may require a certain amount of 
independence from the development team.  

Part of managing a safety-critical project includes selecting the right team.  Experience 
and successful past performance with similar efforts are prerequisites to developing 
dependable safety-critical software.  

NASA’s Software Engineering Initiative Implementation Plan, from the Office of the 
Chief Engineer, sets out four strategies to improve software engineering practices, 
especially in cost and schedule predictability, reliability, quality, and cost. This plan (and 
NPG 2820 (pending) require all NASA Centers to implement software process 
improvement that will bring the software development up to (or equivalent to) SW-CMM 
(Software Capability Maturity Mode) or CMMI level 3. Section 4.3.8 discusses the SW-
CMM and other process improvement frameworks. 

4.3.1 Project Management Best Practices  
The focus of this guidebook is on producing safe software.  The project manager is one of those 
responsible for making sure the software produced is safe, and meets all the other requirements.  
As Section 11.9 points out, the human element is important in meeting the goal of safety. 

While a treatise on all aspects of project management is outside the scope of this guidebook, the 
following list gives an overview of important practices.  The list is found on the Software 
Program Managers Network website (http://www.spmn.com/16CSP.html). 
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The Airlie Software Council identified nine Principal Best Practices observed in industry and 
deemed essential for nearly all DoD software development projects. (This list has now been 
updated to 16 software practices, and is available through the link above.)  

• Formal Risk Management.  Risk management is vital to the success of any software 
effort.  A formal risk management process requires that risks be identified and accepted 
(with whatever mitigations are determined to be necessary or prudent), and necessary 
resources be committed to the project.  Formal processes for identifying, monitoring, and 
managing risk must be used.  

• Agreement on Interfaces.  To deal with the chronic problem of vague, inaccurate, and 
untestable specifications, the Council proposed that a baseline user interface must be 
agreed upon before the beginning of implementation activities and be included as an 
integral part of the system specification.  For those projects developing both hardware 
and software, a separate software specification must be written with an explicit and 
complete interface description.  

• Formal Inspections.  Inspections should be conducted on requirements, architecture, 
designs at all levels (particularly detailed design), on code prior to unit test, and on test 
plans.  

• Metric-based Scheduling and Management.  Statistical quality control and schedules 
should be maintained.  This requires early calculation of size metrics, projection of costs 
and schedules from empirical patterns, and tracking of project status through the use of 
metrics.  Use of a parametric analyzer or other automated projection tool is also 
recommended.  

• Binary Quality Gates at the Inch-Pebble Level.  Completion of each task in the lowest-
level activity network needs to be defined by an objective binary indication.  These 
completion events should be in the form of gates that assess either the quality of the 
products produced, or the adequacy and completeness of the finished process.  Gates may 
take the form of technical reviews, completion of a specific set of tests which integrate or 
qualify software components, demonstrations, or project audits.  

• Program-wide Visibility of Progress vs. Plan.  The core indicators of project health or 
dysfunction should be made readily available to all project participants.  Anonymous 
channel feedback should be encouraged to enable unfavorable news to move freely up 
and down the project hierarchy.  

• Defect Tracking Against Quality Targets.  Defects should be tracked formally at each 
project phase or activity.  Configuration management (CM), or a form of Problem 
Reporting or Defect Management, allows each defect to be recorded and traced through 
to removal.  

• Configuration Management (CM). The discipline of CM is vital to the success of any 
software effort.  CM is an integrated process for identifying, documenting, monitoring, 
evaluating, controlling, and approving all changes made during the life-cycle of the 
program for information that is shared by more than one individual or organization.  

• People-aware Management Accountability.  Management must be accountable for 
staffing qualified people (those with domain knowledge and similar experience in 
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previously successful projects) as well as for fostering an environment conducive to high 
morale and low voluntary staff turnover.    

More information on project management can be found in the NASA Software Management 
Guide [13].  Additional information on project management can be found at: 

• Project Management Institute – http://www.pmi.org 

• Project manager  http://www.project-manager.com/  

• ALLPM - The Project Manager's Homepage http://www.allpm.com  

• Center for Project Excellence – http://projectexcellence.com 

• Michael Greer's Project Management Resources – http://www.michaelgreer.com 

4.3.2 Requirements 
Requirements solicitation, analysis, and management are key elements of a successful and safe 
software development process.  Many of the costly and critical system failures that are attributed 
to software can ultimately be traced back to missing, incorrect, misunderstood, or incompatible 
requirements. 

Figure 4-7 Sources of Software Requirements 
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Software requirements are not delivered by the stork, but flow down from many sources, 
including: 

• System Requirements (Specification) 
• Safety and Security Standards 
• Hazard and Risk Analyses 
• System Constraints 
• Customer Input 
• Software Safety “Best Practices” 

Analyses described in Chapter 6 describe methods for assuring that all these requirements, 
especially safety requirements, are in the software specification (requirements document).  

Most people will think to look for requirements among the system specification, safety 
standards, and the potential hazards or risks.  What may be overlooked are system 
constraints, such as activities the hardware must not do or limitations in sensor precision.  
These constraints need to be identified and verified as early as possible.  When 
constraints are found to be more limiting as the system is built (such as motor speed 
being less than expected), software will usually be asked to compensate.  It is in the 
software developer’s best interest to determine what items might constrain the software, 
and at least make sure the issues are being tracked. 

Another overlooked area is security.  With more systems able to access a network, or be 
controlled over one, making sure that only authorized users can affect the system is a 
requirement.  Command authentication schemes may be necessary for network-controlled 
systems.  Access to the system may be inadvertent or malicious, but either needs to be 
prevented or, in worst case, contained. 

Software safety “best practices” (also sometimes called generic requirements) should also be 
considered when deriving the software requirements.  Building in error handling, fault or 
failure detection and recovery, or having the program terminate in a safe state is an obvious 
“best practice.”.  Other examples are: 

• Notifying controller when automated safety-critical process is executed. 

• Requiring hazardous commands to involve multiple, independent steps to execute. 

• Requiring hazardous commands or data to differ from non-hazardous commands by 
multiple bits. 

• Making the current state of all inhibits available to controller (human or executive 
program). 

• Ensuring unused code cannot cause a hazard if executed. 

All requirements must be specified and analyzed to insure completeness (to the extent possible), 
clarity, and verifiability of the desired functions and performance.  In addition, the software 
system must be evaluated to determine if any of it is safety-critical or has safety-critical 
characteristics.  Top-down analyses, such as Software Fault Tree Analysis, are often used to 
identify safety-critical software.  Any safety-critical characteristics found during the 
requirements analyses should be written into the software and system requirements.  
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Requirements must be managed.  They must be traced all the way through the development 
process into the final test cases.  The process of requirements management is described in 
Section 6.4. 

Once the requirements are known, it is possible to create the system and acceptance test plans.  
Even if the plans are not completed at this stage (depending on the lifecycle chosen), beginning 
the process may help identify ambiguous or confusing requirements.  In addition, special safety 
tests may need to be conducted as part of the safety verification process.  These can be separate 
tests or be included as one of the system tests. 

Chapter 6 discusses requirements development and analysis in more detail. 

 

4.3.3 Design 
The process of design provides the structure for converting the requirements into the final code.   
Where the requirements state what must be done, the design provides how it will be done.  Many 
requirements may be implemented in multiple ways.  Design selects just one approach. 

The process for designing software for safety-critical systems includes: 

 Identify design features and methods.  The design process identifies design features 
and methods (object/class choice, data hiding, functional distribution, etc.), including 
safety features (e.g., inhibits, traps, interlocks, and assertions) that will be used 
throughout the software to implement the software requirements. 

 Allocate all software requirements to the software design.  Each requirement is 
implemented in a portion of the design, though design features may include more than 
one requirement.   

 Identify safety-critical computer software components.  Any component of the 
software that implements a safety-critical requirement is flagged as safety-critical.   

 Perform design analyses to assure feasibility and functionality.  Analyses should be 
performed as early as possible to verify that the design can meet its requirements.  

 Perform a safety analysis of the design.  Safety analyses identify potential hazards.  
Bottom-up analyses, such as Software Failure Modes and Effects Analysis, are often 
used.  They may be combined with top-down analyses for a thorough look at the software 
system.  Each safety-critical component is analyzed to verify that it does not cause or 
contribute to a hazard.  All components must be reviewed to verify that a non-critical 
component cannot affect safety-critical components.  Data, sequencing, timing 
constraints, and other means of influencing safety-critical components should not be 
overlooked. 

 Develop and review software integration test plans; update system and acceptance 
test plans.  Integration testing deals with how the software components will be 
incorporated into the final software system and what will be tested at each integration 
step.  When developing these plans, it is important to think about how the safety features 
can be tested.  Some may be able to be verified at a high level (system testing), others at a 
low level (unit testing),  and some during a particular stage of the integration.   
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The Design phase may be divided into architectural and detailed design phases.  Architectural 
design is the high level design, where many components are undeveloped black boxes.  The 
Detailed Design phase fills in the blanks.  The level of analysis possible will vary with the details 
available.  Some analyses can be started early and then updated as more detail is added.  Others 
cannot begin until the design is nearly complete. 

During Design, the operating system and development language are usually chosen.  Tools such 
as compilers and editors are chosen.  These decisions can have a significant impact on the safety 
of the software.  Sections 11.1 and 11.2 discuss issues to consider when selecting these elements 
in a safety-critical system. 

Chapter 7 discusses design development and analysis in more detail. 

4.3.4 Implementation 
Implementation (coding) is the process of taking the design and translating it into a specific 
programming language.  For a detailed design, the act of implementation is usually very 
straightforward.  When working from a higher-level design, implementation will involve non-
structured design steps, often performed in the mind of the programmer.  Leaving key design 
decisions to a lower-level programmer is not recommended for safety-critical software.  Safety-
critical components must be well designed before being created in code. 

It is during software implementation that software controls of safety hazards are actually 
implemented.  All the requirements should have been passed down through the design(s) to the 
coding level.  Managers and software designers must communicate all issues relating to the 
program and components they assign to programmers.  Safety-critical designs and coding 
assignments should be clearly identified.  Programmers must recognize not only the explicit 
safety-related design elements but should also be cognizant of the types of errors that can be 
introduced into non-safety-critical code that can compromise safety controls.  Coding checklists 
should be provided to alert for these common errors.  

Unit level testing begins during the software implementation phase.  Each unit  is tested 
individually to verify correct functionality.  The amount of unit testing is one of the negotiable 
elements in a safety program.  Remember, however, that units often cannot be thoroughly tested 
during integration because individual component level inputs and outputs are no longer 
accessible.  Unit level testing can identify implementation problems that require changes to the 
software.  For these reasons, unit level testing must be mostly completed prior to software 
integration. 

Chapter 8 discusses implementation and code analysis in more detail. 

4.3.5 Testing 
Testing is the operational execution of a software component in a real or simulated environment.  
Testing serves several purposes:  to find defects, to validate the system or an element of the 
system, and to verify functionality, performance, and safety requirements.  The focus of testing is 
often on the verification and validation aspects.  However, defect detection is probably the most 
important aspect of testing.  While you cannot test quality into the software, you can certainly 
work to remove as many defects as possible. 
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Various types of testing can be done.  Unit testing exercises individual components in isolation.  
Integration testing occurs while the system is being assembled and focuses on interface 
verification and component interaction.  System testing comprises a range of tests that are 
performed when the software is completely integrated.  Functionality, performance, load, stress, 
safety, and acceptance testing are just a few of the kinds of system tests. 

Some basic principles of testing are: 

• All tests should be traceable to the requirements and all requirements should be tested. 

• Tests should be planned before testing begins.  Test planning can occur as soon as the 
relevant stage has been completed.  System test planning can start when the requirements 
document is complete.   

• The “80/20” principle applies to software testing.  In general, 80 percent of errors can be 
traced back to 20 percent of the components.  Anything you can do ahead of time to 
identify components likely to fall in that 20 percent (e.g. high risk, complex, many 
interfaces, demanding timing constraints) will help focus the testing effort for better 
results. 

• Start small and then integrate into larger system.  Finding defects deep in the code is 
difficult to do at the system level.  Such defects are easier to uncover at the unit level. 

• You can’t test everything.  Exhaustive testing cannot be done except for the most trivial 
of systems.  However, a well-planned testing effort can test all parts of the system.  
Missing logic paths or branches may mean missing important defects, so test coverage 
should be determined. 

• Testing by an independent party is most effective.  It is hard for developers to see their 
own bugs.  While unit tests are usually written and run by the developer, it is a good idea 
to have a fellow team member review the tests.  A separate testing group will usually 
perform the other tests.  An independent viewpoint helps find defects, which is the goal 
of testing. 

Scheduling testing phases is always an art, and depends on the expected quality of the 
software product.  Relatively defect free software passes through testing within a minimal 
time frame.  An inordinate amount of resources can be expended testing buggy software.  
Previous history, either of the development team or similar projects, can help determine how 
long testing will take.  Some methods (such as error seeding and Halstead’s defect metric) 
exist for estimating defect density (number of defects per unit of code) when historical 
information is not available.  

Chapter 9 discusses testing and test analysis in more detail. 

4.3.6 Products from the Development Process 
A collection of products will be produced as a result of the software development 
process.  Products include plans, diagrams, reports, procedures, code, and other items.  
The exact complement of products will be determined during the tailoring process early 
in the project.  Tailoring will not only select the products to be produced, but the level of 
detail that must be contained in the document or other artifacts.  The size and criticality 
of the software project will determine what documents need to be created.  For smaller 
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projects, many of the documents can be combined, or the software sections can be part of 
a system-wide document. 

Documentation is quite often the last thing on the software developer’s mind.  On many 
projects, the documentation follows the completion of the code instead of preceding it.  
On others, the documents are produced and then promptly ignored.  These management 
problems need to be addressed.  Having a tailored document set is a start.  Making sure 
that usability is a prime factor within the documents will also help.   

Products that may be created during the software development process include: 

• Requirements, including specifications, traceability matrices, and use case diagrams. 

• Design, usually including a written document, but also diagrams (such as UML) and 
notes.  It is important to document why a particular approach was taken, to guard against 
problems if the designer leaves, new requirements force design changes, or if 
maintenance or upgrades lead to a change many years down the road. 

• Code.  Well commented source code, as well as any files required to build the system. 

• Milestone Reviews.  Many projects have major reviews at predefined milestones.  One 
beneficial outcome is making sure required documentation is completed by the review.  
The reviews also allow others from different disciplines within the team to see what is 
being considered.  In addition, outside experts may also be present to point out problems 
or suggest areas for further work. 

• Inspection Reports from formal inspections. 

• Analyses Reports from various development and safety analyses performed.  Analyses 
are performed by the software developer, software assurance engineer, and software 
safety engineer throughout the development process.  The following describes some of 
the analyses that may be performed: 

o Software Requirements Analysis verifies that all requirements for the software 
were properly flowed down, and that they are correct, consistent, complete, 
unambiguous, and verifiable.  

o Design Analyses look at feasibility, timing, interfaces, interdependence of 
components, and other areas of concern.  Chapter 7 describes many of the 
analyses performed at this stage of development. 

o Code Analysis verifies that the coded program correctly implements the verified 
design and does not violate safety requirements.  Traceability from the code back 
to the requirements will be verified by analysis. 

o Test Analysis includes two types of analyses: 1) analyses before the fact to 
ensure validity of the tests, and 2) analyses of the test results. 

• Plans.    Some plans that will be developed for all safety-critical systems are: 

o System Safety Plan.  This plan should include software as a subsystem and 
identify tasks associated with developing and assuring the safety-critical software. 

o Software Concepts Document.  This document identifies technically challenging 
areas and any safety-critical processes. 
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o Software Management Plan.  This plan documents what management processes 
will be used to oversee the software development.  Items to be included are work 
breakdown structure, budget, schedule, and resource allocation.  Coordination of 
development with systems or software safety tasks should also be addressed here.  
How requirements, especially safety-critical requirements, will be managed may 
be addressed here or in the Software Development Plan.  

o Software Configuration Management Plan.  All software products, which 
includes far more than just code, must be configuration managed.  Old files in a 
software build are a notorious problem, as are lost updates and other problems 
with changed files.  This plan specifies what will be under configuration 
management (CM), what CM system will be used, and the process for moving an 
item into or out of the CM system. 

o Software Development Plan.  This plan defines the process and activities used 
by the developers in the creation of the software.  Lifecycle, methodology, use of 
prototypes, products to be produced, integration strategy, reviews to perform, and 
baselines or increment descriptions are some of the items to include.  The required 
support environment for development or integration is also described in this plan.  

o Software Security Plan.  The plan addresses the security of safety-critical 
software as well as other security issues.  

o Software Assurance Plan.  Also called a Software Quality Assurance Plan.  This 
plan describes how the software products will be assured and what the Software 
Assurance engineer’s tasks will be.  Areas to address include support to software 
safety, verification of software safety requirements, and safety and software 
assurance engineer participation in software reviews and inspections. 

• Management Reports, such as work breakdown structure, schedule, or budget. 

• Software Assurance Records, including process audit reports, document review notes, 
and Functional Configuration and Physical Configuration Audit reports. 

• Test Verification Reports detailing the results of testing (unit, integration, system, 
acceptance, or safety). 

• Problem or Anomaly Reports describing unexpected behavior of the software or 
system, the analysis performed to determine the cause, and what was done to correct the 
problem.  Projects usually have a formal system for problem reports after the software 
has reached a level of maturity.  However, defects or problems that occur before this time 
are also important.  Tracking these problems, or at least reviewing them to make sure no 
major defect slips through, is recommended in safety-critical systems. 

• Metrics, such as number of defects found by an inspection or percent of design complete.  

• Other Documents as negotiated during the tailoring process. 

4.3.7 Managing Object-Oriented Projects 
While most of the tasks of project management are divorced from the type of software 
development, object-oriented (OO) software development does add some twists to the process.  
Some of the differences are listed below. 
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Lifecycle.  OO software development is recursive and parallel in nature.  The definition of 
systems, subsystems, and objects can occur in parallel, rather than sequentially.  This does not 
map well to the waterfall lifecycle model.  Also, a common idea in OO development is a short 
interactive cycle of “analyze, design, implement, and test” until the software is complete.  This 
type of development fits well with lifecycles such as the spiral, incremental development, and 
evolutionary development. 

Requirements.  Some OO methodologies use iterative methods by which the system's 
requirements are discovered, captured, documented, and communicated.  Each “turn around the 
spiral,” for instance, may start with an update to the requirements based on what was learned in 
the last iteration.  It should be noted, however, that many OOD methods are non-iterative as well.  

Planning.  A significant difference between object-oriented and traditional software projects is 
the regularly repeated delivery (through the point of actual coding and testing) of a portion of the 
end-product's functionality.  Plans for object-oriented projects may have to reflect multiple 
iterations, with the quantity varying based on size and complexity of the project.  A suggested 
limitation to the number of iterations per lifecycle phase is three.  [106] 

Reusability.  As one of the principal goals of OO software development is reusability, project 
managers may find it useful to identify a separate timeline for identifying reusable components.  
Furthermore, project plans for object-oriented projects may be treated as a reusable set of 
artifacts, which should have schedule and staffing templates that can be adapted to many 
different projects.  

Estimating.  Estimating schedules is often difficult, especially if your organization or project 
manager has little experience with OO projects.  One of the aspects to consider when defining 
the schedule is the number of iterations an object will require.  Simple objects can be designed, 
implemented, and tested in one iteration.  Complex and critical objects will require several 
iterations to fully define them.  

Risk Management.  The iterative style of object-oriented projects mitigates several risks, such 
as clarifying user requirements up front and pre-testing project feasibility.  Regardless, a 
proactive approach to risk management needs to be practiced.  Risks of using OO include new 
technology, new tools, tools that have many defects,  and software developer inexperience. 

Measuring Progress.  Appropriate measures may include the number of key classes, support 
classes, and classes per subsystem; number of interface operations, message sends, and nesting 
levels; and classes per developer.  A particularly useful measure illustrative of object-oriented 
engineering is the number of classes reused in a project, determined by counting classes at the 
outset of a project and at the end. 

Team roles.  For an object-oriented software development project team, new professional roles 
may be necessary.  Some roles to consider are librarians to manage class libraries, library-class 
programmers (at the foundation and application levels), application programmers and 
prototypers, requirements analysts, implementation designers, modeling experts, and gurus.  

Tools.  Project management tools (software or “paper and pencil”) are geared toward the 
waterfall lifecycle.  It is much harder to represent an alternative lifecycle within these tools.  One 
way to deal with this is to plan multiple iterations of the same set of activities.  As each iteration 
occurs, less and less time is required for the iteration.  This adds an order of magnitude of 
complexity to managing an OO project from a project management tool perspective.  For a large 
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project, managing this additional complexity can be a significant cost.  Because project 
management tools have not yet evolved to meet the requirements of OO project management; 
project managers need to be careful to not let the limitations of the project management tool 
control the actual management of the project. 

Project Deliverables.  OO project design documentation will typically include: 

• Object and class specifications. 

• Reusable component information (including past-use and testing information). 

• Class hierarchy and interaction information. 

• Class interface information (what is visible outside the class). 

• Use-cases and UML diagrams. 

4.3.8 Software Development Capability Frameworks 
Several standardized frameworks exist that measure a software development organization’s 
process maturity.  ISO 9000 and the Software Capability Maturity Model (SW-CMM) are two of 
the best known.  The concept behind process maturity measurement is that if you follow a well-
structured process in developing your software, that software is more likely to be a quality 
product.  While this is not always true, such process measurements can provide a way to 
compare development organizations (such as for contracts).  They also provide a way for an 
individual organization to measure improvements within software development. 

While process maturity is important, the actual practices the software developer follows are also 
essential.  Having a well defined but inadequate process may slip by the assessors or auditors, 
but it is unlikely to produce good software.  It also does no good to have a process that no one 
follows because it is too unwieldy, too inflexible, or designed for projects much larger or smaller 
than the current one. 

Frameworks fall into several types: 

• Standards and Guidelines used for contractual purposes.  Standards and Guidelines 
can be tailored and are often used as recommendations of good practices, if not imposed 
as standards. 

o MIL-STD-498 
o ISO 9000 
o DO-178B (aviation safety) 
o IEEE 1228 

• Process Improvement Models and Internal Appraisal Methods.  These frameworks 
define characteristics of good process, but not specific implementations.  They provide a 
roadmap from the current process to the improved process.   

o CMM family (SW-CMM, CMMI (integrated SW/Systems Engineering), etc.) 
o Systems Engineering Capability Assessment Model (SECAM), International 

Council on Systems Engineering 
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• Contractor Selection Vehicles.  Assessment methods that can be used by an outsider 
(e.g. software acquirer) to evaluate a companies software development process.  Aids in 
selection of software development company, minimizes risk. 

o CMM-Based Appraisal for Internal Process Improvement (CBA IPI), associated 
with the SW-CMM 

o Software Capability Evaluation, an external SW-CMM evaluation 
o Software Development Capability Evaluation (SDCE), US Air Force 
o Standard CMMI Assessment Method for Process Improvement (SCAMPI) 
o ISO/IEC TR 15504 (originally Software Process Improvement Capability 

dEtermination, or SPICE).  Technical report describing assessment method. 
• Quality Awards.  Awards given to companies with a high focus on quality.  Strict 

selection criteria. 
o Malcolm Baldrige National Quality Award 
o European Quality Award 

• Software Engineering Lifecycle Models.  Standards that specify elements of a software 
development process.  Focused more on the “how” of software creation than process 
improvement models. 

o MIL-STD-498 
o IEEE 12207 

• Systems Engineering Models.  Software is a major element of a system, but it is not the 
whole system.  Many problems develop when the pieces (hardware, software, operators, 
etc.) do not fit together will.   

o MIL-STD-499B (Systems Engineering) 
o Systems Engineering CMM (SE-CMM) and CMMI (integrated software and 

systems CMM) 
o SECAM  
o IEEE 1220 
o Systems Engineering Capability Model (EIA/IS 731) 

Understanding how these frameworks fit together is a complicated issue.  The Software 
Productivity Consortium maintains a website dedicated to showing the relationships among the 
quagmire of various frameworks (http://www.software.org/quagmire).  The interrelationships are 
shown in Figure 4-8, reprinted with permission from the Software Productivity Consortium. 

The Capability Maturity Model for Software (SW-CMM) is the most common standard used to 
measure a software development organization’s software process capabilities.  The SW-CMM 
was developed by the Software Engineering Institute at Carnegie Mellon University.  Their work 
on the SW-CMM was initiated by the US Government’s need to solve a basic problem of 
software acquisition -- “Why do all these software projects not work, come in late, and/or cost 
too much?” 
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Figure 4-8 Development Frameworks Quagmire 

Copyright ©2001, Software Productivity Consortium NFP, Inc.  All rights reserved.
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The Software CMM describes the principles and practices underlying software process maturity.  
It is intended to help software organizations understand where they are now, and to improve the 
maturity of their software processes.  The SW-CMM provides an evolutionary path from ad hoc, 
chaotic processes to mature, disciplined software processes.  

The SW-CMM is organized into five maturity levels:  

1. Initial.  The software process is characterized as ad hoc, and occasionally even chaotic.  
Few processes are defined, and success depends on individual effort and heroics.  
Software products may be quite good (especially with a knowledgeable team), but quality 
will vary between teams or products. 

2. Repeatable.  Basic project management processes are established to track cost, schedule, 
and functionality.  The necessary processes are in place to repeat earlier successes on 
projects with similar applications.  

3. Defined.  The software process for both management and engineering activities is 
documented, standardized, and integrated into a standard software process for the 
organization.  All projects use an approved, tailored version of the organization's standard 
software process for developing and maintaining software.  
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4. Managed.  Detailed measures of the software process and product quality are collected.  
Both the software process and products are quantitatively understood and controlled.  

5. Optimizing.  Continuous process improvement is enabled by quantitative feedback from 
the process and from piloting innovative ideas and technologies. 

Figure 4-9 Software Capability Maturity Model  
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For each level (except Level 1), key process areas specify where an organization should focus to 
improve its software process.  

The key process areas (KPA’s) at Level 2 focus on establishing basic project management 
controls.  They are Requirements Management, Software Project Planning, Software Project 
Tracking and Oversight, Software Subcontract Management, Software Quality Assurance, and 
Software Configuration Management.  

Level 3 addresses both project and organizational issues, as the organization establishes an 
infrastructure that institutionalizes effective software engineering and management processes 
across all projects.  The KPA’s are Organization Process Focus, Organization Process Definition, 
Training Program, Integrated Software Management, Software Product Engineering, Inter-group 
Coordination, and Peer Reviews.  

Level 4 focuses on establishing a quantitative understanding of both the software process and the 
software work products being built.  The KPA’s are Quantitative Process Management and 
Software Quality Management.  

The KPA’s at Level 5 cover the issues that both the organization and the projects must address to 
implement continual, measurable software process improvement.  They are Defect Prevention, 
Technology Change Management, and Process Change Management.  
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The SW-CMM is an especially important framework.  Within NASA, many contracts are now 
specifying that the software development company must be CMM level 3.  NASA itself is 
moving toward implementing a process improvement strategy that will help the Agency achieve 
at least the equivalent of CMM level 3.  Other organizations are mandating some level of SW-
CMM or CMMI (Integrated Capability Maturity Model), which merges the SW-CMM with the 
Systems CMM.   

Issues with using SW-CMM or any other process framework to evaluate contractors for software 
development are discussed in section 12.2.1. 

4.3.9 Metrics 
A measurement is the empirical, objective assignment of a value to a specific attribute.  For 
example, the number of days to complete a task is a measurement.  A metric is a series of 
measurements that yield insight into the state of processes or products, and that drives 
appropriate action.  

Metrics are used to understand a project’s status, a piece of software, or the process of creating 
the software, among other things.  Metrics can be defined to measure project status and product 
quality.  They provide insight and patterns that allow the project manager to better manage the 
process.  They can show when the project is getting out of hand, as well as when everything is 
going smoothly.   

The first step in good metrics collection is understanding the goal.  Do you want to reduce risk 
by maintaining the software complexity below a specific threshold?  Do you want to keep the 
development schedule to within 10% of the desired schedule?  Determining the goals will 
determine what metrics to use. 

A metrics plan should be created to document the goals and associated metrics.  The plan should 
also detail how the metrics will be used, and what decisions might depend on the metrics.  
Having a clear purpose will help reduce the number of measurements collected that are not 
actually used. 

Collecting metrics is not a “free” activity.  In general, collection should be as unobtrusive as 
possible and directed toward achieving your goal.  Too much data is as problematic as too little 
data.  [107] 

Specific data snapshots have curiosity value, but the real power comes from collecting and 
analyzing metrics over time.  The goal of analysis is the identification of patterns.  Patterns in the 
software development for a specific project may point to the need for more training, more 
developers, or more time for a particular phase.  Patterns outside a specific project may point to 
organizational factors that influence projects, for better or for worse. 

Once you have analyzed the metric, an action needs to be taken.  The action needs to be visible 
and congruent, and it must close the feedback loop to the suppliers of the information.  Consider 
an OO project where many of the developers are new to the OO world.  The metrics may show 
that the software design is taking more time than expected.  They may also show that the 
developers with the least OO experience are the slowest.  From this pattern, an action must be 
generated.  Perhaps OO gurus are hired (or moved from another project) to help the developers 
who are new to come up to speed. 
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For a metrics program to succeed, it is necessary to establish trust, value, communication, and 
understanding.  Those providing the measurements must agree that the metrics have value.  As a 
worst-case example, team members who do not understand why the measurements are being 
collected and who feel that the data collection is a waste of time may not accurately collect the 
measurements, or may even go so far as to “fake” them after the fact. 

As a project continues, the metrics plan should be reviewed.  [108]  Are the metrics used in 
decision making?  Metrics that are never looked at or that never result in an action should be 
discontinued.  Are the metrics providing enough information?  If not, perhaps additional 
measurements need to be added (or new measurements defined to replace those that are currently 
collected but not used). 

What metrics to measure are determined by what you want to accomplish.  The project 
management resources listed in section 4.3.1 contain pointers to more information on metrics.  
Many of the software engineering websites listed in Appendix A.2 also contain information on 
project and software development metrics. 

4.4 Tailoring your process 
Tailoring the safety effort was discussed in section 3.2.  This section looks at tailoring the 
software development process.  The goal is to do all the necessary work, but only what is 
necessary. 

There are quite a few elements of software development that can be tailored.  In some cases, 
tailoring will involve selecting the choice that best suits the project.  In others, items will be 
added to or subtracted from a particular process.   

Before beginning a tailoring exercise, the software developer must consider the scope of the 
software under development.  The larger, more complex, more critical, and riskier the software 
is, the more thorough the development process must be. 

Factors that affect the tailoring include: 

• Safety and mission criticality. 

• Size and complexity. 

• Required standards, such as IEEE 12207.  

• Cost and schedule risks. 

• Innovation and technical risks. 

Depending on the software development process chosen, you may need to tailor down (from 
“heavyweight” processes) or tailor up (from “lightweight” or agile processes).  Processes include 
such items as documentation required (or suggested), inspections or reviews, tests to be 
conducted, and methods of handling change.   

“Development process” and “amount of documentation” are often considered synonymous.  
While not strictly true, the development process chosen will often determine the amount of 
documentation required and the level of detail necessary. 

Lightweight or agile processes, such as Extreme Programming, the Crystal family, Adaptive 
Software Development, and SCRUM, were developed partly because the heavyweight processes 
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did not fit in an environment with short time-to-market or constantly changing requirements.  
Within each methodology are valuable ideas.  However, there is a tendency among some 
developers to use these processes as an excuse for ad hoc programming and no documentation.  
Because of their newness and low rigor, this guidebook does not recommend using agile 
processes for the safety-critical elements of your software.   

Other issues to consider when tailoring the software development process include: 

• Reviews.  What reviews (requirements, design, code, or other ) and types of reviews 
(formal inspections, code walkthroughs, informal design reviews, etc) will be conducted?  
Will the reviews be formal, informal, or a combination?  What products are subject to 
wider review (outside of the development team)?   

• Design methodology (structured, OO, FM, or other).  What is the history of the project 
(e.g. brand new or drawing on a previous project)?  Will components be reused from 
other projects?  If so, how were they developed?  Will COTS software be included, and 
does it have any impact on the design methodology?  What is the expertise of the team 
members?  Are resources available to train the team in a new methodology?  Is the team 
comfortable with, or does it have significant experience with, a particular methodology?   

• Lifecycle.  What lifecycle best fits the project?  Does the lifecycle need to be modified?   

• Testing.  When should testing start?  Who will do the testing?  What specific tests need 
to be conducted?  Many possible tests are listed in Chapter 9. 

• Tools.  What tools should be used to aid the project?  Will CASE (Computer Aided 
Software Engineering) tools be used?  Simulators? Automatic code generators?   

• Organization.  Are the team members assigned to tasks according to their expertise?  Do 
senior members of the team handle flowdown of requirements and safety issues?  What 
should be done to maintain a good working relationship among the team members?   

All of the above issues combine to create a tailored process.  Each element must work well for 
the specific aspect for which it was chosen (client, development organization, schedule, 
technology) and work well with each of the other elements of development (the tools, the 
organization, lifecycle, method).  

“Process Tailoring for Software Project Plans” [29] provides more detail on a tailoring method 
that meets the Software Capability Maturity Model (SW-CMM) Level 3 process tailoring and 
project planning activities. 

4.5 Software Configuration Management 
Software Configuration Management (SCM) is often considered a part of project management 
and not software development or testing.  It is a vital part of the development process, however, 
that should not be overlooked.  It is very unlikely that you can produce “safe” software without 
it.  You certainly cannot convince the quality, assurance, or safety personnel that the software is 
safe if you have not implemented SCM. 

SCM is much more than just version control of source code.  It is a process to maintain and 
monitor the software development process as well.  SCM includes: 
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Identification.  Identifying the structure and kinds of components, making them unique 
and accessible in some form by giving each component a name, version identification, 
and configuration identification.  

• 

Control. Controlling the release of a product and changes to it throughout the lifecycle by 
having controls in place that ensure consistent software via the creation of a baseline 
product.  

• 

Status Accounting.  Recording and reporting the status of components and change 
requests, and gathering vital statistics about components in the product.  

• 

Audit and review. Validating the completeness of a product and maintaining consistency 
among the components by ensuring that components are in an appropriate state 
throughout the entire project life cycle and that the product is a well defined collection of 
components. 

• 

Be aware of potential problems if you split control of software configuration management (e.g. 
having software documents is maintained by a project or company configuration management 
group, and the source code version control handled by the programmers).  It may be difficult to 
keep the documents (e.g. design) synchronized with the code.  Someone with configuration 
management experience should be “in charge” of the source code, to enforce change control and 
comprehensive documentation of  changes.  

Software Configuration Management is usually performed using a tool (program).  However, a 
file or folder should be maintained, to collect information that is not in electronic form.  This 
information could include the design notes scribbled on a napkin or a fax that only exists in 
hardcopy.  The point is to collect all pertinent information in one place.  It is a good idea to 
catalog all the hardcopy information in the electronic SCM system, so that it can be found again 
when needed. 

4.5.1  Change Control 
Change control is an important part of developing safe software.  Arbitrary changes should be 
avoided.  Once a piece of software has reached a level of maturity, it should be subject to a 
formal change control process.  What that level of maturity is will vary by group.  It could be 
when the component compiles, when the CSCI (which may contain several components) is 
completed, or when the whole program is at its first baseline. 

Formal change control usually includes a form to request a change (Software Change Request, 
Engineering Change Request, or other).  The form is filled out by the developer, the customer, or 
someone else involved in the project.  The form should include both what should be changed and 
why.  A Change Control Board (CCB), also called an Engineering Review Board, and by other 
names, is convened to evaluate the change request.  The board consists of several people, 
including a representative from the software quality assurance group.  When safety is an issue, 
someone from safety or risk management should also be included on the board.  The requestor 
may be at the CCB meeting, or the board may just evaluate the submitted form.  The board may 
approve the change, reject it, combine it with other requests, or suggest a modification. 

Another way software changes occur is through a problem reporting/corrective action (PRACA) 
process.  A PRACA is issued during the operation of the software, usually during testing.  If the 
software is not operating as it should, a PRACA is written.  The problem report goes to the 
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developers, who must find out what the problem is.  If the fix to the problem involves a change 
to the software, it must go through the CCB. 

All the paperwork from the change control process should be archived in the configuration 
management system.  This includes software requests, PRACA’s, notes from CCB meetings, and 
any other pertinent information.  The configuration management system provides a repository for 
storing this data for later retrieval. 

In addition, a cross-index should be created between software changes, requirements, code 
component versions, and tests.  This could be a database, a spreadsheet, or some other format.  
Being able to know what components a software change impacts determines what tests need to 
be run.  The change may also indicate that a requirement changed, and that the software 
requirements document needs to be updated.  

4.5.2 Versioning 
Versioning is the part of software configuration management that most people think of first.  It 
involves archiving the source code, keeping previous versions when a new version is added to 
the SCM tool.  Sometimes a complete previous version is kept; other tools use a “delta” 
(difference) from the previous version to the new version. 

Each component will have a version number associated with it.  A “release” will consist of all 
the components and their associated version numbers.  Some SCM tools allow branching, where 
a release will go down two or more paths (perhaps a “freeware” version and a commercial 
enhanced version, for example).  Versioning keeps the changes straight and allows “roll back” to 
previous versions if a bug is found down the road. 

Most SCM tools also have a check-in/check-out policy to prevent changes by multiple 
programmers on the same component.  Some will allow only one programmer to work on the 
component at one time.  Other SCM tools will do a “merge” when multiple developers check in 
the same component. 

One weakness of many SCM tools is that the programmer can get away without good 
documentation on what changes were made and why.  The tool keeps the changes, but the 
reasoning behind it usually is added as a comment upon check-in of the component.  (Some tools 
force the developer to say something, but not necessarily something useful.)  At a minimum, 
when a component is changed the following should be done: 

Clearly identify the area of code that is changed (within the source code).  Use a 
comment with some character string (such as *****) that is easy to spot when flipping 
through the source code.  Identify the end of the changed area the same way. 

• 

• 

• 

Have a header at the top of the altered code that includes why the change occurred 
(change request, problem report, or other reason), what was changed (in English, not 
code-ese), when it was changed, and by whom.   

Include the what/when/why/who information in the component check-in comment.  This 
information can be extracted for status accounting (see below). 
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4.5.3 Status Accounting 
According to MIL-STD-482A, configuration status accounting is the “recording and reporting of 
the information that is needed to manage configuration effectively, including a listing of the 
approved configuration identification, the status of proposed changes to configuration, and the 
implementation status of approved changes.” 

Status accounting answers the question "how complete is the software?"  Decide what stages of 
incompleteness, correctness, and obsoleteness need to be known about each item and to what 
audience, give each stage a status name (e.g. draft, under review, ready for integration/delivery, 
operational, superseded), and collect the status of each item.  Collate the information into a 
human-understandable format. 

Part of status accounting is the ability to create reports that show the status of each document 
(version, whether it is checked-out, when it was last updated, who made the changes, and what 
was changed).  The status of change requests and problem reports are also included in status 
accounting.   

While the status information can be compiled by hand, it can be a tedious process.  Many tools 
exist that provide an integrated configuration management system for all kinds of documents, 
including source code, and that can generate the status reports when requested.  Some of these 
tools are free or low-priced.   

The configuration management system needs to be audited occasionally.  The audit can be a 
formal affair, or an informal look at the system by someone other than the configuration 
manager, such as a software assurance engineer or a software quality assurance engineer.  The 
purpose of the audit is to verify that what the status accounting says about the project is actually 
true, and to look for holes in the process that can lead to problems in the future. 

4.5.4 Defect Tracking 
Defect (bug) tracking is sometimes handled outside of SCM.  However, integrating defect 
tracking with the SCM process facilitates control of information.  (When it is the middle of the 
night and you’re trying to find information on a bug you thought you had killed a week ago, 
you’ll appreciate a well-ordered system.) 

Defect tracking has several purposes.  One is to record all the defects for future reference.  This 
can be simply for historical purposes, or to have something to reference to compare defects 
found before.  Having defect information from previous projects can be a big plus when 
debugging the next project. 

Recording the defects allows metrics to be determined.  One of the easiest ways to judge whether 
a program is ready for serious safety testing is to measure its defect density—the number of 
defects per line of code.  If testing has found the majority of defects, then the software is likely to 
be stable.  Safety testing then puts software through its paces, usually by generating error 
conditions and verifying graceful behavior by the program. 

To determine the defects per lines of code, you need to know two pieces of information, both of 
which can be extracted from a good configuration management system: lines of code and number 
of defects.  You also need a “history” from other projects on defects/lines of code (from your 
projects, or general industry numbers).  If the average defects/thousand lines of code (KLOC) is 
6, and the software is 10,000 lines of code (LOC), then about 60 defects exist in the software.  If 
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testing has only found 10, a lot more tests need to be done.  The software in the example has a 
high risk, because many more defects linger in the code. 

One question in defect tracking is whether to use bugs found during unit testing by 
developers.  It would be best if those defects were documented.  The developer can see if 
he has a tendency to a certain kind of bug.  Other programmers can learn from the 
experience of the developer and avoid similar defects.  

4.5.5 Metrics from your SCM system  
Monitoring the various elements of your software development project can show when the 
project is getting into trouble (cost, schedule, cannot meet delivery date) and can aid in planning 
future projects.  Items to track, if possible, are: 

 Lines of code (LOC)4 for the project (total). 

 LOC per component, average component size, distribution of sizes. 

 Complexity per component, average complexity, distribution of complexities 

 Estimated and actual time to complete development for a change request or problem 
report. 

 Estimated and actual time to code a component. 

 Estimated and actual time to unit test a component. 

 Estimated and actual time for integration tests (black box) and system tests. 

 Number of defects found per test type.  Defects can be categorized for further breakdown. 

From these raw inputs, other determinations can be made.  For example:   

 Number of defects per LOC for the team or organization. 

 How good estimations are for completion of a software change. 

 How much time it takes to unit testing.  Correlated with the defects/LOC to see if more or 
less time should be spent on unit testing. 

 How much time to estimate for the various development phases (design, coding, testing) 
for the next project. 

 How much time it will take to update the software for a future change request. 

 Where to put extra resources in testing.  If the majority of the defects are found in system 
testing, more time in unit and integration testing may find the defects earlier. 

 If there was a software development process change, the numbers may show how much 
of an improvement the change made. 

4.5.6 What to include in the SCM system 
• 

                                                     

Documents and plans (specifications, formal design documents, verification matrix, 
presentation packages). 
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Design information (data flow charts, UML or OOD products, inputs to automatic code 
generation programs, and any miscellaneous related information). 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Interface information (Interface Control Documents, flow charts, message formats, data 
formats). 

Source code. 

Test  cases/scenarios. 

Test scripts, for manual or automated testing. 

Test reports. 

Defect lists (or defect database). 

Change requests. 

Problem reports/corrective actions 

Information for metrics, such as lines of code, number of defects, estimated and actual 
start or completion dates, and estimated/actual time to complete a change. 

4.6 Good Programming Practices for Safety 
A good software development process provides a solid foundation for creating safety-critical 
software.  However, there are many practices that can be incorporated into the design or 
implementation that also increase the safety of the software.  Some of these are listed below.  
The practices come from various sources, which are referenced.  In addition, they are 
summarized in a checklist in Appendix H. 

The following list of good software safety development practices is from “Solving the Software 
Safety Paradox” by Doug Brown [30].  

CPU self test.  If the CPU becomes partially crippled, it is important for the software to 
know this.  Cosmic Radiation, EMI, electrical discharge, shock, or other effects could 
have damaged the CPU.  A CPU self-test, usually run at boot time, can verify correct 
operations of the processor.  If the test fails, then the CPU is faulty, and the software can 
go to a safe state. 

• 

• 

• 

• 

Guarding against illegal jumps.  Filling ROM or RAM with a known pattern, 
particularly a halt or illegal instruction, can prevent the program from operating after it 
jumps accidentally to unknown memory.  On processors that provide traps for illegal 
instructions (or a similar exception mechanism), the trap vector could point to a process 
to put the system into a safe state. 

ROM tests.  Prior to executing the software stored in ROM (EEPROM, Flash disk), it is 
important to verify its integrity.  This is usually done at power-up, after the CPU self test, 
and before the software is loaded.  However, if the system has the ability to alter its own 
programming (EEPROMS or flash memory), then the tests should be run periodically. 

Watchdog Timers.  Usually implemented in hardware, a watchdog timer resets (reboots) 
the CPU if it is not “tickled” within a set period of time.  Usually, in a process 
implemented as an infinite loop, the watchdog is written to once per loop.  In 
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multitasking operating systems, using a watchdog is more difficult.  Do NOT use an 
interrupt to tickle the watchdog.  This defeats the purpose of having one, since the 
interrupt could still be working while all the real processes are blocked! 

Guard against Variable Corruption.  Storing multiple copies of critical variables, 
especially on different storage media or physically separate memory, is a simple method 
for verifying the variables.  A comparison is done when the variable is used, using two-
out-of-three voting if they do not agree, or using a default value if no two agree.  Also, 
critical variables can be grouped, and a CRC used to verify they are not corrupted. 

• 

• 

• 

Stack Checks.  Checking the stack guards against stack overflow or corruption.  By 
initializing the stack to a known pattern, a stack monitor function can be used to watch 
the amount of available stack space.  When the stack margin shrinks to some 
predetermined limit, an error processing routine can be called that fixes the problem or 
puts the system into a safe state. 

Program Calculation Checks.  Simple checks can be used to give confidence in the 
results from calculations.   

“30 Pitfalls for Real-Time Software Developers,” by David B. Stewart [31][32] discusses 
problems faced by real-time developers.  Of the problems he considers, the following are 
especially applicable to safety and reliability: 

 Delays implemented as empty loops.  This can create problems (and timing difficulties) 
if the code is run on faster or slower machines, or even if recompiled with a newer, 
optimizing compiler. 

 Interactive and incomplete test programs.  Tests should be planned and scripted.  This 
prevents tests from being missed.  Also, functional tests should be run after a change, to 
make sure that the software change did not indirectly impact other code. 

 Reusing code not designed for reuse.  If the code was not designed for reuse, it may 
have interdependencies with other components.  Usually, it will not use abstract data 
types (if object-oriented) or have a well-defined interface.  

 One big loop.  A single large loop forces all parts of the software to operate at the same 
rate.  This is usually not desirable.   

 No analysis of hardware peculiarities before starting software design.  Different 
processors have peculiarities that can affect the time a calculation can take, or how long it 
takes to access an area of memory, for instance.  Understanding the hardware before 
designing the software will decrease the number of “gotchas” at integration time. 

 Fine-grain optimizing during first implementation.  “Some programmers foresee 
anomalies (some are real, some are mythical).  An example of a mythical anomaly is that 
multiplication takes much longer than addition.” 

 Too many inter-component dependencies.  To maximize software reusability, 
components should not depend on each other in a complex way. 

 Only a single design diagram.  “Most software systems are designed such that the entire 
system is defined by a single diagram (or, even worse, none!).  When designing software, 
getting the entire design on paper is essential.” 
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 Error detection and handling are an afterthought and implemented through trial 
and error.  Design in the error detection and handling mechanisms from the start.  Tailor 
the effort to the level of the code – do not put it everywhere!  Look at critical locations 
where data needs to be right or areas where the software or hardware is especially 
vulnerable to bad input or output. 

 No memory analysis.  Check how much memory your system uses.  Estimate it from 
your design, so that you can adjust the design if the system is bumping up against its 
limits.  When trying to decide between two different implementations of the same 
concept, knowing the memory usage of each will help in making a decision. 

 Documentation was written after implementation.  Write what you need, and use what 
you write.  Do not make unnecessarily verbose or lengthy documentation, unless 
contractually required.  It is better to have short documents that the developers will 
actually read and use. 

 Indiscriminate use of interrupts.  Use of interrupts can cause priority inversion in 
real-time systems if not implemented carefully.  This can lead to timing problems and 
the failure to meet necessary deadlines. 

 No measurements of execution time.  “Many programmers who design real-time 
systems have no idea of the execution time of any part of their code.” 

Bill Wood, in “Software Risk Management for Medical Devices,” Table III [33], gives a list of 
mitigation mechanisms for various possible failures.  Some of the practices that are not 
duplicated in the lists above are summarized below (and expanded upon): 

 Check variables for reasonableness before use.  If the value is out of range, there is a 
problem – memory corruption, incorrect calculation, hardware problems (if sensor), or 
other problem. 

 Use execution logging, with independent checking, to find software runaway, illegal 
functions, or out-of-sequence execution.  If the software must follow a known path 
through the components, a check log will uncover problems shortly after they occur. 

 Come-from checks.  For safety-critical components, make sure that the correct previous 
component called it, and that it was not called accidentally by a malfunctioning 
component. 

 Test for memory leakage.  Instrument the code and run it under load and stress tests.  
See how the memory usage changes, and check it against the predicted usage.   

 Use read-backs to check values.  When a value is written to memory, the display, or 
hardware, another function should read it back and verify that the correct value was 
written. 

In addition to the suggestions above, consider doing the following to enhance the software 
safety: 

Use a simulator or ICE (In-circuit Emulator) system for debugging in embedded 
systems.  These tools allow the programmer/tester to find some subtle problems more 
easily.  Combined with some of the techniques described above, they can find memory 
access problems and trace back to the statement that generated the error.  

• 
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Reduce complexity.  Calculate a complexity metric.  Look at components that are very 
complex and reduce them if possible.  Complexity metrics can be very simple.  One way 
to calculate McCabe’s Cyclomatic Complexity is to add the number of decisions and 
subtract one.  An “if” is a 1.  A case/switch statement with 3 cases is 2.  Add these up and 
subtract one.  If the complexity is over 10, look at simplifying the routine. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Design for weak coupling between components (modules, classes, etc.).  The more 
independent the components are, the fewer undesired side effects there will be later in the 
process.  “Fixes” when an error is found in testing may create problems because of 
misunderstood dependencies between components. 

Consider the stability of the requirements.  If the requirements are likely to change, 
design as much flexibility as possible into the system.   

Consider compiler optimization carefully.  Debuggers may not work well with 
optimized code.  It is hard to trace from the source code to the optimized object code.  
Optimization may change the way the programmer expected the code to operate 
(removing “unused” features that are actually used!). 

Be careful if using multi-threaded programs.  Developing multi-threaded programs is 
notoriously difficult.  Subtle program errors can result from unforeseen interactions 
among multiple threads.  In addition, these errors can be very hard to reproduce since 
they often depend on the non-deterministic behavior of the scheduler and the 
environment. 

A dependency graph is a valuable software engineering aid.  Given such a diagram, it is 
easy to identify what parts of the software can be reused, create a strategy for incremental 
testing of components, and develop a method to limit error propagation through the entire 
system. 

Follow the two person rule.  At least two people should be thoroughly familiar with the 
design, code, testing and operation of each software component of the system.  If one 
person leaves the project, someone else understands what is going on. 

Prohibit program patches.  During development, patching a program is a bad idea.  
Make the changes in the code and recompile instead.  During operations, patching may be 
a necessity, but the pitfalls should still be carefully considered. 

Keep Interface Control Documents up to date.  Out-of-date information usually leads 
to one programmer creating a component or unit that will not interface correctly with 
another unit.  The problem isn’t found until late in the testing phase, when it is expensive 
to fix.  Besides keeping the documentation up to date, use an agreed-upon method to 
inform everyone of the change. 

Create a list of possible hardware failures that may impact the software, if they are 
not spelled out in the software requirements document.  Have the hardware and systems 
engineers review the list.  The software must respond properly to these failures.  The list 
will be invaluable when testing the error handling capabilities of the software.  Having a 
list also makes explicit what the software can and cannot handle, and unvoiced 
assumptions will usually be discovered as the list is reviewed. 
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The following programming suggestions are derived from SSP 50038, Computer-Based Control 
System Safety Requirements for the International Space Station Program: 

• Provide separate authorization and separate control functions to initiate a critical or 
hazardous function.  This includes separate “arm” and “fire” commands for critical 
capabilities. 

• Do not use input/output ports for both critical and non-critical functions. 

• Provide sufficient difference in addresses between critical I/O ports and non-critical I/O 
ports, such that a single address bit failure does not allow access to critical functions or 
ports. 

• Make sure all interrupt priorities and responses are defined.  All interrupts should be 
initialized to a return, if not used by the software. 

• Provide for an orderly shutdown (or other acceptable response) upon the detection of 
unsafe conditions.  The system can revert to a known, predictable, and safe condition 
upon detection of an anomaly. 

• Provide for an orderly system shutdown as the result of a command shutdown, power 
interruptions, or other failures.  Depending on the hazard, battery (or capacitor) backup 
may be required to implement the shutdown when there is a power failure. 

• Protect against out-of-sequence transmission of safety-critical function messages by 
detecting any deviation from the normal sequence of transmission.  Revert to a known 
safe state when out-of-sequence messages are detected. 

• Initialize all unused memory locations to a pattern that, if executed as an instruction, 
will cause the system to revert to a known safe state. 

• Hazardous sequences should not be initiated by a single keyboard entry. 

• Prevent inadvertent entry into a critical routine.  Detect such entry if it occurs, and 
revert to a known safe state. 

• Don’t use a stop or halt instruction.  The CPU should be always executing, whether 
idling or actively processing. 

• When possible, put safety-critical operational software instructions in nonvolatile 
read-only memory. 

• Don’t use scratch files for storing or transferring safety-critical information between 
computers or tasks within a computer. 

• When safety interlocks are removed or bypassed for a test, the software should verify 
the reinstatement of the interlocks at the completion of the testing. 

• Critical data communicated from one CPU to another should be verified prior to 
operational use. 

• Set a dedicated status flag that is updated between each step of a hazardous operation.  
This provides positive feedback of the step within the operation, and confirmation that 
the previous steps have been correctly executed. 
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• Verify critical commands prior to transmission, and upon reception.  It never hurts to 
check twice! 

• Make sure all flags used are unique and single purpose. 

• Put the majority of safety-critical decisions and algorithms in a single (or few) software 
development component(s). 

• Decision logic using data from hardware or other software components should not be 
based on values of all ones or all zeros.  Use specific binary patterns to reduce the 
likelihood of malfunctioning hardware/software satisfying the decision logic. 

• Safety-critical components should have only one entry and one exit point. 

• Perform reasonableness checks on all safety-critical inputs. 

• Perform a status check of critical system elements prior to executing a potentially 
hazardous sequence. 

• Always initialize the software into a known safe state.  This implies making sure all 
variables are set to an initial value, and not the previous value prior to reset. 

• Don’t allow the operator to change safety-critical time limits in decision logic. 

• When the system is safed, usually in response to an anomalous condition or problem, 
provide the current system configuration to the operator. 

• Safety-critical routines should include “come from” checks to verify that they are being 
called from a valid program, task, or routine. 
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Chapter 5 System and Software Concept Stage 

Safety must be an integral part of the system and software from the very start.   

Two basic types of activities are performed by the software organizations during the concept 
stage: system review and planning.  While the system is being defined, the software and safety 
teams have an opportunity to help ensure that a safe and functional system is created.  For the 
purposes of this guidebook, the concept phase includes all activities that occur prior to the 
development of software requirements.  Developing the high-level system concept, project 
planning, and determining system level requirements are all included.  

The distribution of functionality from hardware to software is one area where software and safety 
engineers should be involved.  Because software is flexible (i.e., easy to change, especially at a 
later date), it is tempting to implement functions in software rather than hardware.  This may not 
always be the best choice.   

The questions below are meant to help the system engineer consider the consequences of 
implementing functions in hardware or software. These questions should be considered a starting 
point for deciding which requirements to allocate to software and which to hardware.  

• For each requirement or function, where is the best place in the system to perform this 
activity, and why?  Should the functionality be in hardware, software, or a combination?  
What are the benefits of the approach?  What problems may occur as a result of the 
approach? 

• What will happen if a hardware or software safety component fails?  What are the 
backups, options, and plans for dealing with the failure?  Does the outcome of a possible 
failure indicate that any additional resources (hardware or software) are required? 

• How confident are you in the estimates on time/budget to complete the task?  For most 
organizations, software estimates are usually inaccurate, as most projects come in late 
and over budget. 

• How much are things likely to change – that is, how much flexibility is needed by the 
system?   

• Is there adequate hardware to support the software?  Will the software have all the 
information it needs to perform a safety-critical function?  Sometimes extra hardware 
(sensors, backup systems) is required for the software to do its job safely. 

During the system concept phase, the software team is involved in the initial planning of the 
software development effort.  Several plans are produced, or at least started, at this stage.  This is 
the time to think about how you will be doing your job in the months ahead.  Some plans 
typically developed in the concept stage include:  

• Software Management Plan 
• Software Development Plan 
• Software Assurance Plan 
• Software Safety Plan 
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• Software Verification and Validation Plan 
• Software Acquisition Plan 
• Software Configuration Management Plan. 
 
A good plan has practical details on the process to be followed.  Information will include not 
just what will be done, but how it will be done.  External procedures that give the explicit 
steps may be referenced, or the steps may be given in the plan. 

When developing the plans, think about issues that may affect safety, both now and in the 
future.  Consider the reliability of the system and software, and how that reliability may be 
verified.  Look at what can be done to improve the maintainability of the created software, so 
that changes down the road will not create problems.  Be creative.  Up-front planning can 
help prevent larger problems in the future.  However, keep in mind that not everything can be 
thought of at any one time.  The project will evolve, so flexibility must also be “planned in.” 
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5.1 Tasks and Analyses 
Although most project work during this phase is concentrated on the system level, software 
developers and safety engineers have several tasks that must be initiated.  These include the 
creation of software documents and plans that will determine how, what, and when important 
software products will be produced or activities will be conducted.   

Table 5-1 System Concept Phase Tasks 

Software Engineering Tasks System and Software Safety 
Tasks 

Software Assurance or 
IV&V Tasks 

Provide input to project 
concept and software concept 
documents. 

Create the Software Safety 
Plan, including planning and 
tailoring the safety effort. The 
plan can be an independent 
document or part of the system 
Safety Plan. 

Review project and software 
concept documents. 

Provide input to Software 
Safety Plan. 

Conduct Preliminary Hazard 
Analysis (PHA) [Section 
2.3.1]. 

Review Software Safety 
Plan. 

Plan the software management 
and development processes 
[Chapter 4]. 

Set up hazards tracking and 
problem resolution process 

Review Software 
Management and 
Development Plan. 

Plan the configuration 
management system [Section 
4.5]. 

Prepare hazard verification 
matrix.  

Review Software 
Configuration Management 
Plan. 

Plan the verification and 
validation process. 

Review PHA for safety-critical 
software. 

Review the Software 
Verification and Validation 
Plan. 

Participate in “make or buy” 
decisions for software.  
Review software acquisition 
(including COTS) [Section 
12.1].  Provide input to 
contracts for acquiring 
software [Section 12.2]. 

Participate in “make or buy” 
decisions for software.  Review 
software acquisition (including 
COTS) [Section 12.1].  Provide 
input to contracts for acquiring 
software  [Section 12.2]. 

Participate in “make or buy” 
decisions for software.  
Review software acquisition 
(including COTS) [Section 
12.1].  Provide input to 
contracts for acquiring 
software [Section 12.2]. 

 Develop safety-critical 
software tracking process. 

Plan the software assurance 
process. 

 Conduct Software Subsystem 
Hazard Analysis [Section 
2.3.4]. 
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5.2 Documentation and Milestones 
The exact documents that a project will produce, and when they will be produced, are 
determined during this Concept phase.  Documentation should reflect the project size, 
complexity, and criticality.  Contractual obligations or required standards may also influence the 
amount of documentation produced. 

The following table lists documents that are commonly produced for the concept phase of 
development: 

Table 5-2 Project/Software Conception Documentation 

Document Software Safety Section 

System Safety Plan Include software as a subsystem.  Identify tasks 
(e.g. analyses, requirements tracing) and personnel. 

Software Concepts Document Identify safety-critical processes. 

Software Management Plan 
Discuss coordination with systems safety tasks, 
flow-down incorporation of safety requirements 
and applicability to safety-critical software. 

Software Security Plan Determine security of safety-critical software. 

Risk Management Plan Identify software risks, especially those related to 
safety and reliability. 

Software Configuration Management Plan Identification and handling of safety-critical 
components.   

Software Verification and Validation Plan Discuss verification and validation of safety-
critical components. 

Software Quality Assurance Plan 

Identify quality assurance support to software 
safety function, verification of software safety 
requirements, and safety participation in software 
reviews and inspections. 

Milestones that will usually occur during the concept phase include: 

• Software Concept Review (SCR) 

• Software Management Plan Review 
At the end of a lifecycle activity or phase, it is important to verify that 
 All system safety requirements have been satisfied by this lifecycle phase. 
 No additional hazards have been introduced by the work done during this lifecycle phase.

IEEE 1228-1994
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5.3 Tailoring Guidelines 
Section 3.2 Tailoring the Effort describes how to determine the software safety effort required 
(full, moderate, or minimal).   

 

Table 5-3 Software Safety Effort for Conception Phase 

Technique or Analysis Safety Effort Level 
 MIN MOD FULL 
2.3.1  Preliminary Hazard Analysis (PHA)      
2.3.4  Software Subsystem Hazard Analysis    
6.5  Software Safety Requirements    
6.5.7  Checklists and cross references    

Recommendation Codes 
 Mandatory  Highly Recommended 

 Recommended  Not Recommended 

5.4 Independent Verification and Validation 
For high value systems with high-risk software, an IV&V organization is usually involved to 
oversee the software development.  Verification & Validation (V&V) is a system engineering 
process employing a variety of software engineering methods, techniques, and tools for 
evaluating the correctness and quality of a software product throughout its life cycle.  IV&V is 
performed by an organization that is technically, managerially, and financially independent of 
the development organization. 

IV&V should supplement, not supersede, the in-house software quality/product assurance 
efforts.  Software QA and safety engineers should still be involved with the project from the 
start, reviewing documents, offering advice and suggestions, and monitoring the software 
development process.  Depending on what is negotiated with the project manager, the IV&V 
personnel may be a second set of eyes, shadowing the software QA engineers, conducting 
independent audits, witnessing testing, or otherwise assisting the project team.  This requires the 
IV&V team to be stationed with the project, or to visit frequently.  A more remote form of IV&V 
involves reviewing the software products (plans, designs, code, test results, code review reports, 
etc.), with a few in-person audits to verify the software development process.  IV&V analysts 
usually conduct the more in-depth analyses and verifications of the software, rather than software 
QA engineers.   

When IV&V is used within a project, the exact functions and roles should be negotiated among 
all the parties.  Currently, the relationship of IV&V activities and personnel  to project software 
assurance activities and personnel within NASA is not clearly defined in software policy.  
However, IV&V does not take the place of software QA, but rather should be an integrated 
addition.  IV&V does not replace the software safety role, either.  The IV&V team may perform 
some software safety activities, such as specific safety analyses.  Even some software 
engineering functions, such as requirements management, may be performed by the IV&V team.   

The decision to use IV&V, and the level of IV&V required, should be made during the Concept 
phase.  IV&V may be required by your organization for all safety-critical software, or based on 
the size and complexity of the project.  For NASA, NPD 8730.4 provides the IV&V policy, and 
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NPG 8730.x (draft) provides the criteria under which a project must use Independent 
Verification and Validation or Independent Assessment. 

The NASA IV&V Facility in Fairmont, West Virginia (http://www.ivv.nasa.gov), is an 
excellent resource for all NASA projects.  The IV&V Facility provides tailored technical, 
program management, and financial analyses for NASA programs, industry, and other 
Government agencies, by applying software engineering "best practices" to evaluate the 
correctness and quality of critical and complex software systems throughout the system 
development life cycle. 

5.5 Safety Analyses 
Safety is an integral part of the software life-cycle, from the specification of safety-related 
requirements, through inspection of the software controls, and into verification testing for 
hazards.  Within each life cycle phase, the safety engineer performs various analysis tasks.  If 
problems are found, they are fed back through the system until they are corrected or mitigated.  
While finding unsafe elements of the system is often the focus of the analyses, a “negative” 
analysis (no hazards or major problems) can give the project assurance that they are on the right 
path to a safe system. 

Analysis techniques fall into two categories: 

1. Top down system hazards and failure analyses, which look at possible hazards or faults 
and trace down into the design to find out what can cause them. 

2. Bottom up review of design products to identify failure modes not predicted by top 
down analysis.  This analysis ensures the validity of assumptions of top down analysis, 
and verifies conformance to requirements. 

Typically, both types of analyses are used in a software safety analysis activity, though the 
specific techniques used are tailored for the project.  Results of software safety analysis are 
reported back to the system safety organization for integration in the system safety plan.  

As the software becomes more defined within the software life cycle, individual program sets, 
modules, or units are identified that are safety-critical.  The analyses used vary with the phase of 
development, building on previous analyses or using the new level of software definition to 
refine the safety analysis.   

Chapters 6-10 describe various techniques that have been useful in NASA activities and within 
industry.  Tailoring by safety effort level is provided in the X.3 sections (X = the chapter 
number).  In addition, a benefit and cost rating is given for most techniques, to assist in the 
planning of software safety activities.  The ratings are subjective and meant to be only one 
consideration when choosing analysis techniques. 

 

NASA-GB-8719.13 103  

http://www.ivv.nasa.gov/


Chapter 6 Software Requirements  
The cost of correcting software faults and errors escalates dramatically as the development life 
cycle progresses, making it important to correct errors and implement correct software 
requirements from the very beginning.  Unfortunately, it is generally impossible to eliminate all 
errors.  

Software developers must therefore work toward two goals: 

1. To develop complete and correct requirements and correct code. 

2. To develop fault-tolerant designs, which will detect and compensate for software faults. 

Note that (2) is required because (1) is usually impossible. 

This chapter of the guidebook describes developing and analyzing safety requirements for 
software.  The software safety requirements can be top-down (flowed down from system 
requirements), bottom-up (derived from hazards analyses), or a combination of both.  In some 
organizations, top-down flow is the only permitted route for requirements into software.  In those 
cases, newly derived bottom-up safety requirements must be flowed back into the system 
specification first. 

The requirements of software components are typically expressed as functions with 
corresponding inputs, processes, and outputs, plus additional requirements on interfaces, limits, 
ranges, precision, accuracy, and performance.  There may also be requirements on the data of the 
program set, its attributes, relationships, and persistence, among others.  The term “functions,” in 
this case, does not mean software components, but a more general set of “things the software 
system must do.”  Management of requirements is a vital function and is discussed in Section 
6.4. 

Software safety requirements are derived from the system and subsystem safety requirements, 
which were developed to mitigate hazards identified in the Preliminary, System, and Subsystems 
Hazard Analyses (see Section 2.3.1 PHA and Section 2.3.4 Software Subsystem Hazard 
Analysis).  Additional requirements may be imposed by standards, organizational requirements, 
and other sources.  Good software safety techniques may be written into the requirements to 
make sure the software development process includes these techniques or practices. 

The software safety requirements should be included in the following documents: 

• Software Requirements Document (SRD) or Software Specification (SS) 

• Software Interface Specification (SIS) or Interface Control Document (ICD) 

Safety-related requirements must be clearly identified in the SRD.  This can be in a separate 
section, or mixed with other requirements organized by function, system element, or other 
approach.  Safety requirements should also be clearly identified in the requirements and interface 
documents, as well as any requirements traceability matrix. 

An interface specification identifies, defines, and documents interface requirements internal to the 
[sub]system in which software resides, and between system (including hardware and operator 
interfaces), subsystem, and program set components and operation procedures.  Note that the 
interface information is sometimes effectively contained in the SRD, or within an Interface Control 
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Document (ICD) which defines all system interfaces, including hardware to hardware, hardware to 
software, and software to software. 

6.1 Tasks and Analyses 

Table 6-1 Software Requirements Tasks 

Software Engineering Tasks System and Software Safety 
Tasks 

Software Assurance or 
IV&V Tasks 

Software requirements 
development [Sections 6.4.2 
and 6.5] 

Development of software 
safety requirements [Section 
6.5] 

Formal methods for 
verification [Sections 4.2.2.3 
and 6.6.4] 

Requirements management 
[Section 6.4] 

Safety Requirements Flow-
down Analysis [Section 6.6.1] 

Model checking [Section 
6.6.5] 

Formal methods for 
specification [Sections 4.2.2.3 
and 6.6.4] 

Requirements Criticality 
Analysis [Section 6.6.2] 

Formal inspections of 
software requirements 
[Section 6.5.5] 

Formal inspections of 
software requirements 
[Section 6.5.5] 

Specification Analysis of 
Safety-critical Requirements 
[Section 6.6.3] 

Specification analysis [Section 
6.6.3] 

System test planning [Section 
6.5.6] 

Software Fault Tree Analysis 
[Section 6.6.7 and Appendix 
C] 

Timing, throughput and sizing 
analysis [Section 6.6.6] 

Timing, throughput and sizing 
considerations [Section 6.5.4] 

Software Failure Modes and 
Effects Analysis [Section 
6.6.8 and Appendix D] 

 

 
Formal inspections of 
Software requirements 
[Section 6.5.5] 

 

 
Develop Safety Package for 
Phase 0/1 Safety Review or 
other external safety review. 
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6.2 Documentation and Milestones 

Table 6-2 Software Requirements Documentation 

Document Software Safety Section 

Software Requirements Document Identification of all safety-critical software 
requirements 

Software Interface Specification Identification of any interfaces that are part of safety-
critical elements 

Formal Inspection of Requirements 
Report 

Identification of any safety-critical requirements 
defects that are considered major (must be fixed). 

Requirements Traceability Matrix Special identification given to safety-critical 
requirements 

Analysis Reports Identification of any safety-related aspects or safety 
concerns. 

Acceptance Test Plan This is the customer acceptance test.  Includes all 
safety testing necessary to assure the customer that the 
system is safe. 

System Test Plan Includes stress, load, disaster, stability, and other tests, 
as well as functional testing.  Verifies that the system 
cannot go into an unsafe mode under adverse 
conditions. 

Milestones that will usually occur during this phase include: 

• Software Requirements Review (SRR) 

• Phase 0/1 Safety Review or other carrier- or program-specific safety review 
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6.3 Tailoring Guidelines 
See Section 3.2 Tailoring the Effort for how to determine the software safety effort required 
(full, moderate, or minimal).   

Table 6-3 Software Safety Effort for Requirements Phase 

Technique or Analysis Safety Effort Level 
 MIN MOD FULL 
2.3.1 Preliminary Hazard Analysis (PHA) (if not 
previously performed)    
2.3.4 Software Subsystem Hazard Analysis (if not 
previously performed)    

Software safety requirements development  
6.5.1 Generic requirements 
6.5.2 Fault and Failure Tolerance 
6.5.3 Hazardous Commands 

 
 
 
 

 
 
 

 

 
 

 
 

6.4  Requirements Management    
6.5.5 Formal Inspections     
6.6.1 Software Safety Requirements Flow-down 
Analysis    
6.6.2 Requirements Criticality Analysis    
6.6.3 Specification Analysis    

4.2.2.3 and 6.6.4  Formal Methods   
(Specification) 

 
(Specification & 
Verification) 

6.6.5 Model Checking    
Timing, Throughput, and Sizing 
6.5.4 Development Considerations 
6.6.6 Analysis 

 
 
 

 
 
 

 
 
 

6.6.7 Software Fault Tree Analysis    
6.6.8 Software Failure Modes and Effects Analysis    
 

Recommendation Codes 
 Mandatory  Highly Recommended 

 Recommended  Not Recommended 
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6.4 Requirements Management 
Requirements management is the process of eliciting, documenting, organizing, communicating, 
and tracking requirements.  Management of requirements is one of the most important activities 
you can do to assure a safe system.  Deficient requirements are the single largest cause of 
software project failure, and usually are the root cause of the worst software defects. 

Requirements management is also referred to as requirements engineering.  It is a set of 
processes relating to requirements, from gathering them to assuring that that they have all been 
verified.  The aspects of gathering and documenting requirements is outside the scope of this 
guidebook.  The process of specifying software safety requirements is covered in Sections 6.5.1 
through 6.5.3.  The process of verifying that all appropriate safety requirements have been 
identified is described in Section 6.6.1. 

The advantages of following a requirements management process include:  

• Improve understanding and communications.  During the process of requirements 
elicitation, and the refinement into a specification, software development team members 
obtain a clearer understanding of the system to be delivered.  The software development 
team should involve the customers in the process, so that the final system will meet the 
customers’ needs.  A central repository of information obtained through the process 
provides a common knowledge base for the user community, management, analysts, 
developers, and test personnel. 

• Prevention of requirements creep or scope change.  Requirements management works 
to prevent (or at least expose to management attention) requirements creep and scope 
changes by identifying and tracking changes to the requirements. Trending analyses can 
also be performed to look for project areas subject to frequent or critical requirements 
changes. Control of these issues can be through the project’s risk management system or 
through another designated process.  

• Improved quality and end-user satisfaction.  Higher quality results when customers, 
developers, analysts, and assurance personnel have a common understanding of what 
must be delivered.  

• Reduced project costs and delays.  Research shows that requirements errors are 
pervasive and expensive to fix.  Reducing the number of these errors early in the 
development cycle lowers the total number of errors, lowers project costs, and maintains 
the projected schedule. 

• Compliance with standards or contracts.  Requirements management is a “best 
practice.”  Following this process can help meet regulatory or contractual obligations, 
such as obtaining a specific Software CMM level (see section 4.3.8).  Managing the 
project requirements will also help if you must present a “safety case” to a regulatory 
body.  (A safety case is a  documented body of evidence that provides a demonstrable 
and valid argument that a system is adequately safe for a given application and 
environment over its lifetime. Safety cases are required by the FAA.) 
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6.4.1 Requirements Specification 
Determining what your project’s requirements are is not necessarily an easy process.  The first 
step is to realize that there are different types of requirements. 

Some basic types of requirements are:  

• Business requirements.  These describe why the product is being built and identify the 
benefits that both customers and the business will reap. [98] 

• User requirements.  These detail the tasks a user will be able to perform with the 
product and are often captured in the form of use cases.  [98] 

• Functional requirements.  These identify the specific system behaviors that must be 
implemented.  The functional requirements are the traditional "shall" statements found in 
a software requirements specification.  [98] 

• Quality requirements.  Performance, efficiency, system availability, reliability, 
robustness, usability, flexibility, maintainability, portability, and reusability are all quality 
areas that should be considered. 

• Safety requirements.  Safety requirements development is discussed in section 6.5. 

6.4.1.1 Requirements Elicitation 
Requirements elicitation involves querying the customer, potential users or operators, domain 
experts, and others (i.e. the stakeholders) to determine a set of features, functions, or activities 
that must be included in the system.  This is the time to be broad and inclusive.  Requirements 
can be combined or removed later in the process. Requirements elicitation is the most difficult of 
the requirements management activities because you are creating something from nothing. 

Some techniques that can be used include: [97] 

• Structured interviews.  These can be highly effective in collecting requirements from 
experts and prospective users.  

• Brainstorming.  This is a structured yet creative technique for eliciting ideas, capturing 
them, and then subjecting them to objective criteria for evaluation.  

• Domain environment.  Placing engineers and designers in the environment where the 
device will be used, even for a day, is a quick way to learn about potential problems and 
issues.  

• Structured workshops.  Workshops are managed by trained facilitators and include as 
many stakeholders as possible.  Joint Application Development (JAD) [99] is a structured 
process that uses workshops to elicit requirements.  

One necessary step in the elicitation process is to record the requirements.  This can be done in a 
word processor, spreadsheet, or other office tool.  It can also be done in a requirements 
management tool.  A list of requirements management tools is given in Table 6-4. 
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6.4.1.2 Requirements Refinement 
The mass of requirements that result from the elicitation needs to be refined into a manageable 
set.  Some requirements will be deemed unnecessary, others may be combined, and many more 
will need to be clarified.  Priorities should be applied to the requirements at this stage, to separate 
the “must have” requirements from those that are desired. 

Requirements often start as an abstraction, such as "The spacecraft will have a color camera."  
As the process continues, the requirements become more specific, diverge, recombine in new 
ways, and eventually emerge as a set of detailed requirements such as, "The camera will weigh 
less than 12 ounces," and "The camera will be able to take 30 pictures a second with a frame size 
of 800 by 600 pixels."  [97] 

Good requirements have the following attributes: 

• Unambiguous.  If a requirement has multiple interpretations, what is built may not match 
what the user wanted.  

• Complete.  It is impossible to know all of a system's future requirements, but all of the 
known ones should be specified.  

• Consistent.  Requirements must not conflict with each other.  

• Traceable.  The source of each requirement should be identified.  

• Verifiable.  Each requirement must be able to be verified, usually by test, analysis, 
inspection, or demonstration. 

Requirements can be very detailed, as long as they address external behaviors (as viewed by 
users or by interfacing systems).  They become design information, however, once they specify 
the existence of particular subcomponents or algorithms.  

Requirements specifications can include auxiliary information that is not a requirement.  Such 
information may include introductory text, summary statements, tables, and glossaries.  The real 
requirements should be clearly identified. 

“Any project with resource limitations must establish the relative priorities of the requested 
features, use cases, or functional requirements.  Prioritization helps the project manager plan for 
staged releases, make trade-off decisions, and respond to requests for adding more functionality.  
It can also help you avoid the traumatic ‘rapid descoping phase’ late in the project, when you 
start throwing features overboard to get a product out the door on time.” [98] 

6.4.1.3 Requirements Documentation 
The final result of the elicitation and refinement activities is a software requirements 
specification or similar document.  This document defines not only the complete external 
behaviors of the software system to be built, but also its non-behavioral requirements.  The 
format of the document may be defined by a standard or company template.  The SRS is most 
often written in natural language, perhaps augmented by appropriate analysis models.  It can also 
be written in a formal specification language (see Section 4.2.2.3). 
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Requirements must have a way to be verified.  This verification method should be 
included in the software requirements document, either when the requirement is stated or 
in a separate verification matrix at the end of the document.  Verification methods 
include test (exercising the software), inspection (software review or formal inspection), 
analysis, or demonstration (simply running the software).  Test is usually the preferred 
verification, but other methods may be much easier for some requirements or testing may 
not be feasible.  Software assurance engineers and software safety engineers should 
concur with the verification method. 

The software requirements need to be reviewed by all stakeholders and other interested 
parties.  Reviews help find ambiguous, conflicting, or incomplete requirements.  They 
also bring the team “up to speed” on the system and the software subsystem.  Reviews 
can be formal inspections, informal assessments, or formal project reviews.  Formal 
inspection (Section 6.5.5) is a valuable tool in finding requirements defects (e.g., 
ambiguity, conflicting requirements, missing requirements) and is highly recommended. 

Requirements management tools (Table 6-4) store the project requirements and related 
information in a multi-user database.  These products let you manipulate the database contents, 
import and export requirements, and connect requirements to objects stored in testing, design, 
and project management tools.  You can define attributes for each requirement, such as its 
version number, author, status, origin or rationale, allocated release, and priority.  Traceability 
links between individual requirements and other system elements help you evaluate the impact of 
changing or deleting a requirement.  Web access permits real-time sharing of database updates 
with members of geographically distributed teams. 

Table 6-4 Requirements Management Tools 

Tool Vendor 
Caliber-RM Borland  http://www.borland.com/caliber/ 
DOORS Telelogic  http://www.telelogic.com/ 
RequisitePro Rational Software Corporation; http://www.rational.com/ 
RTM Workshop Integrated Chipware, Inc.; http://www.chipware.com/ 
Vital Link Compliance Automation, Inc. http://www.complianceautomation.com/ 

6.4.2 Requirements Traceability and Verification 
Traceability is a link or definable relationship between two entities.  Requirements are linked 
from their more general form (e.g., the system specification) to their more concrete form (e.g., 
subsystem specifications).  They are also linked forward to the design, source code, and test 
cases.  This is important for all requirements, especially those that are safety-critical.  Knowing 
what part of the code implements the safety function, or what test verifies that function, is a vital 
part of creating a safe system. 

The key benefits of tracing requirements include: 

• Verification that all user needs are implemented and adequately tested.  Full requirements 
test coverage is virtually impossible without some form of requirements traceability.  

• Verification that there are no "extra" system behaviors that cannot be traced to a user 
requirement.  
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• Improved understanding of the impact of changing requirements.  

Requirements verification involves evaluating the correctness and completeness of the 
requirements, to ensure that a system built to those requirements will satisfy the users’ needs and 
expectations.  The goal of verification is to ensure that the requirements provide an adequate 
basis to proceed with design, construction, and testing.  As mentioned in 6.4.1.3, formal 
inspection is an excellent way to verify the requirements.  Analyses may also be used, such as 
those described in section 6.6. 

A traceability matrix is one tool that can help detail how the requirements trace through the 
design, source code, and test products.  The matrix can be manually created and maintained, or 
may be a by-product of a requirements management tool.  The manual method can be tedious 
and difficult to maintain.   

6.4.3 Requirements Change Management 
Requirements traceability provides a methodical and controlled process for managing changes 
that inevitably occur as a system is developed and deployed.  “Without traceability, every change 
would require project team members to review all documents on an ad hoc basis in order to 
determine what other elements of the project, if any, require updating.  Because such a process 
would make it difficult to establish whether all affected components have been identified over 
time, changes to the system would tend to decrease its reliability and safety.” [1]  With 
traceability, when a change occurs the affected products (documentation, source code, test cases) 
can be quickly identified.  

The actual process of making changes should be a structured, defined process.  This process 
should describe how a proposed change is submitted, evaluated, decided upon, and incorporated 
into the requirements baseline.  Usually a change control board, consisting of people from 
various disciplines and perspectives, will review potential changes and either approve or reject 
them.  A requirements management tool can help manage the changes made to many individual 
requirements, maintain revision histories, and communicate changes to those affected by them. 

Part of the change management process should be an evaluation of the impact the change will 
have on the system and other requirements.  Traceability information is an important tool in this 
evaluation.  Further information on analysis that can be done to determine the impact of software 
changes can be found in Section 10.5.2. 
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6.5 Development of Software Safety Requirements 
Software safety requirements are obtained from various sources (see Figure 4-7), and are usually 
sorted into two categories:  generic and specific. 

The generic software safety requirements are derived from sets of requirements that can be used 
in different programs and environments to solve common software safety problems.  Examples 
of generic software safety requirements and their sources are given in Section 6.5.1 Generic 
Software Safety Requirements.  Specific software safety requirements are system-unique 
functional capabilities or constraints that are identified in the following three ways.  For 
complete identification of all software safety requirements, all three methods should be used. 

Method 1 Through top- down analysis of system design requirements and specifications: 
 The system requirements may identify system hazards upfront and specify which 

system functions are safety-critical, or a Fault Tree Analysis may be completed to 
identify safety-critical functions.  The software safety organization participates or 
leads the mapping of these requirements to software. 

Method 2 From the Preliminary Hazard Analysis (PHA): 
 PHA looks down into the system from the point of view of system hazards.  

Preliminary hazard causes are mapped to, or interact with, software.  Software 
hazard control features are identified and specified as requirements. 

Method 3 Through bottom-up analysis of design data, (e.g., flow diagrams, Failure Mode 
Effects and Criticality Analysis (FMECA)). 

 Design implementations allowed but not anticipated by the system requirements 
are analyzed and new hazard causes or contributors are identified.  Software 
hazard controls are specified via requirements when the hazard causes are linked 
to or interact with software. 

 

6.5.1  Generic Software Safety Requirements 
Similar processors, platforms, and/or software can suffer from similar or identical problems.  
Generic software safety requirements are derived from sets of requirements and best practices 
used in different programs and environments to solve common software safety problems.  
Generic software safety requirements capture these lessons learned and provide a valuable 
resource for developers. 

Generic requirements prevent costly duplication of effort by taking advantage of existing proven 
techniques and lessons learned rather than reinventing techniques or repeating mistakes.  Most 
development programs should be able to make use of some generic requirements.  However, 
these requirements should be used with care and may have to be tailored from project to project. 

As technology evolves, or as new applications are implemented, new "generic" requirements will 
likely arise, and other sources of generic requirements might become available.  A partial listing 
of sources for generic requirement is shown below: 

1. NSTS 19943, Command Requirements and Guidelines for NSTS Customers. 
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2. STANAG 4404 (Draft), NATO Standardization Agreement (STANAG) Safety Design 
Requirements and Guidelines for Munition Related Safety-Critical Computing Systems. 

3. EWRR 127-1, Range Safety Requirements - Western Space and Missile Center, 
Attachment-3, Software System Design Requirements.  See Section 3.16 Safety-
Critical Computing System Software Design Requirements. 

4. AFISC SSH 1-1, System Safety Handbook - Software System Safety, Headquarters Air 
Force Inspection and Safety Center. 

5. EIA Bulletin  SEB6, A System Safety Engineering in Software Development 
(Electrical Industries Association). 

6. Underwriters Laboratory - UL 1998, Standard for Safety - Safety-Related Software, 
January 4th, 1994. 

7. NUREG/CR-6263 MTR 94W0000114, High Integrity Software for Nuclear Power 
Plants, The MITRE Corporation, for the U.S. Nuclear Regulatory Commission. 

Appendix H has a checklist of generic software safety requirements developed by the Marshall 
Space Flight Center.   

 
Benefit Rating for Use of Generic Requirements:    HIGH 

6.5.2  Fault and Failure Tolerance 
Most NASA space systems employ failure tolerance (as opposed to fault tolerance) to achieve an 
acceptable degree of safety.  This is primarily achieved via hardware, but software is also 
important, because improper software design can defeat the hardware failure tolerance and vice 
versa.  While the actual implementation of fault or failure tolerance is a design issue, the 
question of whether it is necessary, or to what extent it is necessary, must be captured in software 
requirements. 

While not all faults lead to a failure, every failure results from one or more faults.  A fault is an 
error that does not affect the functionality of the system, such as bad data from either input, 
calculations, or output, an unknown command, or a command or data coming at an unknown 
time.  If properly designed, the software, or system, can respond to errors by detecting and 
correcting them intelligently.  This would include checking input and output data by doing limit 
checking and setting the value to a known safe value, or requesting and/or waiting for the next 
data point.   

Occasional bad I/O, data, or commands should not be considered failures, unless there are too 
many of them and the system cannot handle them.  One or more intelligent fault collection 
routines should be part of the program to track, and possibly log, the number and type of errors.   
These collection routines can then either handle the caution, warning, and/or recovery for the 
software system, or raise a flag to a higher level of control when the number of faults over time 
or the combination of fault types indicates that a system failure is imminent.  With faults, the 
system should continue to operate normally. 

A failure tolerant design detects a failure and puts the software and/or system into a changed 
operating state, either by switching to backup software or hardware (e.g., alternate software 
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routine or program, backup CPU, secondary sensor input, or valve cut-off) or by reducing the 
functionality of the system while it continues to operate. 

It is important to decide early in the project whether the system will be fault tolerant, 
failure tolerant, or both.  Fault tolerant systems are built to handle most probable, and 
some less probable but hazardous, faults. Taking care of the faults will usually help 
prevent the software, or the system, from going into failure.  The down-side to fault 
tolerance is that it requires multiple checks and monitoring at very low levels.  If a 
system is failure tolerant, it will ignore most faults and only respond to higher-level 
failures. A presumption is that it requires less work and is simpler to detect, isolate, stop, 
or recover from the failures. A project must weigh the costs and benefits of each 
approach and determine what will provide the most safety for the least cost and effort. 

For safety-critical systems, it is best to require some level of both fault and failure tolerance.  
The fault tolerance keeps most of the minor errors from propagating into failures.  Failures must 
still be detected and dealt with, whether as a result of fault collection/monitoring routines or by 
direct failure detection routines and/or hardware.  In this guidebook, both fault and failure 
tolerance are discussed.  The proper blending of both to meet the requirements of your particular 
system must be determined by the system engineers, software designers, and the safety 
engineers. 

If too many faults or very serious failures occur, it may be necessary for the system to shut itself 
down in an orderly, safe manner. This is a good time to consider if the system will have the 
required capabilities to perform the orderly shut down (such as battery backup). For example, if a 
system has to close a valve before power down, a backup power supply is required to allow the 
system to perform this action in the event of a power failure. 

Software responses to off-nominal scenarios should address safety considerations, and be 
appropriate to the situation.  Complete system shutdown may not be appropriate in many cases. 

Designing for safety is discussed in Sections 7.4.1 and 7.4.2 . 

 

6.5.3  Hazardous Commands 
A hazardous command is one whose execution (including inadvertent, out-of-sequence, or 
incorrect execution) could lead to an identified critical or catastrophic hazard, or a command 
whose execution can lead to a reduction in the control of a hazard (including reduction in failure 
tolerance against a hazard or the elimination of an inhibit against a hazard).  Commands can be 
internal to a software set (e.g., from one component to another) or external, crossing an interface 
to/from hardware or a human operator.  Longer command paths increase the probability of an 
undesired or incorrect command response due to noise on the communications channel, link 
outages, equipment malfunctions, or (especially) human error. 

Reference [34] NSTS 1700.7B section 218 defines “hazardous command” as “...those that can 
remove an inhibit to a hazardous function, or activate an unpowered payload system”.  It 
continues to say “Failure modes associated with payload flight and ground operations including 
hardware, software, and procedures used in commanding from Payload Operations Control 
Centers (POCC’s) and other ground equipment must be considered in the safety assessment to 
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determine compliance with the (failure tolerance) requirements.  NSTS 19943 treats the subject 
of hazardous commanding and presents the guidelines by which it will be assessed.” 

NSTS 1700.7B section 218 focuses on remote commanding of hazardous functions, but the 
principles can and should be generally applied.  Both NSTS 19943 and EWRR 127-1 
(Paragraphs 3.16.2.7 c and d) recommend and require respectively, two-step commanding.  
EWRR 127-1 states “Two or more unique operator actions shall be required to initiate any 
potentially hazardous function or sequence of functions.  The actions shall be designed to 
minimize the potential for inadvertent actuation”.  Note that two-step commanding is in addition 
to any hardware (or software) failure tolerance requirements, and is neither necessary nor 
sufficient to meet failure tolerance requirements.  A two-step command does not constitute an 
inhibit.  

Software interlocks or preconditions can be used to disable certain commands during particular 
mission phases or operational modes.  However, provision should be made to provide access to 
(i.e. enable) all commands in the event of unexpected emergencies.  Flight crews generally 
require emergency command access.  For example, when Apollo 13 experienced major 
problems, the nominal Lunar Module power up sequence timeline could not be completed before 
the Command Module battery power expired.  A different (shorter) sequence was improvised. 

 
Benefit Rating:  HIGH       Cost Rating: LOW

6.5.4 Timing, Sizing and Throughput Considerations 
System design should properly consider real-world parameters and constraints, including human 
operator and control system response times, and flow these down to software.  Adequate margins 
of capacity should be provided for all these critical resources.  As software requirements are 
generated for these areas, the system design should be evaluated for appropriate capability.   

This section provides guidance for developers in specifying software requirements to meet the 
safety objectives.  Subsequent analysis of software for these factors is discussed in Section 6.6.6 
Timing, Sizing and Throughput Analysis.  

• Time to Criticality  
Safety-critical systems sometimes have a characteristic “time to criticality”, which is 
the time interval between a fault occurring and the system reaching an unsafe state.  
This interval represents a time window in which automatic or manual recovery and/or 
safing actions can be performed, either by software, hardware, or by a human operator.  
The design of safing and recovery actions should fully consider the real-world 
conditions and the corresponding time to criticality.  Automatic safing can only be a 
valid hazard control if there is ample margin between worst-case (long) response time 
and worst-case (short) time to criticality. 

• Automatic safing  
Automatic safing is often required if the time to criticality is shorter than the realistic 
human operator response time, or if there is no human in the loop.  This can be 
performed by either hardware or software or a combination depending on the best 
system design to achieve safing. 

NASA-GB-8719.13 116  



• Control system design  
Control system design can define timing requirements.  The design is based on the 
established body of classical and modern dynamic control theory, such as dynamic 
control system design, and multivariable design in the s-domain (Laplace transforms) 
for analog continuous processes.  Systems engineers are responsible for overall control 
system design.  Computerized control systems use sampled data (versus continuous 
data).  Sampled analog processes should make use of Z-transforms to develop 
difference equations to implement the control laws.  This will also make most efficient 
use of real-time computing resources. [35] 

• Sampling rates  
Sampling rates should be selected with consideration for noise levels and expected 
variations of control system and physical parameters.  For measuring signals that are 
not critical, the sample rate should be at least twice the maximum expected signal 
frequency to avoid aliasing.  For critical signals, and parameters used for closed loop 
control, it is generally accepted that the sampling rate must be much higher.  A factor of 
at least ten above the system characteristic frequency is customary. [35] 

• Dynamic memory allocation  
Dynamic memory allocation requires several varieties of resources be available and 
adequate.  The amount of actual memory (RAM) available, whether virtual memory 
(disk space) is used, how much memory the software (programs and operating system) 
uses statically, and how much is dynamically allocated are all factors in whether a 
dynamic allocation will fail or succeed.  Several factors may not be known in detail, 
and worst-case values should be used.   

How the software will deal with failed dynamic allocation should be specified.  
Allowing a default similar to the MS-DOS “abort, retry, fail” is a very bad idea for 
safety-critical software. 

Protecting critical memory blocks from inadvertent corruption or deletion should be a 
requirement.  

• Memory Checking  
Testing of random access memory (RAM) can be a part of BIT/self-test and is usually 
done on power up of a system to verify that all memory addresses are available, and 
that the RAM is functioning properly.  Periodic verification of memory functionality 
may be required, especially in environments where memory problems are likely to 
occur, due to a single event upset or hardware (RAM) problems.   

6.5.5 Formal Inspections of Software Requirements 
Formal Inspections5 are structured technical reviews of a “product” of the software development 
life cycle, conducted for the purpose of finding and eliminating defects.  The product can be any 
documentation, including requirements, design notes, test plans, or the actual source code.  
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5 Formal inspections are also known as Fagan Inspections, named after John Fagan of IBM who devised 
the method. 



Formal Inspections differ from informal reviews or walkthroughs in that there are specified steps 
to be taken, and roles are assigned to individual reviewers.   

Formal inspections are not formal methods!  Formal inspections are a structured way to find 
defects in some software product, from a requirements document to the actual code.  Formal 
methods are a mathematical way of specifying and verifying a software system.  The two 
methods can be used together or separately. 

NASA has published a standard and guidebook for implementing the Formal Inspection (FI) 
process, Software Formal Inspections Standard (NASA-STD-2202-93) [37] and Software Formal 
Inspections Guidebook (NASA-GB-A302) [22].  FI’s should be performed within every major 
step of the software development process, including requirements specification, design, coding, 
and testing.   

Formal Inspections have the most impact when applied early in the life of a project, especially 
the requirements specification and definition stages of a project.  Impact means that the defects 
are found earlier, when it’s cheaper to fix them.  Studies have shown that the majority of all 
faults and failures, including those that impinge on safety, come from missing or misunderstood 
requirements.  Formal Inspection greatly improves the communication within a project and 
enhances understanding of the system while scrubbing out many of the major errors and defects. 

For the FI of software requirements, the inspection team should include representatives from 
Systems Engineering, Operations, Software Design and Code, Software Product Assurance, 
Safety, and any other system function that software will control or monitor.  It is very important 
that software safety be involved in the FI’s.  Each individual may review the requirements from a 
generic viewpoint, or they may be assigned a specific point of view (tester, programmer, 
designer, user, safety) from which to review the document. 

It is also very helpful to have inspection checklists for each phase of development that reflect 
both generic and project specific criteria.  A special safety checklist may also be used when 
reviewing the requirements.  The requirements discussed in this section and in Robyn R. Lutz's 
paper "Targeting Safety-Related Errors During Software Requirements Analysis" [6] will greatly 
aid in establishing this checklist.  Also, the checklists provided in the NASA Software Formal 
Inspections Guidebook are helpful.   

The method of reporting findings from FI’s is described in references [22] and [37].  After the 
inspection, the safety representative should review the official findings of the inspection and 
translate any that require safety follow-up on to a worksheet such as that in Table 6-5 Subsystem 
Criticality Analysis Report Form.  This form can then serve in any subsequent inspections or 
reviews as part of the checklist.  It will also allow the safety personnel to track to closure safety 
specific issues that arise during the course of the inspection. 

 
Benefit Rating:  HIGH      Cost Rating: MODERATE
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Table 6-5 Example Subsystem Criticality Analysis Report Form 

Document Number:  CL-SPEC- 2001 

Document Title:  Software Requirements Specification - Cosmolab Program 

Paragraph Number 
/ Title 

Requirements(s) text 
excerpt 

Problem /Hazard 
Description 

Recommendations Hazard Report 
Reference 
Number 

3.3 Limit Checking Parameters listed in 
Table 3.3 shall be 
subjected to limit 
checking at a rate of 1 
Hz. 

Table only gives one 
set of limits for each 
parameter, but 
expected values for 
parameters will 
change from mode to 
mode. 

During certain modes, 
false alarms would 
result because proper 
parameter values will 
exceed preset limit 
check values.  
Implement table 
driven limit values 
which can be changed 
during transitions 
from mode to mode. 

CL-1;9 

6.5.6 Test Planning 
At the end of the software specification phase, the system and acceptance test plans can be 
written.  System tests can be defined that verify the functional aspects of the software under 
nominal conditions, as well as performance, load, stress, and other tests that verify acceptable 
behavior in non-standard situations.   

Safety tests of the system should also be designed at this time and documented in a software 
safety test plan.  These tests should demonstrate how the software and system meets the safety 
requirements in the Software Requirements Document.  The test plan should specify pass/fail 
criteria for each test.  Any special procedures, constraints, and dependencies for implementing 
and running safety tests should also be included.  The review and reporting process for safety-
critical components, including problem and non-conformance reporting, should also be part of 
this plan.   

6.5.7 Checklists and cross references 
Checklists are a tool for making sure you haven’t forgotten anything important, while doing an 
analysis or reviewing a document.  They are a way to put the collective experience of those who 
created and reviewed the checklist to work on your project.  They are a starting point, and should 
be reviewed for relevance for each project.  A collection of checklists is provided in Appendix H.  
For the requirements phase, they include a safety checklist that contains standard hazards to look 
for when reviewing the requirements specification. 

Cross-references are matrices that list related items.  A matrix that shows the software-
related hazards and hazard controls and their corresponding safety requirements should 
be created and maintained.  This should be a living document, reviewed and updated 
periodically.  Refreshing your mind on the hazards that software must control while 
working on the software design, for example, increases the likelihood that the hazard 
controls will be designed in correctly.  Another cross-reference matrix would list each 
requirement and the technique that will verify it (analysis, test, etc.). 
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You should develop a systematic checklist of software safety requirements and hazard controls, 
ensuring they correctly and completely include (and cross-reference) the appropriate 
specifications, hazard analyses, test and design documents.  This should include both generic and 
specific safety requirements as discussed in Section 6.5 Development of Software Safety 
Requirements.  Section 6.5.5 Formal Inspections lists some sources for starting a safety 
checklist.  

Also, develop a hazard requirements flow-down matrix that maps safety requirements and hazard 
controls to system and software functions and, from there, to software components.  Where 
components are not yet defined, flow to the lowest level possible and tag for future flow-down. 

6.6 Software Safety Requirements Analysis 
The Requirements Analysis activities verify that safety requirements for the software were properly 
flowed down from the system safety requirements, and that they are correct, consistent and 
complete.  They also look for new hazards, software functions that can impact hazard controls, and 
ways the software can behave that are unexpected.  These are primarily top down analyses. 

Bottom up analysis of software requirements, such as Requirements Criticality Analysis, are 
performed to identify possible hazardous conditions.  This results in another iteration of the PHA 
(or Software Subsystem Hazard Analysis) that may generate new software requirements.  
Specification analysis is also performed to ensure consistency of requirements. 

Analyses related to the Software Requirements are: 

• Software Safety Requirements Flow-down Analysis 

• Requirements Criticality Analysis 

• Specification Analysis 

• Formal Methods  

• Timing, Throughput And Sizing Analysis 

• Preliminary Software Fault Tree Analysis 

• Preliminary Software Failure Modes and Effects Analysis 

6.6.1 Software Safety Requirements Flow-down Analysis  
Generic safety requirements are established “a priori” and placed into the system specification 
and overall project design specifications.  From there they are flowed into the subsystem 
specifications, such as the software subsystem requirements. 

Other safety requirements, derived from bottom-up analysis, are flowed up from subsystems and 
components to the system level requirements.  These new system level requirements are then 
flowed back down across all affected subsystems.  During the software requirements phase, 
software components may not be well defined.  In this case, bottom-up analysis (such as a 
Software Failure Modes and Effects Analysis) might not be possible until sometime in the design 
phase. 

Problems in the flow-down process can be caused by incomplete analysis, inconsistent analysis 
of highly complex systems, or use of ad hoc techniques by biased or inexperienced analysts.  The 
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following references are a good starting point for anyone who falls into the “inexperienced” 
category : 

 MIL-STD-882C System Safety Program Requirements (the ‘C’ version, not the current 
‘D’, has some description on how to verify flow down of requirements) 

 NSTS-22254 Methodology for Conduct of Space Shuttle Program Hazard Analyses 

 “Safeware : System Safety and Computers” (Book), Nancy Leveson, April 1995 

 “Safety-Critical Computer Systems” (Book), Neil Storey, August 1996 

 “Software Assessment: Reliability, Safety, Testability” (Book), Michael A. Friedman and 
Jeffrey M. Voas(Contributor), August 16, 1995 

 “Discovering System Requirements”, A. Terry Bahill and Frank F. Dean,  
http://tide.it.bond.edu.au/inft390/002/Resources/sysreq.htm 

The most rigorous  (and most expensive) method of addressing this concern is adoption of 
formal methods for requirements analysis and flow-down.  This was described previously in 
Section 4.2.2.3 Formal Methods.  Less rigorous and less expensive ways include checklists and a 
standardized structured approach to software safety as discussed below and throughout this 
guidebook. 

 
Benefit Rating:  HIGH   Cost Rating: LOW to HIGH (Formal Methods) 

6.6.2 Requirements Criticality Analysis  
Criticality analysis identifies program requirements that have safety implications.  A method of 
applying criticality analysis is to analyze the hazards of the software/hardware system and 
identify those that could present catastrophic or critical hazards.  This approach evaluates each 
program requirement in terms of the safety objectives derived for the software component.  

The evaluation will determine whether the requirement has safety implications and, if so, the 
requirement is designated “safety-critical”.  It is then placed into a tracking system to ensure 
traceability of software safety requirements throughout the software development cycle from the 
highest level specification all the way to the code and test documentation.  

The system safety organization coordinates with the project system engineering organization to 
review and agree on the criticality designations.  Software safety engineers and software 
development engineers should be included in this discussion.  Software is a vital component in 
the whole system, and the “software viewpoint” must be part of any systems engineering 
activity.  Requirements can be consolidated to reduce the number of critical requirements. In 
addition, they can be flagged for special attention during design, to reduce the criticality level. 

Keep in mind that not all “safety-critical” requirements are created equal.  Later in the process, 
the concept of risk is used to prioritize which requirements or components are more critical than 
others.  For now, it’s best to look at everything that can cause a safety problem, even a trivial 
one.  It’s easier, and cheaper, to remove or reduce requirements later than it is to add them in. 

It is probable that software components or subsystems will not be defined during the 
requirements phase, so those portions of the Criticality Analysis would be deferred to the design 
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phase.  In any case, the Criticality Analysis will be updated during the design phase to reflect the 
more detailed definition of software components. 

You perform the Requirements Criticality Analysis by doing the following: 

• All software requirements are analyzed to identify additional potential system hazards 
that the system PHA did not reveal.  A checklist of PHA hazards is a good thing to have 
while reviewing the software requirements.  The checklist makes it easier to identify 
PHA-designated hazards that are not reflected in the software requirements, and new 
hazards missed by the PHA.  In addition, look for areas where system requirements 
were not correctly flowed to the software.  Once potential hazards have been identified, 
they are added to the system requirements and then flowed down to subsystems 
(hardware, software and operations) as appropriate.  

• Review the system requirements to identify hardware or software functions that receive, 
pass, or initiate critical signals or hazardous commands.   

• Review the software requirements to verify that the functions from the system 
requirements are included.  In addition, look for any new software functions or objects 
that receive/pass/initiate critical signals or hazardous commands. 

• Look through the software requirements for conditions that may lead to unsafe 
situations.  Consider conditions such as out-of-sequence, wrong event, inappropriate 
magnitude, incorrect polarity, inadvertent command, adverse environment, 
deadlocking, and failure-to-command modes. 

The software safety requirements analysis also looks at characteristics of the software system.  
Not all characteristics of the software are governed by requirements.  Some characteristics are a 
result of the design, which may fulfill the requirements in a variety of ways.  It is important that 
safety-critical characteristics are identified and explicitly included in the requirements.  
“Forgotten” safety requirements often come back to bite you late in the design or coding stages. 

All characteristics of safety-critical software must be evaluated to determine if they are safety- 
critical.  Safety-critical characteristics should be controlled by requirements that receive rigorous 
quality control in conjunction with rigorous analysis and test.  Often all characteristics of safety-
critical software are themselves safety-critical. 

Characteristics to be considered include at a minimum:   

 Specific limit ranges 

 Out of sequence event protection requirements  

 Timing 

 Relationship logic for limits. Allowable limits for parameters might vary depending on 
operational mode or mission phase. For example, the temperature may be more 
constrained during an experiment run than when the system is idle. 

 Voting logic 

 Hazardous command processing requirements (see Section 6.5.3 Hazardous Commands) 

 Fault response 
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 Fault detection, isolation, and recovery 

 Redundancy management/switchover logic. What components to switch, and under what 
circumstances, should be defined for any hazard control that requires redundancy.  For 
example, equipment which has lost control of a safety-critical function should be 
switched to a good spare before the time to criticality has expired.  Hot standby units (as 
opposed to cold standby) should be provided where a cold start time would exceed time 
to criticality. 

This list is not exhaustive and often varies depending on the system architecture and 
environment. 

The following resources are available for the Requirements Criticality Analysis: 

 Software Development Activities Plan 
[Software Development Plan] Software Assurance 
Plan [None], Software Configuration Management 
Plan [Same] and Risk Management Plan [Software 
Development Plan] 

 Background information relating to safety 
requirements associated with the contemplated 
testing, manufacturing, storage, repair, installation, 
use, and final disposition of the system  

 System and Subsystem Requirements 
[System/Segment Specification (SSS), 
System/Segment Design Document] 

 Storage and timing analyses and allocations 

 Requirements Document [Software 
Requirements Specifications] 

 Program structure documents 

 External Interface Requirements Document 
[Interface Requirements Specifications] and other 
interface documents 

 Information from the system PHA concerning 
system energy, toxic, and other hazardous event 
sources, especially ones that may be controlled 
directly or indirectly by software 

 Functional Flow Diagrams and related data  Historical data such as lessons learned from 
other systems and problem reports 

 

Note: documents in [parentheses] correspond to terminology from DOD-STD-2167 [38].  Other 
document names correspond to NASA-STD-2100.91. 

Output products from this analysis are: 

• Table 6-6 Subsystem Criticality Matrix 

• Updated Safety Requirements Checklist 

• Definition of Safety-critical Requirements 

The results and findings of the Criticality Analyses should be fed back to the System 
Requirements and System Safety Analyses.  For all discrepancies identified, either the system 
requirements should be changed because they are incomplete or incorrect, or else the software 
requirements must be altered to match the system requirements.  The Criticality Analysis 
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identifies additional  hazards that the system analysis did not include, and identifies areas where 
system or interface requirements were not correctly assigned to the software. 

 The results of the criticality analysis may be used to develop Formal Inspection (FI) checklists 
for performing the FI process described in Section 6.5.5 Formal Inspections of Software 
Requirements. 

Table 6-6 Example Subsystem Criticality Matrix 

Hazards Mission Operational 
Control Functions  

IMI CA ICD 

Communication X X X 

Guidance  X  

Navigation  X  

Camera Operations   X 

Attitude Reference X X X 

Control X X  

Pointing  X  

Special Execution    

Redundancy 
Management 

X   

Mission Sequencing X   

Mode Control X X  

Key 

IMI Inadvertent Motor Ignition 
CA Collision Avoidance 
ICD Inadvertent Component Deployment 

The above matrix is an example output of a software Requirements Criticality Analysis.  Each 
functional subsystem is mapped against system hazards identified by the PHA.  In this example, 
three hazards are addressed. 

 This matrix is an essential tool to define the criticality level of the software.  Each hazard should 
have a risk index as described in Section 2.3.2 Risk Levels of this guidebook.  The risk index is a 
means of prioritizing the effort required in developing and analyzing respective pieces of 
software. 

6.6.3 Specification Analysis 

Specification analysis evaluates the completeness, correctness, consistency, and testability of 
software requirements.  Well-defined requirements are strong standards by which to evaluate a 

Benefit Rating:  HIGH       Cost Rating: LOW
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software component.  Specification analysis should evaluate requirements individually and as an 
integrated set.  Techniques used to perform specification analysis are: 

• reading analysis 

• traceability analysis 

• control-flow analysis, 

• information-flow analysis 

• functional simulation  

These techniques are described in detail (plus background and theory) within a large, well 
established body of literature.  Look in books on software testing and software engineering for 
further information on these techniques.  A brief description of each technique will be given so 
that the analyst can determine if further study is warranted. 

The safety organization should ensure the software requirements appropriately influence the 
software design and the development of the operator, user, and diagnostic manuals.  The safety 
representative should review the following documents and/or data: 

 System/segment specification and 
subsystem specifications 

 Storage allocation and program structure 
documents 

 Software requirements specifications  Background information relating to safety 
requirements 

 Interface requirements specifications and 
all other interface documents 

 Information concerning system energy, 
toxic and other hazardous event sources, 
especially those that may be controlled directly 
or indirectly by software 

 Functional flow diagrams and related data  Software Development Plan, Software 
Quality Evaluation Plan, and Software 
Configuration Management Plan and Historical 
data 

6.6.3.1 Reading Analysis and Traceability Analysis 
Reading analysis examines the requirements specification to uncover inconsistencies, conflicts, 
and ambiguous or missing requirements.  The analysis is usually manual, involving a review of 
the specification and supporting documents.  A Formal Inspection (6.5.5) of the specification can 
be used as a reading analysis.   

The Automated Requirement Measurement (ARM) Tool was developed by the Software 
Assurance Technology Center (SATC) at the NASA Goddard Space Flight Center.  This tool 
was designed to assess requirements that are specified in natural language.  The objective of the 
ARM tool is to provide measures that can be used by project managers to assess the quality of a 
requirements specification document.  The tool is not intended to evaluate the correctness of the 
specified requirements.  Information on the tool and a free download can be found at 
http://satc.gsfc.nasa.gov/tools/arm/index.html. 
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Traceability Analysis involves tracing the requirements throughout the various software 
products.  Section 6.6.1 discusses the flow-down (tracing) of various requirements into the 
software specification.  It is focused on safety requirements, but the technique applies to all other 
requirements as well.  Section 7.5.9 discusses tracing the requirements into the design, and 
eventually into the code and test cases. 

6.6.3.2 Control-flow analysis  
Control-flow analysis examines the order in which software functions will be performed.  It 
identifies missing and inconsistently specified functions.  Control-flow examines which 
processes are performed in series, and which in parallel (e.g., multitasking), and which tasks are 
prerequisites or dependent upon other tasks. 

6.6.3.3 Information-flow analysis 
Information-flow analysis examines the relationship between functions and data.  Incorrect, 
missing, and inconsistent input/output specifications are identified.  Data flow diagrams are 
commonly used to report the results of this activity.  This technique can be effective for 
understanding the basic data and command flow.   

 

6.6.3.4 Functional simulation models 
Simulators are useful development tools for evaluating system performance and human 
interactions.  You can examine the characteristics of a software component to predict 
performance, check human understanding of system characteristics, and assess feasibility.  
Simulators have limitations in that they are representational models and sometimes do not 
accurately reflect the real design, or make environmental assumptions which can differ from 
conditions in the field. 

6.6.4 Formal Methods - Specification Development 
Among the most successful applications of Formal Methods is Formal Specification.  This is the 
process of writing the requirements (specification) in a formal, mathematical language.  Even if 
Formal Verification is not used (to verify that the specification, and later the design and code), 
the act of creating a Formal Specification often catches many errors. 

Formal Specification removes ambiguity and uncertainty.  It allows errors of omission to 
be discovered, including undocumented assumptions and inadequate off-nominal 
behavior.  Conflicting requirements and logic errors are also uncovered.  When defects 
are found and corrected early in the lifecycle, they are much less costly to fix.   

More information on Formal Methods can be found in Section 4.2.2.3. 
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6.6.5  Model Checking 
Model checking is a form of Formal Methods that verifies finite-state systems.  Over the last 5 
years, model checking has taken on a life of its own, apart from the rest of the Formal Methods 
arena.  Many projects that might not consider the full Formal Methods are using Model Checking 
as an analysis and verification technique. 

Model checking is an “automatic” method, and tools exist to provide that automation (for 
instance: SPIN and SMV).  Model checking can be applied to more than just software, and has 
been used to formally verify industrial systems. 

The technique is especially aimed at the verification of reactive, embedded systems, i.e. systems 
that are in constant interaction with the environment.  Model checking can be applied relatively 
easily at any stage of the existing software process without causing major disruptions.  It has 
been extended to work with at least some infinite-state systems and also with real-time systems.  
Model checking can verify simple properties like reachability (does as system ever reach a 
certain state) or lack-of-deadlock (is deadlock avoided in the system), or more complex 
properties like safety (nothing bad ever happens) or liveness (something good eventually 
happens). 

Benefit Rating:  HIGH      Cost Rating: MODERATE

6.6.5.1  How Model Checking Works 
The first step in model checking is to describe the system in a state-based, formal way.  Each 
model checker uses a different language for system description.   

The second step is to express program flow using propositional temporal logic.  This logic deals 
with transitions from one state to another (stepping through the program), and what may or may 
not be true in each state.  For instance, you can express a formula (property) that is true in some 
future state (eventually) or in all future states (always). 

Once the system is modeled and the temporal logic is determined, algorithms are used to traverse 
the model defined by the system and check if the specification holds or not.  Very large state-
spaces can often be traversed in minutes.  The technique has been applied to several complex 
industrial systems, ranging from hardware to communication protocols to safety-critical plants 
and procedures. 

For more details, the book “Model Checking” [39] describes the technique in detail.  The website 
http://www.abo.fi/%7Ejolilius/mclinks.htm contains references to current model checking 
research, people, tools, and projects.   

6.6.5.2  Tools 
Among the automated tools, the primary ones are SMV and SPIN.  SMV is  a symbolic model 
checker specialized on the verification of synchronous and asynchronous systems.  SPIN is an 
on-the-fly model checker specialized on the verification of asynchronous systems. 

Spin (http://netlib.bell-labs.com/netlib/spin/whatispin.html) is designed to test the specifications 
of concurrent (distributed) systems - specifically communications protocols, though it applies to 
any concurrent system.  It will find deadlocks, busy cycles, conditions that violate assertions, and 
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race conditions.  The software was developed at Bell Labs in the formal methods and verification 
group starting in 1980.  Spin targets efficient software verification, not hardware verification.  It 
uses a high level language to specify systems descriptions (PROMELA - PROcess MEta 
LAnguage).  Spin has been used to trace logical design errors in distributed systems design, such 
as operating systems, data communications protocols, switching systems, concurrent algorithms, 
railway signaling protocols, etc.  The tool checks the logical consistency of a specification. Spin 
also reports on deadlocks, unspecified receptions, flags incompleteness, race conditions, and 
unwarranted assumptions about the relative speeds of processes.  It uses an “on-the-fly” 
approach where not all of the model must be in memory at once. 

SMV (Symbolic Model Verifier) (http://www.cs.cmu.edu/~modelcheck/smv.html) comes from 
Carnegie Mellon University.  The SMV system requires specifications to be written in the 
temporal logic CTL, and uses Kripke diagrams.  The input language of SMV is designed to allow 
the description of finite state systems that range from completely synchronous to completely 
asynchronous, and from the detailed to the abstract.  The language provides for modular 
hierarchical descriptions, and for the definition of reusable components.  Since it is intended to 
describe finite state machines, the only data types in the language are finite ones - Booleans, 
scalars and fixed arrays.  The logic CTL allows safety, liveness, fairness, and deadlock freedom 
to be specified syntactically. 

In addition, other “academic” systems include: 

HyTech (http://www-cad.EECS.Berkeley.EDU/~tah/HyTech/) • 

Kronos (http://www-verimag.imag.fr//TEMPORISE/kronos/index-english.html) • 

MONA (http://www.brics.dk/mona/) • 

Murphi (http://sprout.stanford.edu/dill/murphi.html) • 

TREAT (http://www.cis.upenn.edu/~lee/inhye/treat.html) • 

TVS (http://tvs.twi.tudelft.nl/) • 

UPPAAL (http://www.docs.uu.se/docs/rtmv/uppaal/index.html) • 

Verus (http://www.cs.cmu.edu/~modelcheck/verus.html) • 

Vis (http://www-cad.eecs.berkeley.edu/~vis/) • 

Commercial programs include: 

Time Rover (http://www.time-rover.com/TRindex.html) • 

6.6.5.3  Challenges 
The main challenge in model checking is the state explosion problem - the fact that the number 
of states in the model is frequently so large that model checkers exceed the available memory 
and/or the available time.  Several techniques are used to cope with this problem. 

One type of technique is to build only a part of the state-space of the program, while still 
maintaining the ability to check the properties of interest.  These are “partial-order techniques” 
(interleaving)  and “abstraction techniques” (simpler system). 
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The “symbolic approach” is another way to overcome the problem.  The idea is to implicitly 
represent the states and transitions of the system, rather than explicitly.  Binary Decision 
Diagrams (BDDs) are an efficient encoding of Boolean formulas.  The BDD is used with the 
temporal formulas for the model checking.  Therefore, the size of the BDD representation is the 
limiting factor and not the size of the explicit state representation. 

“On-the-fly” techniques analyze portions of the model as it goes along, so that not all of it must 
be in memory at any one time. 

6.6.6 Timing, Throughput And Sizing Analysis 
Timing, throughput and sizing analysis for safety-critical functions evaluates software 
requirements that relate to execution time, I/O data rates and memory/storage allocation.  This 
analysis focuses on program constraints.  Typical constraint requirements are maximum 
execution time, maximum memory usage, maximum storage size for program, and I/O data rates 
the program must support.  The safety organization should evaluate the adequacy and feasibility 
of safety-critical timing, throughput and sizing requirements.  These analyses also evaluate 
whether adequate resources have been allocated in each case, under worst case scenarios.  For 
example, will I/O channels be overloaded by many error messages, preventing safety-critical 
features from operating? 

Quantifying timing/sizing resource requirements can be very difficult.  Estimates can be based 
on the actual parameters of similar existing systems. 

Items to consider include:   

 Memory usage versus availability.  
Assessing memory usage can be based on previous experience of software development 
if there is sufficient confidence.  More detailed estimates should evaluate the size of the 
code to be stored in the memory, and the additional space required for storing data and 
scratch pad space for storing interim and final results of computations (heap size).  As 
code is developed, particularly prototype or simulation code, the memory estimates 
should be updated. 

Consider carefully the use of Dynamic Memory Allocation in safety-critical code or 
software that can impact on the safety-critical portions.  Dynamic memory allocation can 
lead to problems from not freeing allocated memory (memory leak), freeing memory 
twice (causes exceptions), or buffer overruns that overwrite code or other data areas.  
When data structures are dynamically allocated, they often cannot be statically analyzed 
to verify that arrays, strings, etc. do not go past the physical end of the structure. 

 I/O channel usage (Load) versus capacity and availability 
Look at the amount of input data (science data, housekeeping data, control sensors) and 
the amount of output data (communications) generated.  “I/O channel” should include 
internal hardware (sensors), interprocess communications (messages), and external 
communications (data output, command and telemetry interfaces).  Check for resource 
conflicts between science data collection and safety-critical data availability.  During 
failure events, I/O channels can be overloaded by error messages and these important 
messages can be lost or overwritten (e.g. the British “Piper Alpha” offshore oil platform 
disaster).  Possible solutions includes adding components to capture, correlate and 
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manage lower level error messages or passing error codes through the calling routines to 
a level that can handle the problem.  This allows only passing on critical faults or 
combinations of faults that may lead to a failure. 

 Execution times versus CPU load and availability 
Investigate the time variations of CPU load and determine the circumstances that 
generate peak load.  Is the execution time under high load conditions acceptable?  
Consider the timing effects from multitasking, such as message passing delays or the 
inability to access a needed resource because another task has it.  Note that excessive 
multitasking can result in system instability leading to “crashes”.  Also consider whether 
the code will execute from RAM or from ROM, which is often slower to access. 

 Sampling rates versus rates of change of physical  parameters 
Design criteria for this is discussed in Section 6.5.4 Timing, Sizing and Throughput 
Considerations.  Analysis should address the validity of the system performance models 
used, together with simulation and test data, if available. 

 Program storage space versus executable code size 
Estimate the size of the executable software in the device it is stored in (EPROM, flash 
disk, etc.).  This is may be less than the memory footprint, as only static or global 
variables take up space.  However, if not all components will be in memory at the same 
time, then the executable size may be larger.  The program size includes the operating 
system as well as the application software.  

 Amount of data to store versus available capacity 
Consider how much science, housekeeping, or other data will be generated and the 
amount of storage space available (RAM, disk, etc.).  If the data will be sent to the 
ground and then deleted from the storage media, then some analysis should be done to 
determine how often, if ever, the “disk” will be full.  Under some conditions, being 
unable to save data or overwriting previous data that has not been downlinked could be a 
safety related problem. 

6.6.7 Software Fault Tree Analysis 
It is possible for a system to meet requirements for a correct state and still be unsafe.  Complex 
systems increase the chance that unsafe modes will not be caught until the system is in the field.  
Fault Tree Analysis (FTA) is one method that focuses on how errors, or even normal functioning 
of the system, can lead to hazards.  Software Fault Tree Analysis (SFTA) is an extension of the 
hardware FTA into the software arena. 

Benefit Rating:  HIGH       Cost Rating: LOW

The requirements phase is the time to perform a preliminary software fault tree analysis (SFTA).  
This is a “top down” analysis, looking for the causes of presupposed hazards.  The top of the 
“tree” (the hazards) must be known before this analysis is applied.  The Preliminary Hazard 
Analysis (PHA) or Software Subsystem Hazard Analysis is the primary source for hazards, along 
with the Requirements Criticality Analysis and other analyses described above.   
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The result of a fault tree analysis is a list of contributing causes (e.g., states or events), or 
combination of such contributing causes, that can lead to a hazard.  Some of those failures will 
be in software.  At this top level, the failures will be very general (e.g., “computer fails to raise 
alarm”).  When this analysis is updated in later phases (as more detail is available), the failures 
can be assigned to specific functions or components. 

FTA was originally developed in the 1960's for safety analysis of the Minuteman missile system.  
It has become one of the most widely used hazard analysis techniques.  In some cases, FTA 
techniques may be mandated by civil or military authorities.  

The quality of the analysis depends on the analyst’s experience and capability.  An inexperienced 
analyst may miss possible hazards or hazard causes.  Even with experienced people, it is 
important that input from all project areas be included.  Software is more of a symbiotic system 
(working as part of the whole) than a subsystem.  It has influence into many areas, especially 
hardware and system operations.  Separating out the “software only” aspects is difficult, if not 
impossible.  

Software Fault Tree Analysis (SFTA) works well in conjunction with the Software Failure 
Modes and Effects Analysis (SFMEA) (section 6.6.8).  While the SFTA is “top down”, working 
from the hazard to possible causes, the SFMEA starts with individual components and works 
from the bottom (component) up to a hazard.  When used in combination, these two analyses are 
very good at finding all the possible failure modes or areas of concern.  However, they can be 
time-consuming, and therefore expensive.  On smaller projects, usually only one analysis is 
performed.  Because the experience of the analyst affects the quality of the analysis, analysts 
may choose to use the analysis they are most familiar with (SFTA or SFMEA).  Conversely, they 
may choose to perform the analysis they are least familiar with, to force a new perspective on the 
system. 

Much of the information presented in this section is extracted from Leveson et al. [41,42]. 

SFTA is a complex subject, and is described further in Appendix C. 

 
Benefit Rating:  HIGH      Cost Rating: MODERATE

6.6.8 Software Failure Modes and Effects Analysis 
A “bottom up” analysis technique is the FMEA (Failure Modes and Effects Analysis).  It looks at 
how each component could fail, how the failure propagates through the system, and whether it 
can lead to a hazard.  This technique requires a fairly detailed design of the system.  At early 
stages in the software development, such as requirements or early design, only a preliminary  
analysis can be performed. 

A Software FMEA uses the methods of a standard (hardware) FMEA, substituting software 
components for hardware components in each case.  A widely used FMEA procedure is MIL-
STD-1629, which is based on the following steps: 
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1. Define the system to be analyzed. 
2. Construct functional block diagrams. 
3. Identify all potential item and interface failure modes. 
4. Evaluate each failure mode in terms of the worst potential consequences. 
5. Identify failure detection methods and compensating provisions. 
6. Identify corrective design or other actions to eliminate / control failure. 
7. Identify impacts of the corrective change. 
8. Document the analysis and summarize the problems which could not be corrected. 

 

Software Fault Tree Analysis (SFTA) (section 6.6.7) works well in conjunction with the 
Software Failure Modes and Effects Analysis (SFMEA).  While the SFTA is “top down”, 
working from the hazard to possible causes, the SFMEA starts with individual components and 
works from the bottom (component) up to a hazard.  When used in combination, these two 
analyses are very good at finding all the possible failure modes or areas of concern.  This bi-
directional analysis can provide limited but essential assurances that the software design has 
been systematically examined and complies with requirements for software safety. [90] 

Performing both analyses, while very useful, can be time-consuming and therefore expensive.  
On smaller projects, usually only one analysis is chosen.  Because the experience of the analyst 
affects the quality of the analysis, analysts may choose to use the analysis they are most familiar 
with (SFTA or SFMEA).  Conversely, they may choose to perform the analysis they are least 
familiar with, to force a new perspective on the system. 

More detailed information on SFMEA (Software Failure Modes and Effects Analysis) can be 
found in Appendix D. 

 
Benefit Rating:  HIGH      Cost Rating:  HIGH 
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Chapter 7 Software Design 
The design of a program set represents the static and dynamic characteristics of the software that 
will meet the requirements specified in the governing Software Requirements Document (SRD).  
Projects developing large amounts of software may elect to separate design development into 
multiple phases, such as preliminary (architectural) and detailed (critical).  Those with relatively 
small software packages will usually have only a single design phase. 

For most lifecycles other than the waterfall, the various phases are broken up over time.  Instead 
of one monumental “design” phase, there will be several iterative requirements-design-code-test 
phases.  In some lifecycles, the initial design may be equivalent to the architectural design in the 
waterfall, with subsequent design activities adding detail or functionality to the initial design. 

7.1 Tasks and Analyses 

Table 7-1 Software Design Tasks 

Software Engineering Tasks System and Software 
Safety Tasks 

Software Assurance or 
IV&V Tasks 

Create Design from 
Requirements, incorporating 
safety requirements and features 

Trace safety-critical 
requirements into the design 
Design Traceability Analysis 
[Section 7.5.9] 

Review selection of 
language, OS,  and tools.  
Pass any safety concerns to 
Software Safety. 

Formal Inspection of Design 
Products [Section 7.5.4] 

Update Criticality Analysis 
[Section 7.5.1.1] 

Review COTS and reused 
software.  Pass any safety 
concerns to Software Safety. 

Design for reliability and 
maintainability [Section 7.4.9] 

Formal Inspection of Design 
Products [Section 7.5.4] 

Review coding standards 
and checklists for inclusion 
of good practices and 
exclusion of unsafe 
functions or practices. 

Select language, operating system 
and tools [Section 7.4.4] 

Hazard Risk Assessment 
[Section 7.5.1.2] 

Review complexity 
measurements.  Work with 
developer if too high. 

Select COTS and reusable 
components (7.4.3 and 12.1) 

Design Safety Analysis 
[Section 7.5.2] 

Review reliability and 
maintainability metrics. 
[Section 7.4.9] 

Develop language restrictions 
and coding standards (7.4.5) 

Software Element Analysis 
[Section 7.5.10] 

Formal Inspection of Design 
Products [Section 7.5.4] 
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Software Engineering Tasks System and Software 
Safety Tasks 

Software Assurance or 
IV&V Tasks 

Evaluate complexity of software 
design and individual 
components. [Section 7.4.8] 

Review previous analyses 
and update with new 
information. (PHA moves to 
Sub-system Hazard Analysis 
[SSHA] and Systems Hazard 
Analysis [SHA]) 

Formal Methods and Model 
Checking [Section 7.5.5] 

 

Review coding standards and 
checklists for inclusion of 
good practices and exclusion 
of unsafe functions or 
practices. 

Independence Analysis  
[Section 7.5.3] 

 
Review Analyses from 
Software Assurance for any 
safety implications. 

Design Logic Analysis  
[Section 7.5.6] 

 

Update Safety Data Package 
for Phase II Safety Review or 
other carrier- or program-
specific safety review. 

Design Data Analysis 
[Section 7.5.7] 

  
Design Interface Analysis 
[Section 7.5.8] 

  
Design Traceability Analysis
[Section 7.5.9] 

  Dynamic Flowgraph 
Analysis [Section 7.5.12] 

  
Rate Monotonic Analysis 
[Section 7.5.11] 

  
Markov Modeling 
[Section 7.5.13] 

  
Requirements State 
Machines  
Section 7.5.14, Appendix E 

  
Review previous analyses 
and update with new 
information. 

 

NASA-GB-8719.13 134  



7.2 Documentation and Milestones 
The following table lists documents that are commonly produced for this phase of development: 

Table 7-2 Software Design Documentation 

Document Software Safety Section 

Software Design Specification and other 
design documents 

Identify the safety-critical units, data, and interfaces 
throughout the design.  Identify non-critical units that 
can interact with safety-critical ones. 

Integration Test Plan Specify the order of unit integration such that safety-
critical units can be fully tested.  Include tests that 
verify non-critical components cannot influence 
critical components. 

Formal Inspection Reports Any safety-critical design defects should be 
considered major (must be fixed). 

Coding Standards Include language restrictions, functions to avoid, and 
unacceptable programming practices.   

Analysis Reports Identification of any safety-related aspects or safety 
concerns. 

Traceability Matrix Identify Design components that incorporate safety-
critical requirements 

 

Milestones that will usually occur during this phase include: 

• Software Preliminary Design Review (PDR) 

• Software Critical Design Review (CDR) 

• Phase II Safety Review or other carrier- or program-specific system safety review 
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7.3 Tailoring Guidelines 
See Section 3.2 Tailoring the Effort for how to determine the software safety effort required 
(full, moderate, or minimal).   

Table 7-3 Software Design Safety Effort 

Technique or Analysis Safety Effort Level 

 MIN MOD FULL 
7.4.5  Language Restrictions and Coding Standards    
7.4.6 Defensive Programming    
7.5.1.1 Criticality Analysis 
7.5.1.2 Hazard Risk Assessment    

7.5.2  Design Safety Analysis    
7.5.3  Independence Analysis    
7.5.4  Formal Inspections of Design Products    
7.5.5  Formal Methods and Model Checking    
7.5.6  Data Logic Analysis    
7.5.7  Design Data Analysis    
7.5.8  Design Interface Analysis    
7.5.9  Design Traceability Analysis    
7.5.10  Software Element Analysis    
7.5.11  Rate Monotonic Analysis    
7.5.12  Dynamic Flowgraph Analysis    
7.5.13  Markov Modeling    
7.5.14  Requirements State Machines    

 
Recommendation Codes 

 Mandatory  Highly Recommended 
 Recommended  Not Recommended 
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7.4 Design of Safety-Critical Software 

7.4.1 Designing for Safety 
Creating a good design is an art as well as a science.  This guidebook will not deal with the 
process of creating a design or ensuring that it is a “good” design.  Many books exist that teach 
design methods.  Section 4.2.2 discusses several design methodologies. 

What this section will do, however, is list some concepts that should at least be considered for a 
safety-critical design.  Questions will be posed for the designer to answer.  Specific activities 
will be mentioned that support the process of creating a safe design.  The intent of this section is 
for the designer to think about the design from a safety perspective. 

One of the most important aspects of a software design for a safety-critical system is designing 
for minimum risk.  This “minimum risk” includes hazard risk (likelihood and severity), risk of 
software defects, risk of human operator errors, and other types of risk (such as programmatic, 
cost, schedule, etc.).  When possible, eliminate identified hazards or reduce associated risk 
through design.  Some ways to reduce the risk include: 

• Reduce complexity of software and interfaces. 

• Design for user-safety instead of user-friendly (though keep operator usage patterns in 
mind).  Section 11.9 discusses human factors for software safety. 

• Design for testability during development and integration. 

• Give more design “resources” (time, effort, etc.) to higher-risk aspects (hazard controls, 
etc.) 

SSP 50038, Computer-Based Control System Safety Requirements [42], provides a checklist of 
design criteria for minimum risk.  Items include: Separation of Commands/Functions/Files/Ports, 
Interrupts, Shutdown/Recovery/Safing, Monitoring/Detection, and other design considerations. 

Tasks, ideas, and questions for the design phase include: 

• Functional Allocation   
o Determine what modules, classes, etc. will implement the safety-critical 

requirements.  Isolate these components from the non-critical components as 
much as possible.  

o Minimize the number of safety-critical components.  Interfaces between critical 
components should also be designed for minimum interaction (low coupling). 

o Categorize the components as safety-critical or not.  Software Safety should 
review this determination for concurrence. 

o Document the positions and functions of safety-critical components in the design 
hierarchy.    

o Document how each safety-critical component can be traced back to original 
safety requirements and how the requirement is implemented.   

o Specify safety-related design and implementation constraints. 
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o Document execution control, interrupt characteristics, initialization, 
synchronization, and control of the components.  Include any finite state 
machines.  For high risk systems, interrupts should be avoided as they may 
interfere with software safety controls.  Any interrupts used should be priority 
based. 

• Program Interfaces 
o Define the functional interfaces between all components.  For safety-critical 

components, limit their interaction with other components as much as possible. 

o Identify shared data within the software.  The design should segregate safety-
critical data from other data.  Non-critical components should not have access to 
safety-critical data. How will the safety-critical data be protected from inadvertent 
use or changes by non-safety-critical components?  

o Document the databases and data files which contain safety-critical data and all 
the components that access them, whether they are safety-critical or not.   

o For each interface specify a design that meets the safety requirements in the ICD, 
SIS document of equivalent.   

o Identify safety-critical data used in interfaces. 

• Fault Detection. Recovery and Safing 
o Specify any error detection or recovery schemes for safety-critical components.   

o Include response to language generated exceptions and to unexpected external 
inputs, e.g. inappropriate commands or out-of-limit measurements. 

o Consider hazardous operations scenarios.  How can the design prevent human 
errors from occurring?  How can the design recognize faults before they become 
failures? What can be added to the design to reduce the risk of the hazard 
occurring? 

o Will memory testing during operation be required?  When will the tests be run?  
Can the tests ever impact safety-critical functions?  

o Consider using memory utilization checks to give advance warning of imminent 
saturation of memory. 

o The design of safing and recovery actions should fully consider the real-world 
conditions and the corresponding time to criticality.  Automatic safing can only be 
a valid hazard control if there is ample margin between worst-case (long) 
response time and worst-case (short) time to criticality. 

o Automatic safing is often required if the time to criticality is shorter than the 
realistic human operator response time, or if there is no human in the loop.  This 
can be performed by either hardware or software or a combination depending on 
the best system design to achieve safing. 

o How will critical memory blocks be protected from inadvertent corruption or 
deletion?  Processors with Memory Management Units (MMU) provide one 
mechanism for protection.  Checking the address range returned by the dynamic 
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allocation routine against the critical memory addresses will work in systems that 
use physical (RAM) addresses or logical memory addresses.  Care must be taken 
that logical and physical addresses are not compared to each other.  CRC values 
or error-correcting codes are software ways to detect and/or correct critical data 
that may be accidentally corrupted 

o What levels of fault and failure tolerance must be implemented, and how will this be 
done?  Will independent versions of software functionality be used? How will the 
independence be assured?  Section 6.5.2 discusses fault and failure tolerance.  
Section 7.4.2 provides more details on how to achieve it.  

• Inherited or Reused Software and COTS (see Chapter 12) 

o Were any hazard analyses performed on COTS, inherited or reused software?  
What information and documentation exists on the analysis, testing, or other 
verification of the software? 

o How well understood is this software? What functionality is it missing?  What 
extra functionality does it contain? 

o Document where this software is used and its relationship to safety-critical 
components. 

• Design Feasibility, Performance, and Margins 
o Show how the design of safety-critical components is responsive to safety 

requirements.  Include information from any analyses of prototypes or 
simulations.  Define design margins of these components. 

o Sampling rates should be selected with consideration for noise levels and 
expected variations of control system and physical parameters.  For measuring 
signals that are not critical, the sample rate should be at least twice the maximum 
expected signal frequency to avoid aliasing.  For critical signals, and parameters 
used for closed loop control, it is generally accepted that the sampling rate must 
be much higher.  A factor of at least ten above the system characteristic frequency 
is customary. [35] 

o Digitized systems should select word lengths long enough to reduce the effects of 
quantization noise to ensure stability of the system [36].  Selection of word lengths 
and floating point coefficients should be appropriate with regard to the parameters 
being processed in the context of the overall control system.  Too short word lengths 
can result in system instability and misleading readouts.  Too long word lengths 
result in excessively complex software and heavy demand on CPU resources, 
scheduling and timing conflicts etc. 

o Computers take a finite time to read data and to calculate and output results, so 
some control parameters will always be out of date.  Controls systems must 
accommodate this.  Also, check timing clock reference datum, synchronization 
and accuracy (jitter).  Analyze task scheduling (e.g., with Rate Monotonic 
Analysis (RMA) – section 7.5.11). 
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• Traceability 
o For each component, identify traceability to software requirements, especially 

software safety requirements. 

o All requirements must be flowed down into the design.  Maintaining a traceability 
matrix or other document helps to verify this. 

o Identify test and/or verification methods for each safety-critical design feature. 

• Testing 
o Design for testability.  Include ways that internals of a component can be 

adequately tested to verify that they are working properly. 

o Results of preliminary tests of prototype code should be evaluated and 
documented in the Software Development Folders (SDFs).   

o Any safety-critical findings should be reported to the Safety Engineer to help 
work out viable solutions. 

7.4.2 Designing around Faults and Failures  
The main safety objective of the design phase is to define the strategy for achieving the required 
level of failure tolerance in the various parts of the system.  The degree of failure tolerance 
required can be inversely related to the degree of fault reduction used (e.g. Formal Methods).  
However, even the most rigorous level of fault reduction will not prevent all faults, and some 
degree of failure tolerance is generally required. 

Fault Propagation is a cascading of a software (or hardware or human) error from one component 
to another.  To prevent fault propagation within software, safety-critical components must be 
fully independent of non-safety-critical components.  They must also be able to both detect an 
error within themselves and not allow it to be passed on.  Alternately, the receiving component 
can catch and contain the error. 

• Must Work Functions (MWF)6 

MWF’s achieve failure tolerance through independent parallel redundancy.  For parallel 
redundancy to be truly independent there must be dissimilar software in each parallel 
path.  Software can sometimes be considered “dissimilar” if N-Version programming 
(section 7.4.2.1) is properly applied, though true independence is very difficult to 
achieve. 

For two parallel strings to be independent, no single failure may disable both strings.  
For three parallel strings, no two failures may disable all three strings.  

NASA-GB-8719.13 140  

                                                      
6 Must Work and Must Not Work functions are discussed in Section F.2, along with examples. 



• Must Not Work Functions (MNWF)6 

MNWF’s achieve failure tolerance through independent multiple series inhibits.  For 
series inhibits to be considered independent, they must be (generally) controlled by 
different processors containing dissimilar software. 

For two in-series inhibits to be independent, no single failure, human mistake, event or 
environment  may activate both inhibits.  For three series inhibits to be independent, no 
two failures, human mistakes, events or environments (or any combination of two 
single items) may activate all three inhibits.  Generally this means that each inhibit 
must be controlled by a different processor with different software (e.g. N-Version 
programming, see section 7.4.2.1). 

• Fault/Failure Detection, Isolation and Recovery (FDIR) 
FDIR is a problematic area, where improper design can result in system false alarms, 
“bogus” system failures, or failure to detect important safety-critical system failures.  
Consider the possible consequences as well as the benefits when determining FDIR 
design. 

Fault-tolerant design techniques include: 

• Shadowing (Convergence testing).  For non-discrete continuously varying parameters 
that are safety-critical, a useful redundancy technique is convergence testing or 
“shadowing”.  A higher level process emulates lower level process(es) to predict 
expected performance and decide if failures have occurred in the lower level processes.  
The higher-level process implements appropriate redundancy switching when it detects a 
discrepancy.  Alternatively, the higher-level process can switch to a subset or degraded 
functional set to perform minimal functions when insufficient redundancy remains to 
keep the system fully operational. 

• Built-in Test( BIT): Sometimes FDIR can be based on self-test (BIT) of lower tier 
processors where lower level units test themselves, and report their good/bad status to a 
higher processor.  The higher processor switches out units reporting a failed or bad status. 

• Majority voting.  Some redundancy schemes are based on majority voting.  This 
technique is especially useful when the criteria for diagnosing failures are complicated.  
(e.g. when an unsafe condition is defined by exceeding an analog value rather than 
simply a binary value).  Majority voting requires more redundancy to achieve a given 
level of failure tolerance, as follows: 2 of 3 achieves single failure tolerance; 3 of 5 
achieves two failure tolerance.  An odd number of parallel units are required to achieve 
majority voting. 

• N-Version programming.  See section 7.4.2.1. 

• Fault containment regions.  See section 7.4.2.2. 

• Redundant Architecture.  See section 7.4.2.3. 

• Recovery blocks use multiple software versions to find and recover from faults.  The 
output from a block is checked against an acceptance test.  If it fails, then another version 
computes the output and the process continues.  Each successive version is more reliable 
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but less efficient.  If the last version fails, the program must determine some way to fail 
safe. 

• Resourcefulness.  Resourcefulness concentrates on achieving system goals through 
multiple methods.  For example, if the goal is to point a scan platform at a particular 
target, the exact movement scenario is not specified.  Whether it moves +10 degrees or –
350 degrees, it points at the same location.  This approach allows the system to 
compensate for problems.  It requires systems that are functionally rich, to provide the 
options necessary to fulfill the goal. 

• Abbott-Neuman Components.  Components must be self-protecting and self-checking.  
A self-protecting component does not allow other components to crash it; rather it returns 
an error indication to the calling component.  A self-checking component detects its own 
errors and attempts to recover from them. 

• Self-checks are a type of dynamic fault-detection that is used by other techniques (e.g. N-
Version programming and recovery blocks).  Varieties of self-checks include replication 
(copies that must be identical if the data is to be considered correct), reasonableness (is 
the data reasonable, based on other data in the system), and structural (are components 
manipulating complex data structures correctly). 

7.4.2.1 N-Version Programming 
N-Version Programming is one method that can be used to implement failure tolerant  behavior.  
Multiple, independent versions of the software execute simultaneously.  If the answers all agree, 
then the process continues.  If there is disagreement, then a voting method is used to determine 
which of the answers is correct.  

In the past, some NASA policy documents have essentially stipulated the use of N-Version 
programming in any attempt to achieve failure tolerance.  Reference [42] discusses in more 
detail the JSC position on N-Version programming.  They recognize that the technique has 
limitations.  Many professionals regard N-Version programming as ineffective, or even counter 
productive. 

Efforts to implement N-Version programming should be carefully planned and managed to 
ensure that valid independence is achieved.  In practice, applications of N-Version programming 
on NSTS payloads are limited to small simple functions.  However, the NSTS power up of the 
engines has N-Version programming as well. 

Note that, by the NSTS 1700.7B stipulation, two processors running the same operating system 
are neither independent nor failure-tolerant of each other, regardless of the degree of N-Version 
programming used in writing the applications. 

In recent years, increasing controversy has surrounded the use of N-Version programming.  In 
particular, Knight and Leveson [43] have jointly reported results of experiments with N-Version 
programming, claiming the technique is largely ineffective.  Within NASA, Butler and Finelli 
[44] have also questioned the validity of N-Version programming, even calling it “counter 
productive”.  Though it has worked very effectively on some occasions, it should be evaluated 
carefully before being implemented.  

One major problem with N-Version programming is that it increases complexity, which has a 
direct relationship with the number of errors.  In one NASA study of an experimental aircraft, all 
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of the software problems found during testing were the result of the errors in the redundancy 
management system.  The control software operated flawlessly!  Another difficulty with N-
Version programming is that achieving true independence is very difficult.  Even if separate 
teams develop the software, studies have shown that the software is still often not truly 
independent.   

Reference [45] gives some useful background for N-Version programming. 

7.4.2.2 Fault Containment Regions 
One approach is to establish Fault Containment Regions (FCRs) to prevent propagation of 
software faults.  This attempts to prevent fault propagation such as from non-critical software to 
safey-critical components; from one redundant software unit to another, or from one safety-
critical component to another.  Techniques such as firewalling or “come from” checks should be 
used to provide sufficient isolation of FCRs to prevent hazardous fault propagation. 

FCRs are best partitioned or firewalled by hardware.  Leveson [9] states that “logical” firewalls 
can be used to isolate software components, such as isolating an application from an operating 
system.  To some extent this can be done using defensive programming techniques and internal 
software redundancy (e.g., using authorization codes or cryptographic keys).  However, within 
NASA this is normally regarded as hazard mitigation, but not hazard control, because such 
software/logical safeguards can be defeated by hardware failures or EMI/Radiation effects. 

A typical method of obtaining independence between FCRs is to host them on different and 
independent hardware processors.  Sometimes it is acceptable to have independent FCRs hosted 
on the same processor depending on the specific hardware configuration (e.g. the FCRs are 
stored in separate memory chips and they are not simultaneously or concurrently multitasked in 
the same Central Processing Unit (CPU)). 

Methods of achieving independence are discussed in more detail in Reference [35], "The 
Computer Control of Hazardous Payloads", NASA/JSC/FDSD, 24 July 1991.  FCRs are defined 
in reference [42], SSP 50038 “Computer Based Control System Safety Requirements - 
International Space Station Alpha”. 

7.4.2.3 Redundant Architecture 
Redundant architecture refers to having two versions of the operational code.  Unlike N-Version 
programming, the two versions do not need to operate identically.  The primary software is the 
high-performance version.  This is the “regular” software you want to run – it meets all the 
required functionality and performance requirements.   

However, if problems should develop in the high-performance software, particularly problems or 
failures that impact safety, then a “high-assurance” kernel (also called a safety kernel) is given 
control.  The high-assurance kernel may have the same functionality as the high-performance 
software, or may have a more limited scope.  The primary aspect is that it is safe.  The high-
assurance kernel will almost certainly be less optimized (slower, stressed more easily, lower 
limits on the load it can handle, etc.). 

The Carnegie Mellon Software Engineering Institute (SEI) Simplex Architecture [46] is an 
example of a redundant architecture.  This architecture includes the high-performance/high-
assurance kernels, address-space protection mechanisms, real-time scheduling algorithms, and 
methods for dynamic communication among components.  This process requires using analytic 
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redundancy to separate major functions into high-assurance kernels and high-performance 
subsystems.  

7.4.3 Selection of COTS and Reusing Components 
Early in the design phase, and sometimes even during requirements definition, decisions are 
made to select Off-The-Shelf (OTS) items (software, hardware, or both) that are available “as is” 
from a commercial source (Commercial Off-The-Shelf (COTS)) or to reuse applications 
developed from other similar projects (i.e., Government Off-The-Shelf (GOTS) items).  Any 
modifications of these items place them in another category – Modified Off-the-Shelf (MOTS) 
items. 

OTS items commonly used include operating systems, processor and device microcode, and 
libraries of functions.  It is becoming prohibitively expensive to custom develop software for 
these applications.  In addition, the desire to not “reinvent the wheel” is strong, especially when 
faced with budget and schedule constraints.  There is also a trend in government to use 
commercial products instead of custom developing similar but much more expensive products. 

Section 12.1 Off-the-Shelf Software covers the pros and cons of OTS and reused software in 
more detail.  Many issues need to be considered before making the decision to use OTS software, 
or to reuse software from a previous project.  While OTS software may appear cost-effective, the 
additional analyses, tests, glueware code development, and other activities may make it more 
expensive than developing the software in-house.  The section also provides recommendations 
for additional analyses and tests for OTS software in safety-critical systems. 

Section 12.2 Contractor-developed Software discusses issues relating to having custom software 
created by a contractor, rather than in-house. 

7.4.4 Selection of language, development tools and operating systems 
It is during the design phase that the language used to develop the software, the tools used in the 
creation of software, as well as the operating system (OS) it will run on, are often selected.  The 
choice of language, tools, and OS can have an impact on the safety of the software.  Some 
operating systems have more “safety” features than others.  Some tools make finding errors 
easier.   

When choosing a programming language, many factors are important.  For example, consider the 
variations of memory size (footprint) and execution speed of an algorithm between candidate 
languages.  The existence of tools (compiler, integrated development environment, etc.) that 
support the language for the specified processor and on the development platform, and the 
availability of software engineers who have training and experience with the language are also 
important.  When developing safety-critical applications or components, however, the “safeness” 
of the programming language should be a high priority factor. 

A “safe” programming language is one in which the translation from source to object code can 
be rigorously verified.  Compilers that are designed to use safe subsets of a programming 
language are often certified, guaranteeing that the object code is a correct translation of the 
source code.  In a more general sense, a “safe” language is one that enforces good programming 
practices, and that finds errors at compile time, rather than at run time.  Safe languages have 
strict data types, bounds checking on arrays, and discourage the use of pointers, among other 
features. 
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Section 4.6 Good Programming Practices for Safety contains a technical overview of safety-
critical coding practices for developers and safety engineers.  Many of the coding practices 
involve restricting the use of certain programming language constructs. 

Section 11.1 provides an introduction on the criteria for evaluating the risks associated with the 
choice of a particular programming language.  Some are well suited for safety-critical 
applications, and therefore engender a lower risk.  Others are less “safe” and, if chosen, require 
additional analysis and testing to assure the safety of the software.  Where appropriate, safe 
subsets of languages will be described.  Common errors (“bugs”) in software development are 
also included. 

When choosing a language, consider the language “environment” (compiler, Integrated 
Development Environment (IDE), debugger, etc.) as well.  Is the compiler certified?  Is there a 
list of known defects or errors produced by the compiler?  Does the code editor help find 
problems by highlighting or changing the color of language-specific terms?  Does the compiler 
allow you to have warnings issued as errors, to enforce conformance? Is there a debugger that 
allows you to set break points and look at the source assembly code?   

No programming language is guaranteed to produce safe software.  The best languages enforce 
good programming practices, make bugs easier for the compiler to find, and incorporate 
elements that make the software easier to verify.  Even so, the “safeness” and reliability of the 
software depend on many other factors, including the correctness of the requirements and design.  
Humans are involved in all aspects of the process, and we are quite capable of subverting even 
the “safest” of languages.  Select a language based on a balance of all factors, including safety. 

Suggestions for what to look for when selecting an operating system, programming language, 
and development tool are included in Chapter 11 Software Development Issues. 
   

11.1 Programming Languages 

11.2 Compilers, Editors, Debuggers, IDEs and other Tools 

11.3  CASE tools and Automatic Code Generation 

11.4  Operating Systems 
 

7.4.5 Language Restrictions and Coding Standards 
When it comes to safety-critical software, some aspects of various programming languages 
should be avoided.  These aspects may be undefined by the standard (and therefore vary between 
compilers).  They may perform a function or activity that is undesired or detrimental to the 
system (such as disabling interrupts for too long).  Or they may simply be “bad practice” – 
functions or constructs that are often used improperly or lead to many defects. 

It is important that the chosen language is surveyed for such potential problems before the design 
is actually implemented in code.  This can be done as part of the initial language selection 
process.  It is far easier to implement “good practice” early on, than to have to retrain software 
engineers to avoid certain language constructs when they have been using them for some time. 

A Coding Standard is one way to implement such language restrictions.  The standard can 
indicate what software constructs, library functions, and other language-specific information 
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must or must not be used.  As such, it produces, in practice, a “safe” subset of the programming 
language.  Coding standards may be developed by the software designer, based on the software 
and hardware system to be used, or may be general standards for a “safer” version of a particular 
language. 

The process compilers use internally to convert the higher level language into machine 
operations may be undefined and is often highly variable between compilers.  For example, the 
implementation method for dynamic memory allocation is not part of most language 
specifications, and therefore varies between compilers.  Even for a specific compiler, 
information on how such a process is implemented is difficult to obtain.  The location of the 
allocated memory is usually not predictable, and that may not be acceptable for a safety-critical 
software component.  Another example is the order that global items are initialized.  Coding 
standards can be used to make sure that no global item depends on another global item having 
been already initialized. 

It is important that all levels of the project agree to the coding standards, and that they are 
enforced.  If the programmers disagree, they may find ways to circumvent it.  Safety requires the 
cooperation of everyone.  Include those who will actually do the programming, as well as 
software designers and software leads, in any meetings where coding standards will be 
discussed.   

Coding standards may also contain requirements for how the source code is to look, such as 
indentation patterns and comment formats.  However, it is best to separate these requirements 
into a separate coding style document.  This avoids the problem of developers shelving the 
coding standards because they disagree with the coding style.  While trivial in many ways, 
coding style requirements help make the software more readable by other developers.  In 
addition, they make it more difficult for “typical” errors to be inserted in the code, and easier for 
them to be found during an inspection. 

Create a checklist from the agreed-upon coding standard, for use during software formal 
inspections and informal reviews.  Enforce conformance to the standard during the inspections.  
Do not rate “style” issues as highly as safety issues.  In fact, style issues can be ignored, unless 
they seriously impact on the readability of the code, or the project decides that they must be 
enforced.  

Coding standards can be enforced some development tools.  See section 11.2 for details on what 
to look for when choosing development tools. 

 
Benefit Rating:  HIGH       Cost Rating: LOW

7.4.6 Defensive Programming 
Defensive programming is the art of making sure your software can gracefully handle anything 
thrown at it.  In other words, it is a collection of methods, techniques, and algorithms designed to 
prevent faults from becoming failures.  The faults (defects) you want to be concerned about can 
be in your own software (e.g. incorrect logic), another program in the system (e.g. sends invalid 
message),  hardware faults (e.g. sensor returns bad value), and operator error (e.g. mistyping 
command).  Consider the system to be a hostile environment that might throw anything at you 
and design your software to handle it gracefully. 
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A simple example of defensive programming is range checking on an input variable.  If the 
variable is only supposed to be in the range of 1 to 10, check for that before the variable is used.  
If the input variable is outside that range, the software needs to do something.  What that 
something is should be part of an overall strategy.  One option is to stop processing in that 
function and return with an error code.  Another is to replace the out-of-range value with a preset 
default value.  A third option is to throw an exception or use another high-level error handling 
method.  Of course, one option is to just proceed onward, allowing the fault (bad input number) 
to eventually lead to a failure.  This approach is not recommended. 

Another example of defensive programming is “come from” checks.  Critical routines test 
whether they should be executing at some particular instant.  If the checks are not validated, then 
the critical routine does not execute, and usually issues an error message.  One method of 
implementing these “come from” checks is for each preceding process to set a bit flag.  If all the 
appropriate bits are set, then the critical routine is authorized to execute. 

The strategy for dealing with defects, errors, and faults should be thought-out early in the 
program.  Will each function (routine, method, etc.) check input variables, or will variables be 
checked before they are passed during a function call? Will faults be handed up to higher-level 
error handling software? Will certain faults be allowed, and the resulting failure handled when 
(or if) it occurs? Regardless of the strategy chosen, consistency is important.  All functions, 
methods, modules, units, etc. should use the same strategy, unless there is a very good reason to 
deviate.   

Section 7.4.2 dealt with fault and failure tolerance.  Defensive programming is, in many ways, a 
lower-level part of that strategy.  However, it deals more with the actual implementation details, 
and is language-specific.  Defensive programming is discussed here because it needs to be 
planned into the software design, not tacked-on later.   

Section 8.4.1 calls for the development of a defensive programming checklist.  This checklist 
will be used by the programmers while developing the code.  The defensive programming 
strategy must be included in this checklist, as well as language-specific problem areas and good 
practices. 

Benefit Rating:  HIGH       Cost Rating: LOW 

7.4.7 Integration Test Planning 
At this development phase, the main components (units) of the software have been defined.  This 
is the time to determine the integration order of the units, and the integration tests that will be 
run.  Consider the hardware development schedule, as some units may require the real hardware 
to run on.  You do not want to hold up integration testing while waiting for a piece of hardware 
to be completed. 

Consider where to integrate the safety-critical components.  Integration testing is the time to look 
for unexpected interactions among the units.  Whether safety-critical units are integrated first 
with non-critical units added later, or the reverse, does not really matter.  However, testing for 
interactions with the safety-critical units as each unit is added is recommended.  One advantage 
of early integration of the safety-critical units is that they will undergo more testing than if they 
are integrated later in the process.  Each additional test opens up the possibility of finding 
defects.  Each defect-free test increases the confidence in the safety-critical unit. 
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7.4.8 Complexity 
The complexity of the software components and interfaces should be evaluated, because the level 
of complexity can affect the understandability, reliability and maintainability of the code.  
Highly complex data and command structures are difficult, if not impossible, to test thoroughly.  
Complex software is difficult to maintain, and updating the software may lead to additional 
errors.  Not all paths can usually be thought out or tested for, and this leaves the potential for the 
software to perform in an unexpected manner.  When highly complex data and command 
structures are necessary, look at techniques for avoiding a high a level of program interweaving.   

Linguistic and structural metrics exist for measuring the complexity of software, and are 
discussed below.  The following references provide a more detailed discussion of and guidance 
on the techniques. 

1. “Software State of the Art:  selected papers”, Tom DeMarco, Dorset House, NY, 
2000. 

2. “Black-Box Testing: Techniques for Functional Testing of Software and Systems”, 
Boris Beizer, Wiley, John & Sons Inc., 1995 

3. “Applying Software Metrics”, Shari Lawrence Pfleeger and Paul Oman, IEEE Press, 
1997 

4. “A Framework of Software Measurement”, Horst Zuse, Walter deGruyter, 1998 

5. “Metrics and Models in Software Quality Engineering”, Stephen Kan, Addison 
Wesley, 1995 

6. “Object-Oriented Metrics: Measures of Complexity”, Brian Henderson-Sellers, 
Prentice Hall, 1996 

7. “Software Metrics: A Rigorous and Practical Approach”, Norman E. Fenton, PWS 
Publishing, 1998 

8. “Function Point Analysis: Measurement Practices for Successful Software Projects”, 
David Garmus and David Herron, Addison, 2000 

Linguistic measurements assess some property of the text without regard for the contents (e.g., 
lines of code, function points, number of statements, number and type of operators, total number 
and type of tokens, etc).  Halstead's Metrics is a well-known measure of several of these 
arguments.  

Structural metrics focuses on control-flow and data-flow within the software and can usually be 
mapped into a graphics representation.  Structural relationships such as the number of links 
and/or calls, number of nodes, nesting depth, etc. are examined to get a measure of complexity.  
McCabe's Cyclomatic Complexity metric is the most well-known and used metric for this type of 
complexity evaluation. 

Object-oriented software does not always fit easily into the structured complexity metrics.  
Reference 6 (above) describes complexity metrics for OO software.  Such metrics include: 
Weighted Methods per Class, Depth of Inheritance Tree, Number of Children (subclasses), 
Degree of Coupling Between Objects, Degree of Cohesion of Objects, and Average Method 
Complexity.  
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Resources used by these techniques are the detailed design, high level language description, any 
source code or pseudocode, and automated complexity measurement tool(s).  Outputs from this 
process are the complexity measurements, predicted error estimates, and areas of high 
complexity identified for further analysis or consideration for simplification. 

Several automated tools are available that provide these metrics.  The level and type of 
complexity can indicate areas where further analysis or testing may be warranted.  Do not take 
the numbers at face value, however! Sometimes a structure considered highly complex (such as a 
case statement) may actually be a simpler, more straightforward method of programming, thus 
decreasing the risk of errors during maintenance. 

Recommendations: 
Apply one or more complexity estimation techniques, such as McCabe or Halstead, to the design 
products.  If an automated tool is available, the software design, pseudo-code, or prototype code 
can be run through the tool.  If there is no automated tool available, examine the critical areas of 
the detailed design and any preliminary code for areas of deep nesting, large numbers of 
parameters to be passed, intense and numerous communication paths, etc. The references above 
give detailed instructions on what to look for when estimating complexity. 

Complexity limits may be imposed.  Limiting complexity at all stages of software development 
helps avoid the pitfalls associated with high complexity software.  McCabe recommends a 
Cyclomatic Complexity limit of 10, though limits as high as 15 have been used successfully.  
“Limits over 10 should be reserved for projects that have several operational advantages over 
typical projects, for example experienced staff, formal design, a modern programming language, 
structured programming, code walkthroughs, and a comprehensive test plan.  In other words, a 
development group can pick a complexity limit greater than 10, but only if they make an 
informed choice based on experience and are willing to devote the additional testing effort 
required by more complex modules.” [93] 

Complexity involves more than just individual modules or classes.  Complexity of interfaces is 
another type of complexity that must be considered.  As the number of modules increases 
(perhaps due to limits on individual module complexity), the number of interfaces increases.  
Other elements of the software may also contribute to its complexity.  For example, global data 
introduces the possibility that virtually any part of the software can interact with any other part 
through their operations on the same data.  This can dramatically increase the complexity, 
especially for a human reader attempting to understand the program. [92]   

Reducing the complexity of software is a complicated task.  It involves balancing all the various 
types of complexity (module, interface, communication, etc.).  Often, reducing complexity in one 
area will increase the complexity of another area.  The correct balance will have to be 
determined by the project team.  Limit the complexity in areas that are not well understood, that 
will not undergo detailed inspections or reviews, or that may not be tested comprehensively.  
Higher complexity can be tolerated in software that the team has experience in, that are well 
understood, or that will be subjected to rigorous reviews and testing. 

Benefit Rating:  HIGH       Cost Rating: LOW
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7.4.8.1 Function Points 
The most common size metric used is software lines of code (SLOC).  While easy to measure, 
this metric has some problems.  The lines of code it takes to produce a specific function will vary 
with the language – more lines are needed in assembly language than in C++, for instance.  
Counting the lines can only be done once the code is available, and pre-coding estimates are 
often not accurate.  

Function Points are an alternative measurement to SLOC that focuses on the end-user, and not on 
the technical details of the coding.  Function Point Analysis was developed by Allan Albrecht of 
IBM in 1979, and revised in 1983.  The FPA technique quantifies the functions contained within 
software in terms which are meaningful to the software users.  The measure relates directly to the 
requirements which the software is intended to address.  It can therefore be readily applied 
throughout the life of a development project, from early requirements definition to full 
operational use.  

The function point metric is calculated by using a weighted count  of the number of the 
following elements: 

User inputs provide application-oriented data to the software. • 

• 

• 

• 

• 

User outputs provide application-oriented information to the user.  This includes reports, 
screens, error messages, etc.  Individual data items within a report are not counted 
separately. 

User inquiries are an on-line input that results in the generation of some immediate 
software response in the form of an on-line output.  Typing a question in a search engine 
would be an inquiry. 

Files include both physical and logical files (groupings of information). 

External interfaces are all machine readable interfaces used to transmit information to 
another system. 

The weighting factors are based on the complexity of the software. 

“Function Point Analysis: Measurement Practices for Successful Software Projects”, by David 
Garmus and David Herron (reference 8 in section 7.4.8), provides information on calculating and 
using function points.  The International Function Point Users Group (IFPUG, 
http://www.ifpug.org/) supports and promotes the use of function points. 

7.4.8.2 Function Point extensions 
Function points are business (database, transaction) oriented.  Extensions are needed for systems 
and engineering software applications, such as real-time, process control, and embedded 
software. 

Feature points are one such extension.  This metric takes into account algorithmic complexity.  A 
feature point value is the sum of the weighted function point factors and the weighted algorithm 
count.  Algorithms include such actions as inverting a matrix, decoding a bit string, or handling 
an interrupt.  Feature points were developed in 1986 by Capers Jones. 

The “3D function point” was developed by Boeing for real-time and embedded systems.  The 
Boeing approach integrates the data, functional, and control dimensions of a software system.  
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The data dimension is essentially the standard function point.  The functional dimension counts 
the transformations, which are the number of internal operations to transform the input data into 
output data.  The control dimension is measured by counting the number of transitions between 
states. 

7.4.9 Design for Maintainability and Reliability 
To build maintainable software, numerous metrics can be collected to evaluate the quality of the 
design from a maintainability point of view.  Metrics developed prior to object-oriented software 
include cyclomatic complexity, lines of code, and comment percentage.  Object-oriented metrics 
include weighted methods per class, response for a class, lack of cohesion of methods, coupling 
between objects, depth of inheritance tree, and number of children.  A  Maintainability Index was 
developed by the Software Engineering Institute (SEI), and is calculated using a combination of 
widely used and commonly available measures [103]. 

Basically, what these metrics do is evaluate a design for qualities that enhance the software's 
ability to be maintained over a long period of time.  A lot of the metrics provide a way for 
evaluating parts of the design and giving it a numerical value.  For instance, cohesion is the 
degree to which methods within a class are related to one another and work together to provide 
well-bounded behavior.  A high cohesion value indicates good class subdivision.  Lack of 
cohesion or low cohesion indicates more complexity and a higher likelihood of errors occurring. 

In addition to the metrics, a project should also set itself up to build maintainable software by 
doing the following:  

• Plan early - anticipating what and how software might be modified  

• Modular design - define subsets; simplify functionality (1 function/module)  

• Object-oriented design  

• Uniform conventions  

• Naming conventions  

• Coding standards  

• Documentation standards  

• Common tool sets  

• Configuration Management  

The Maintenance Phase (section 10.5) is also critical.  JSC estimates that in a large system, 
software life cycle costs typically exceeds hardware, with 80-90% of the total system cost going 
into software maintenance.  If this phase is not properly planned for, the extra effort that was put 
into the development phase will be wasted.  It is critical that the Maintenance Phase be planned 
for early so that maintainability is built into the software. 

The Maintenance Phase, including the transition from development to maintenance, needs to be 
planned in order to make the change without disrupting the system.  Planning needs to include 
how maintenance will be carried out, what types of changes will be covered, who is responsible 
for each aspect of maintenance, what is the process by which maintenance changes will be made, 
what resources will be needed, etc. 
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Building reliable software also depends on collecting the right metrics and analyzing them 
properly, along with having good processes in place.  The IEEE Standard 982.2-1988 lists 39 
metrics which can be used to determine software reliability.  The IEEE standard does not 
recommend to collect them all, but to do a determination of which ones will apply to your 
system.  It also recommends that different metrics be collected in the different life cycle phases 
and has a table that cross-references metrics and phases.  The standard also provides practical 
advice for building reliable software:  

• Do it right first - get skilled, competent personnel; early user involvement; use modern 
methods, languages and tools.  

• Detect it early; fix it as soon as possible - detect faults early through reviews, inspections, 
prototyping, simulation, etc.; reliability cannot be tested into a product  

• Monitor it - collect metrics; state objective of how a metric will be used, otherwise don't 
use it.  

AIAA/ANSI R-013-1992  has an 11 step generic procedure for estimating software reliability:  

• Identify application  

• Define the requirement  

• Allocate the requirement  

• Define failure  

• Characterize the operational environment  

• Select tests  

• Select modes  

• Collect data  

• Estimate parameters  

• Validate the model  

• Perform analysis  

The document also provides details of analysis procedures for some common engineering or 
management activities that can be aided by software reliability engineering technology.  Section 
6 of the document provides many software reliability estimation models. 

The IEEE Technical Council on Software Engineering (TCSE) Committee on Software 
Reliability Engineering has a web site with more information.  It is http://www.tcse.org/sre.    

A software reliability case can be written to provide justification of the approach taken and 
document evidence that verifies that the software meets reliability requirements.  The reliability 
case should be a living document that records what has been done in the various phases of 
software development pertaining to reliability. 
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Resources for more information: 

• IEEE Std 1219-1998 IEEE Standard For Software Maintenance  

• "Realities of Software Sustainment vs. Maintenance", Crosstalk magazine, May 1997  

• Review of "Practical Software Maintenance", Journal of Software Maintenance and 
Practice, May 2000  

• "A JPL Software Reliability Study and a Windows-based Software Reliability Tool" by 
Allen P. Nikora/JPL  

• "The Prediction of Faulty Classes Using Object-Oriented Design Metrics" by Emam and 
Melo, November 1999, National Research Council Canada  

• "A Practical Software-Reliability Measurement Framework Based on Failure Data" by 
Minyan, Yunfeng and Min, IEEE 2000 Proceedings Annual Reliability and 
Maintainability Symposium  

• "Software Quality Metrics for Object Oriented System Environments", 
http://ourworld.compuserve.com/homepages/qualazur/$swmesu2.htm  

• "Software Reliability Cases: The Bridge Between Hardware, Software and System Safety 
and Reliability", IEEE 1999 Proceedings Annual Reliability and Maintainability 
Symposium  

• "Maintainability Index Technique for Measuring Program Maintainability", 
http://www.sei.cmu.edu/activities/str/descriptions/mitmpm.html 

• "Software Design For Maintainability" from JSC  

• IEEE Std 982.2-1988 IEEE Guide for the Use of IEEE Standard Dictionary of Measures 
to Produce Reliable Software  

• AIAA/ANSI R-013-1992 Recommended Practice for Software Reliability  

 

7.5 Design Analysis 
The software preliminary (architectural) design process develops the high level design that will 
implement the software requirements.  All software safety requirements developed in Section 6.5 
are incorporated into the high-level software design as part of this process.  The design process 
includes identification of safety design features and methods (e.g., inhibits, traps, interlocks and 
assertions) that will be used throughout the software to implement the software safety 
requirements.   

As part of the architectural design process, the software requirements are allocated to software 
subsystems and various software layers (operating system, device driver, application, API, etc.).  
These higher-level components generally correspond to Computer Software Configuration Items 
(CSCIs).  Individual Computer Software Components (CSCs) are then identified  within these 
higher level components.  

Some of the CSCs will implement safety-critical requirements or features, or work with other 
safety-critical CSCs.  These CSCs are designated as safety-critical.  These components 
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implement the safety features, can potentially impact the safety features, or can potentially 
impact any other safety-critical component.  A software component that can write to a safety-
critical data area, even if it does not do so during normal operations, is safety-critical.  
Malfunctioning of that component will affect the safety of the system. 

Safety analyses are performed on the design to identify potential hazards and to define and 
analyze safety-critical components.  Early test plans are reviewed to verify incorporation of 
safety-related testing.  Software safety analyses begun earlier are updated as more detail becomes 
available. 

During the detailed (critical) design phase, the software artifacts (design documents) are greatly 
enhanced.  This additional detail now permits rigorous analyses to be performed.  Detailed 
design analyses can make use of products such as detailed design specifications, emulators and 
Pseudo-Code Program Description Language products (PDL).  Preliminary code produced by 
code generators within CASE tools should be evaluated. 

Many techniques to be used on the final code can be "dry run" on these design products.  In fact, 
it is recommended that all analyses planned on the final code should undergo their first iteration 
on the code-like products of the detailed design.  This will catch many errors before they reach 
the final code where they are more expensive to correct. 

7.5.1 Update Previous Analyses 
At this stage of development, the software functions begin to be allocated to components.  
Software for a system, while often subjected to a single development program, actually consists 
of a set of multipurpose, multifunction entities.  The software functions need to be subdivided 
into many components and further broken down to modules.  

A software safety checklist should have been produced during the requirements phase that lists 
all safety-related software requirements.  This checklist can be used to help verify that all safety 
requirements are incorporated into the design, and ultimately into the software code. 

Many previous analyses could only be started, as the necessary detail was lacking.  During the 
design process, these analyses should be revisited and updated.   

Table 7-4 Previous Software Safety Analyses 

Analysis Guidebook Section 
Preliminary Hazard Analysis (PHA) 2.3.1 
Software Subsystem Hazard Analysis 2.3.4 
Software Safety Requirements Flow-down 
Analysis 6.6.1 

Requirements Criticality Analysis 6.6.2 
Timing, Sizing, and Throughput 6.6.6 
Software Fault Tree Analysis 6.6.7 
Software Failure Modes and Effects Analysis 6.6.8 
Control-flow and Information-flow Analyses 6.6.3.2, 6.6.3.3 
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7.5.1.1 Criticality Analysis 
Some of the software components will be safety-critical, and some will not.  Each component 
that implements a safety-critical requirement must now be assigned a criticality index, based on 
the criticality analysis (See Section 6.6.2 Requirements Criticality Analysis).  The safety activity 
during the design phase is to relate the identified hazards to the Computer Software Components 
(CSCs) that may affect or control the hazards. 

Develop a matrix that lists all safety-critical Computer Software Components and the safety 
requirements they relate to.  Include any components that can affect the safety-critical 
components as well.  This would include components that write to data in memory shared with 
the safety-critical components, or that provide information to the safety-critical components.  
The safety-critical designation  should be applied to any component (class, module, subroutine or 
other software entity) identified by this analysis. 

7.5.1.2 Software Component Risk Assessment 
Once safety-critical Computer Software Components (CSCs) have been identified, they need to 
be prioritized based on risk.  Not all safety-critical components warrant further analysis beyond 
the design level, nor do all warrant the same depth of analysis.  Several factors determine how 
risky an individual safety-critical component is, including: 

• System risk index (Table 2-3) 

• Degree of software control of hazard or influence over other controls or mitigations 

• Amount of redundant control (e.g. hardware control as backup for software) 

• Complexity of the component 

• Timing criticality of the system 

While Sections 6.6.2 Requirements Criticality Analysis and 7.5.1.1 Criticality Analysis simply 
assign a “Yes” or “No” to whether each component is safety-critical, the Risk Assessment 
process takes this further.  Each safety-critical component is prioritized for degree of  
development effort, analysis and verification activities according to the five levels of ranking 
given previously in Table 3-3 Software Risk Matrix.  

The purpose of this activity is to identify safety-critical components that require extra 
attention (above that determined by the software safety effort (Table 3-5)) or less effort.  
While many of the techniques and analyses apply to the software as a whole, some can be 
applied to individual components at varying levels.  For example, Formal Inspections of 
safety-critical design or code elements should be performed.  Within that broad activity, 
the number of inspections for each component can be tailored.  High risk components 
may be inspected at all stages of design and coding.  Low risk components may only 
have a code inspection. 

Determination of the severity and the probability of failure for the software components is 
sometimes a source of contention between the safety group and the project.  It is best to sit down 
and work out any disagreements at an early stage.  Getting the software development group’s 
“buy in” on what is truly safety-critical is vital.  Software developers may give less attention to 
what they do not see as important.  Getting everybody on one “side” early prevents the problem 
of having to force the project to add safety code or testing later in the development cycle. 
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7.5.1.3 Software FTA and Software FMEA 
The preliminary Software Fault Tree generated in the requirements phase can now be expanded.  
Broad functions can be specified down to some component, at least at a high level.  In addition, 
the system is now understood in greater depth.  Failures that were credible during the 
requirements phase may no longer be possible.  Additional causes for the top hazard may be 
added to the tree. 

The individual components have now been specified, at least to some degree.  The Software 
Failure Modes and Effects Analysis (SFMEA) can be updated to reflect the improved 
understanding of the system.  The SFMEA will improve throughout the design phase, as more 
detail becomes available.  Be especially aware of the interactions of non-critical components 
with those that are safety-critical.  A non-critical component that can influence the safety-critical 
components becomes safety-critical itself. 

7.5.2 Design Safety Analysis 
Okay, you’ve got your list of SCCSCs that will be further analyzed.  Next you analyze the design 
of those components to ensure all safety requirements are specified correctly and completely.  In 
addition, review the design, looking for places and conditions that lead to unacceptable hazards.  
This is done by postulating credible faults or failures and evaluating their effects on the system.   

Consider the following types of events and failures: 

• input/output timing 
• multiple event 
• out-of-sequence event 
• failure of event 
• wrong event 
• inappropriate magnitude 
• incorrect polarity 
• adverse environment 
• deadlocking in a multitasking system 
• hardware failures  

Formal Inspections (see 6.5.5 Formal Inspections of Software Requirements) or design reviews 
can be used to augment this process.  As a design is reviewed, asking the “what if” questions 
with a diverse group of reviewers may lead to identification of weaknesses (or strengths) within 
the software.  Prototype, animation or simulation of aspects of the design may also show where 
the software can fail. 

7.5.2.1 Design Reviews 

Design reviews are conducted to verify that the design meets the requirements.  Often the 
reviews are formal (e.g. Preliminary Design Review (PDR) and Critical Design Review (CDR)) 
and for the whole system.  Separate software PDRs and CDRs may be held, or the software may 
be a part of the system review.   
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At all reviews, software safety must be addressed.  Does the design meet all the applicable 
software safety requirements?  Does the design use “best practices” to reduce potential errors?  
Are safety-critical components properly separated from the rest of the software? This is the time 
to make design changes, if necessary, to fulfill the safety requirements. 

Applicability matrices, compliance matrices, and compliance checklists are resources which can 
be used to assist in completing this task.  Output products from the reviews are engineering 
change requests, hazard reports (to capture design decisions affecting hazard controls and 
verification) and action items. 

7.5.2.2 Prototype and Simulation 
Some aspects of the safety system may require certain constraints to be met, such as response 
time or data conversion speed.  Creating a prototype or simulation early in the project may 
answer the question of whether the software (and system) will be able to meet that constraint. 

Prototypes are usually “quick and dirty” and used only for determining if the system can do what 
it needs to do.  Prototypes may also be used to get the customer’s input into a user interface.  
They can show if the user interface is confusing, especially regarding the safety-critical 
information or commands.  Different ways to present data to the operator can be prototyped, and 
the best way selected.  The operator can try hazardous commanding sequences, and either the 
interface or procedures can be “tweaked” if the process is not as anticipated. 

Simulations of all or part of the software and system can be used to test out some of the 
constraints, such as timing or throughput.  Full simulations can be used to “try out” various 
failure scenarios to see how the system will respond.  They can provide preliminary verification 
of the safety features designed into the system, or can show areas where more safety-related 
work will need to be done. 

Documented test results can confirm expected behavior or reveal unexpected behavior.  Keep in 
mind, however, that the tests are of a prototype or simulation.  The behavior of the real software 
may differ.  If the prototype or simulation shows that a requirement can not be met, then the 
requirement must be modified as appropriate.  

7.5.3 Independence Analysis 
The safety-critical Computer Software Components (CSCs) should be independent of non-
critical functions.  Independence Analysis is a way to verify that..  Those CSCs that are found to 
affect the output of safety-critical CSCs are designated as safety-critical themselves.  Areas 
where FCR (Fault Containment Region) integrity is compromised are identified.  As a side 
result, the interdependence between safety-critical components and other software components 
will also be identified. 

To perform this analysis, map the safety-critical functions to the software components, and then 
map the software components to the hardware hosts and FCRs.  All the input and output of each 
safety-critical component should be inspected.  Consider global or shared variables, as well as 
the directly passed parameters.  Consider “side effects” that may be included when a component 
is run.  If a non-critical CSC modifies a safety-critical one, either directly, by violation of an 
FCR or indirectly through shared memory, then it becomes safety-critical itself. 
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The exact definition of a component will vary with the type of software development.  Structured 
or procedural development will use functions and modules as components.  Higher-level 
components may be files (a collection of functions) or applications.  Dependence is determined 
by the calling structure (what module calls what module) and by access to global or shared data.  
Object-oriented development will use classes as the primary component.  Packages are one 
example of higher-level components.  Interactions among classes are determined by inheritance, 
composition (one class is a component of another), method calling sequences, and access to any 
shared data.   

Resources used in this analysis are the definition of safety-critical functions (MWF and MNWF) 
that need to be independent (from Section 6.5.3 Hazardous Commands), design  descriptions, 
and control flow and data diagrams.  

Design changes to achieve valid FCRs and corrections to safety-critical components may be 
necessary.  

 

7.5.4 Formal Inspections of Design Products 
The process of Formal Inspection begun in previous requirements phase (e.g. Section 6.5.5 
Formal Inspections) should continue during the design phase.  At the preliminary (architectural) 
design phase, Formal Inspection should focus on the major breakdown of software components, 
verifying the modularity and independence of all safety-critical components.  At the detailed 
level, pseudo-code or prototype code may be available for inspection. 

For the design inspections, create new checklists that are appropriate to the design products.  
Include “lessons learned” from the requirements phase and any previous inspections.   

While inspecting all design products would be best, projects may choose to inspect only 
the design aspects that deal with the safety-critical components.  Be aware, however, that 
unexpected interactions between non-critical and critical code may not be detected under 
these circumstances. 

 

Benefit Rating:  HIGH       Cost Rating: MODERATE

Benefit Rating:  HIGH      Cost Rating: LOW to MODERATE

7.5.5  Formal Methods and Model Checking 
Formal methods (sections 4.2.2.3 and 6.6.4) may be used only to create the software 
specification.  If this is the case, then the work was completed during the requirements phase.  
Otherwise, the formal specification may be “fleshed out” with increasing detail during as the 
software design progresses. 

The formal method “design” or model may be the complete architectural design, or it may be 
created in parallel with a “normal” design process.  If using the parallel approach (normal 
software development life cycle and formal methods on separate tracks, usually with separate 
teams), it is important to verify that the designs created by the development team match those of 
the formal methods team. 
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Model checking (section 6.6.5) may be used to verify the design still meets the required 
properties.   

7.5.6 Design Logic Analysis (DLA) 
Design Logic Analysis (DLA) evaluates the equations, algorithms, and control logic of the 
software design.  Logic analysis examines the safety-critical areas of a software component.  A 
technique for identifying safety-critical areas is to examine each function performed by the 
software component.  If it responds to, or has the potential to violate one of the safety 
requirements, it should be considered critical and undergo logic analysis.  A technique for 
performing logic analysis is to compare design descriptions and logic flows and note 
discrepancies. 

The ultimate, fully rigorous DLA uses the application of Formal Methods (FM).  Where FM is 
inappropriate, because of its high cost versus software of low cost or low criticality, simpler 
DLA can be used.  Less formal DLA involves a human inspector reviewing a relatively small 
quantity of critical software products (e.g. PDL, prototype code), and manually tracing the logic.  
Safety-critical logic to be inspected can include failure detection and diagnosis, redundancy 
management, variable alarm limits, and command inhibit logical preconditions. 

Commercial automatic software source analyzers can be used to augment this activity, but should 
not be relied upon absolutely since they may suffer from deficiencies and errors, a common 
concern of COTS tools and COTS in general. 

 

7.5.7 Design Data Analysis 
Design data analysis evaluates the description and intended use of each data item in the software 
design.  Data analysis ensures that the structure and intended use of data will not violate a safety 
requirement.  A technique used in performing design data analysis is to compare description to 
use of each data item in the design logic.    

Interrupts and their effect on data must receive special attention in safety-critical areas.  Analysis 
should verify that interrupts and interrupt handling routines do not alter critical data items used 
by other routines. 

The integrity of each data item should be evaluated with respect to its environment and host.  
Shared memory and dynamic memory allocation can affect data integrity.  Data items should 
also be protected from being overwritten by unauthorized applications.  Considerations of EMI 
and radiation affects on memory should be reviewed in conjunction with system safety. 

Benefit Rating:  HIGH      Cost Rating: MODERATE to HIGH

Benefit Rating:  HIGH       Cost Rating: MODERATE
 

7.5.8 Design Interface Analysis 

Design interface analysis verifies the proper design of a software component's interfaces with 
other components of the system.  The interfaces can be with other software components, with 
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hardware, or with human operators.  This analysis will verify that the software component's 
interfaces, especially the control and data linkages, have been properly designed.  Interface 
requirements specifications (which may be part of the requirements or design documents, or a 
separate document) are the sources against which the interfaces are evaluated. 

Interface characteristics to be addressed should include interprocess communication methods, 
data encoding, error checking and synchronization. 

The analysis should consider the validity and effectiveness of checksums, CRCs, and error 
correcting code.  The sophistication of error checking or correction that is implemented should 
be appropriate for the predicted bit error rate of the interface.  An overall system error rate 
should be defined, and budgeted to each interface. 

Examples of interface problems: 

• Sender sends eight bit word with bit 7 as parity, but recipient believes bit 0 is parity. 

• Sender transmits updates at 10 Hz, but receiver only updates at 1 Hz. 

• Message used by sender to indicate its current state is not understood by the receiving 
process. 

• Interface deadlock prevents data transfer (e.g., receiver ignores or cannot recognize 
“Ready To Send”). 

• User reads data from wrong address. 

• Data put in shared memory by one process is in “big endian” order, while the process that 
will use it is expecting “little endian”. 

• In a language such as C, where data typing is not strict, sender may use different data 
types than receiver expects.  (Where there is strong data typing, the compilers will catch 
this). 

Benefit Rating:  HIGH       Cost Rating: MODERATE

 

7.5.9 Design Traceability Analysis 
This analysis ensures that each safety-critical software requirement is covered and that an 
appropriate criticality level is assigned to each software element.  Tracing the safety 
requirements throughout the design (and eventually into the source code and test cases) is vital to 
making sure that no requirements are lost, that safety is “designed in”, that extra care is taken 
during the coding phase, and that all safety requirements are tested.  A safety requirement 
traceability matrix is one way to implement this analysis.  See section 6.4.2 Requirements 
Traceability and Verification for more information. 

Some of the requirements will deal with system constraints or restrictions.  They should include 
real world and environmental limitations.  Part of the traceability analysis should verify that the 
proposed design solution meets these constraints.  If new constraints are uncovered as part of this 
analysis, they should be flowed back up to the requirements.  

The design materials should describe all known or anticipated restrictions on a software 
component.  These design constraints must be clear to those who will develop the source code. 

NASA-GB-8719.13 160  



Restrictions or constraints to consider include: 

• Update timing, throughput and sizing constraints as per Section 6.6.6 Timing, Throughput 
And Sizing Analysis  

• Equations and algorithms limitations  

• Input and output data limitations (e.g., range, resolution, accuracy) 

• Design solution limitations 

• Sensor and actuator accuracy and calibration 

• Noise, EMI 

• Digital word length (quantization/roundoff noise/errors) 

• Actuator power or energy capability (motors, heaters, pumps, mechanisms, rockets, 
valves, etc.) 

• Capability of energy storage devices (e.g., batteries, propellant supplies) 

• Human factors, human capabilities and limitations [47] 

• Physical time constraints and response times 

• Off nominal environments (fail safe response) 

• Friction, inertia, backlash in mechanical systems 

• Validity of models and control laws versus actual system behavior 

• Accommodations for changes of system behavior over time: wear-in, hardware wear-out, 
end of life performance versus beginning of life performance, degraded system behavior 
and performance. 

7.5.10 Software Element Analysis 

Each software element that is not safety-critical is examined to assure that it cannot cause or 
contribute to a hazard.  When examining a software element, consider, at a minimum, the 
following ideas: 

Benefit Rating:  HIGH        Cost Rating: LOW

 Does the element interface with hardware that can cause a hazard? 

 Does the element interface with safety-critical software elements? 

 Can the software element tie up resources required by any safety-critical components? 

 Can the software element enter an infinite loop? 

 Does the software element use the same memory as safety-critical data, such that an error 
in addressing could lead to overwriting the safety-critical information? 

 Is priority inversion or deadlocking a possibility, and can it impact a safety-critical task? 

 Can the software element affect the system performance or timing in a way that would 
affect a safety-critical component? 
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 Does the software element call any functions also called by a safety-critical component? 
Can it change any aspect of that function, such that the safety-critical component will be 
affected? 

 Is the software element on the same platform and in the same partition as a safety-critical 
component? 

 

7.5.11 Rate Monotonic Analysis 
Rate Monotonic Analysis (RMA) is a mathematical method for predicting, a priori, whether a 
system will meet its timing and throughput requirements when the system is operational.  RMA 
works on systems that use static priority for the tasks.  This includes nearly all commercial 
operating systems.  RMA requires that timing information can be measured or reliably estimated 
for each task.  For systems with hard real-time deadlines (deadlines that absolutely must be met), 
RMA is a valuable tool. 

For further details on this technique, refer to publications by Sha and Goodenough, References 
[48] and [49].  A case study using RMA when integrating an intelligent, autonomous software 
system with Flight software, as part of the NASA New Millennium project, is discussed in 
reference [50]. 

 

7.5.12 Dynamic Flowgraph Analysis    
Dynamic Flowgraph Analysis is a relatively new technique that is not yet widely used and still in 
the experimental phase of evaluation.  It does appear to offer some promise, building on the 
benefits of conventional 6.6.7 Software Fault Tree Analysis (SFTA). 

The Dynamic Flowgraph Methodology (DFM) is an integrated, methodical approach to 
modeling and analyzing the behavior of software-driven embedded systems for the purpose of 
dependability assessment and verification.  The methodology has two fundamental goals: 1) to 
identify how events can occur in a system; and 2) identify an appropriate testing strategy based 
on an analysis of system functional behavior.  To achieve these goals, the methodology employs 
a modeling framework in which models expressing the logic of the system being analyzed are 
developed in terms of causal relationships between physical variables and temporal 
characteristics of the execution of software components. 

Further description of this method is given in the paper by Garrett, Yau, Guarro and 
Apostolakais [51]. 

Benefit Rating: MEDIUM      Cost Rating: MODERATE

Benefit Rating:  MEDIUM      Cost Rating: HIGH 

Benefit Rating:  LOW       Cost Rating: HIGH 
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7.5.13 Markov Modeling 

Markov Modeling techniques were developed for complex systems and some analysts have 
adapted these techniques for software intensive systems.  They can provide reliability, 
availability and maintainability data.  They model probabilistic behavior of a set of equipment as 
a continuous time, homogeneous, discrete state Markov Process.  The statistical probability of 
the system being in a particular macro state can be computed.  These statistics can be translated  
into a measure of system reliability and availability for different mission phases. 

However, attempting to apply these types of reliability modeling techniques to software is 
questionable because, unlike hardware, software does not exhibit meaningful (random) failure 
statistics.  Also, unlike hardware component failures, software failures are often not independent.  
Software errors depend on indeterminate human factors, such as alertness or programmer skill 
level. 

 

7.5.14 Requirements State Machines 
Requirements State Machines (RSM) are sometimes called Finite State Machines (FSM).  An 
RSM is a model or depiction of a system or subsystem, showing states and the transitions 
between the states.  Its goal is to identify and describe ALL possible states and their transitions. 

RSM analysis can be used on its own, or as a part of a structured design environment, (e.g., 
Object Oriented Design (4.2.2.2) and Formal Methods (4.2.2.3)). 

Whether or not Formal Methods are used to develop a system, a high level RSM can be used to 
provide a view into the architecture of an implementation without being engulfed by all the 
accompanying detail.  Semantic analysis criteria can be applied to this representation and to 
lower level models to verify the behavior of the RSM and determine that its behavior is 
acceptable.   

Details on using Requirements State Machines are given in Appendix E. 

Benefit Rating:  LOW       Cost Rating: HIGH 

Benefit Rating:  LOW       Cost Rating: HIGH 
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Chapter 8 Implementation 
It is during software implementation (coding) that software controls of safety hazards are 
actually realized.  Safety requirements have been passed down through the designs to the coding 
level.  Managers and designers must communicate all safety issues relating to the program sets 
and code components they assign to programmers.  Safety-critical designs and coding 
assignments should be clearly identified.  Programmers must recognize not only the explicit 
safety-related design elements but should also be cognizant of the types of errors which can be 
introduced into non-safety-critical code which can compromise safety controls.  Coding 
checklists should be provided to alert for these common errors.  

Code analysis verifies that the software correctly implements the verified design and does not 
violate safety requirements.  Having the source code permits real measurements of size, 
complexity and resource usage of the software.  These quantities could only be estimated during 
the design phase, and the estimates were often just educated guesses.  The results of code 
analyses may lead to significant redesign if the analyses show that the “guesses” were wildly 
incorrect.  However, the main purpose is to verify that the code meets the requirements 
(traceable through the design) and that it produces a safe system. 

Which analyses will be performed, and who will perform them, was part of the early project 
negotiations.  A tailored set of plans (software development, software assurance, and safety) 
should contain this information.  Table 8-3 lists the various safety-related techniques and 
analyses and provides broad tailoring suggestions (by safety effort). 

Some of the code analysis techniques mirror those used in design analysis.  However, the results 
of the analysis techniques might be significantly different than during earlier development 
phases, because the final code may differ substantially from what was expected or predicted.  
Many of these analyses will be undergoing their second iteration, since they were applied 
previously to the code-like products of the detailed design. 

There are some commercial tools available which perform one or more of these analyses in a 
single package.  These tools can be evaluated for their validity in performing these tasks, such as 
logic analyzers and path analyzers.  However, unvalidated COTS tools, in themselves, cannot 
generally be considered valid methods for formal safety analysis.  COTS tools are often useful to 
reveal previously unknown defects. 

Note that the definitive formal code analysis is that performed on the final version of the code.  
A great deal of the code analysis is done on earlier versions of code, but a complete check on the 
final version is essential.  For safety purposes it is desirable that the final version has no 
“instrumentation” (i.e., extra code) added to detect problems, such as erroneous jumps.  The code 
may need to be run on an instruction set emulator which can monitor the code from the outside, 
without adding the instrumentation, if such problems are suspected. 
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8.1 Tasks and Analyses 

Table 8-1 Software Implementation Tasks 

Software Engineering Tasks System and Software Safety 
Tasks 

Software Assurance or 
IV&V Tasks 

Create source code that 
implements the design, including 
safety features. 

Participate in Source code Formal 
Inspections of safety-critical code. 

Participate in Source code 
Formal Inspections 

Perform unit testing on 
individual source units.  Prepare 
and follow test procedures for 
safety-critical units. 

Review Analyses from Software 
Assurance for any safety 
implications. 

Verify unit tests adequately test 
the software and are actually 
performed. 

Maintain source code within a 
Configuration Management 
system, with adequate 
documentation of changes. 
[Section 4.5] 

Verify that safety-critical software 
is designated as such, and that it 
will receive special treatment by 
the programmers. 

Witness any formal unit 
testing. 
 

Follow coding standards and 
checklists. 
[Section 8.4.1] 

Review unit test plans and results 
for safety-critical units. 

Review previous analyses and 
update with new information. 
 

Participate in Formal Inspections 
and informal code reviews. 
[Section 8.5.7] 

Review previous analyses and 
update with new information. 

Audit software configuration 
management system to verify 
proper usage. 

Follow formal change process for 
changes to baselined system. 
[Section 4.5.1] 

Program Slicing for safety-critical 
variables or data.  
[Section 8.4.4] 

Audit software development to 
verify processes followed and 
coding standards used. 

Program Slicing for debugging. 
[Section 8.4.4] 

Safety Data Package for Phase III 
Safety Review 

Participate in formal change 
process (change control board) 

Test Coverage Analysis  
[Section 8.5.6] 

 Audit software change process. 

  
Code Logic Analysis 
[Section 8.5.1] 

  
Code Data Analysis 
[Section 8.5.2] 

  
Code Interface Analysis 
[Section 8.5.3] 

  
Unused Code Analysis 
[Section 8.5.4] 

  
Program Slicing 
[Section 8.4.4] 

  
Interrupt Analysis 
[Section 8.5.5] 
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8.2 Documentation and Milestones 
The following table lists documents that are commonly produced or updated for this phase of 
development: 

Table 8-2 Software Implementation Documentation 

Document Software Safety 

Source Code Safety-critical software should be so designated 
(via comment block or other mechanism). 
Traceability from safety requirements to the source 
code that implements them should be clear. 

Unit Test Plans and Procedures Safety-critical software units should have formal 
Unit Test Plans and Procedures.  Unit tests for non-
critical units may be informally documented, e.g. in 
a lab notebook. 

Unit Test Reports Formal reports should be written for safety-critical 
unit tests.  Reports for other unit tests may be 
informally documented (e.g. notes in a log book).   

Formal Inspection Reports All defects in safety-critical software should be 
tracked through correction and testing.  

Analysis Reports Identification of any safety-related aspects or safety 
concerns. 

Traceability Matrix Add traceability to software components (modules, 
classes, methods, etc.) and unit test cases. 

 
Milestones that will usually occur during this phase include: 

• Software Code reviews or Formal Inspections 
• Phase III Safety Review or other carrier- or program-specific safety review 

NASA-GB-8719.13 166  



8.3 Tailoring Guidelines 
See Section 3.2 Tailoring the Effort for how to determine the software safety effort required 
(full, moderate, or minimal).   

Table 8-3 Software Safety Effort for Implementation Phase 

Technique or Analysis Software Safety Effort Level 

 MIN MOD FULL 

  8.4.1 Coding Checklists and Standards  
 Unit Testing (Mandatory for safety-critical 

units) 
8.4.2

    
8.5.8 Safety-critical Unit Test Plans 

   8.4.4 Program Slicing of Safety-critical Data 

  8.5.1 Code Logic Analysis  
 Code Data Analysis    8.5.2

8.5.3    Code Interface Analysis  
 Unused Code Analysis  8.5.4   

   8.5.5 Interrupt Analysis 

8.5.6 Test Coverage Analysis    
8.5.7 Formal Inspections of Source Code    
8.5.9 Final Timing, Throughput, and Sizing 
Analysis    
 

Recommendation Codes 
 Mandatory  Highly Recommended 

 Recommended  Not Recommended 
 

Table 9-4 lists various tests that might be performed during unit (or integration) testing and 
provides tailoring guidance. 
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8.4 Software Development Techniques  

8.4.1 Coding Checklists and Standards 
Software developers should use coding checklists in software coding and implementation.  The 
coding checklists should be an on-going activity, beginning in the requirements phase.  As more 
knowledge is gained about the system (e.g. as the design progresses) the checklists can be 
updated with the subset of information relevant to the software implementation.  Checklists 
should contain questions that can serve as reminders to programmers to look for common 
defects. 

Coding standards are best used to identify unsafe functions or procedures that the software 
developer should avoid.  They may also contain programming style information, naming and 
commenting formats, and other aspects necessary to create consistency among the various 
components.  Coding standards should have been specified during the design phase (or earlier), 
and used throughout the coding (implementation) phase.  

Additional checklists that might be used include: 

• Safety Checklists.  A software safety checklist will list all software safety requirements 
for the project.  Use this checklist as a “reminder”, so that all safety features and 
requirements will be incorporated into the software code.  A software safety traceability 
matrix will also be helpful.  This matrix should map the requirements into the design 
elements, and ultimately into the source code components. 

• Defensive Programming Checklist.  This checklist should detail the chosen techniques 
to implement defensive programming.  The checklist should include both generic and 
language-specific techniques and practices.  Practices may be positive (“Always declare 
the C++ class destructor to be virtual”) or negative (“Do not use the memcpy library 
routine”).  Coding standards, Appendix H.14 (Safety Programming), Appendix H.5 
(Generic practices) and Appendices H.6 though H.12 (language-specific practices) are 
good starting places to develop this checklist.  Lessons learned from other projects, 
personal experience of the software developers, and other resources should also be 
included in the checklist. 

• Code Review Checklists.  These checklists are for use by the developer, when reviewing 
her own code or the code of a fellow developer.  The checklist should be derived from a 
“master” list that includes common errors as well as the project coding standards.  
Personalize the checklist to include individual “common” errors, such as forgetting to end 
a comment block.  This serves as a means to find those errors, and as reminder not to 
make the same mistakes.  Additional, more formal checklists should be used during 
Formal Inspections (see section 8.5.7).  These will emphasize the coding standards and 
the most common errors.  Common errors may be gleaned from the individual 
developers, from this guidebook, or from other sources such as textbooks and articles. 

• Requirements checklist.  Often during this development phase, missing requirements are 
identified, or new system requirements are added and flowed down to software, such as 
fault detection and recovery.  It may become apparent that various capabilities were 
assumed but not explicitly required, so were not implemented.  Checklists can help 
identify these missing requirements.  Once missing requirements are identified, they must 
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be incorporated by “back-filling” (updating) the requirements specifications prior to 
implementation in order to maintain proper configuration control.  This is less likely to be 
necessary if Formal Methods or Formal Inspections are used, at least during the 
requirements phase. 

• Automated tools that aid in enforcing coding standards, such as style checkers, context-
sensitive editors, lint, and profilers are discussed in section 11.2. 

8.4.2 Unit Level Testing 
The unit level tests were planned during the detailed design phase, when the functions within a 
unit were defined.  These tests are executed once the code compiles.  Since the code is likely to 
contain defects, these tests will be re-executed with each new iteration of the unit.  This testing is 
usually performed by the developer, though another developer in the group may perform the unit 
testing.  A basic entry criterion for unit testing is that the unit compile without errors. 

Unit level testing is important because it can access levels of the software that might not be 
reachable once the units are integrated.  Testing the possible inputs to a unit may not be feasible 
once the unit is integrated into the system.  Unit level testing can also identify implementation 
problems or performance issues requiring changes to the software.  The earlier these issues are 
identified, the less costly they are to fix. 

Special safety tests should be designed for any safety-critical units, if this level of code access is 
required.  These tests should demonstrate coverage of the safety test requirements (see Section 
9.4.7 Software Safety Testing).  Each safety test should have pass/fail criteria.  The test plan or 
software management plan should describe the review and reporting process for safety-critical 
components, including how to report problems discovered in unit test.  A test report should be 
written for unit tests of safety-critical items. 

The formality of the testing will vary with the software safety effort level (full, moderate, or 
minimum) and any extra tailoring.  Safety-critical units should always be formally tested (written 
test plan, witnessed testing, written test report) at least once, before they are integrated into the 
system.  For a full software safety effort, all unit tests may be formal.  For moderate, all units 
that may interact with the safety-critical unit should be considered for formal unit testing.   

Informal unit testing does not mean ad-hoc testing.  The tests should still be well thought out and 
documented.  Documentation could be in a lab notebook, in a Software Development Folder, or 
even as comments within the test code.  The point is to provide evidence both that the test was 
performed and that the test was thorough. 

Unit level tests come in two varieties: white-box and black-box.  White-box tests include all 
those where you must know something about the innards of the component.  Black-box tests 
check the inputs/outputs of the component only, and are not concerned about what happens 
inside.  White-box tests include those that check the path and branch coverage, loop 
implementation and statement execution.  Black-box tests look at the input domain (values), 
output ranges, and error handling. 

Unit tests for object-oriented software consists of testing the class methods in the same way that 
procedures and functions are tested in structured programs.  Construction, destruction, and 
copying of the class should also be tested. 
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Automated testing programs are available for many operating systems and languages.  When a 
test will be run more than a few times, such automated testing will usually save time and effort.  
Automated testing also removes the possibility of human error when a test procedure is followed.  
This removes the random error component, but does leave open the possibility of systematic 
error (i.e. the automated test makes the same error every time it is run). 

It is good practice for the developer to keep a list of bugs found while unit testing.  This list is a 
learning tool for the developer to discover what his common errors are.  Feed those errors back 
into the code review checklist, so they are found earlier (at review, rather than test) in the 
development cycle.  In a team where the developers are not penalized for the defects they find, 
sharing the bug list with other developers and the QA department can help in education and 
process improvement.  Developers can learn from the mistakes of others, and the metrics derived 
from them can help identify areas to focus on when trying to improve the software development 
process. 

Test coverage analysis verifies that an adequate number of tests have been performed.  See 
Section 8.5.6 Test Coverage Analysis for more details. 

Benefit Rating:  HIGH      Cost Rating: LOW to MODERATE

 

8.4.3 Refactoring 
Refactoring is a technique to restructure object-oriented code in a disciplined way.  It is the 
process of taking an object design and rearranging it in various ways to make the design more 
flexible and/or reusable.  There are several reasons you might want to do this, efficiency and 
maintainability being probably the most important.  Refactoring is included here because the 
technique is becoming more widely used, and it may have implications for safety-critical 
software. 

The term “refactoring” comes from mathematics,  where you factor an expression into an 
equivalence.  The factors are cleaner ways of expressing the same statement.  In software 
refactoring, there must also be equivalence. The beginning and end products must be 
functionally identical. 

Practically, refactoring means making code clearer, cleaner, simpler and elegant.  Refactoring is 
a good thing, in general, because complex expressions are typically built from simpler, more 
easily understood components.  Refactoring either exposes those simpler components or reduces 
them to the more efficient complex expression (depending on which way you are going). 

Some of the benefits of refactoring are:  

Unify duplicate code  • 

• 

• 

• 

• 

• 

Make the code read better (typically introducing more "why")  
Remove unused indirection  
Isolate existing logic from a needed change  
Replace one algorithm with another  
Make the program run faster 
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Be careful if using refactoring for safety-critical code, however.  Regression tests should show if 
the refactored unit is functionally identical to the original.  If it is not, then the code has been 
broken by the refactoring, or was broken originally and is now corrected.  Either way, you now 
have a problem that needs to be fixed. 

Too much refactoring may also invalidate code inspections that were done on the original code.  
Refactoring safety-critical units should be avoided.  If performed, a re-inspection of the code is 
necessary, preferably by the original Formal Inspection team. 

8.4.4 Program Slicing 
When you get a wrong answer from your software, program slicing can help.  It is a technique to 
trace back through the program and show you all, and only, the statements that affect the variable 
you are interested in.  In a large, complex program, slicing can focus in on the statements of 
interest.  

Slicing has been mainly used in debugging (finding the source of an error) and reengineering 
(pulling out part of a program to create a new program).  It can also be used to check the 
“lineage” of any safety-critical data.  Using a slicing tool to pull out all the statements that affect 
the safety-critical variable, and then examining the results, may point to errors or unexpected 
interactions with other, non-critical data.  You may even wish to do a Formal Inspection on the 
sliced code. 

Slicing comes in two forms: static and dynamic.  Static slicing, introduced in 1982, is done on 
the source code (compile-time).  Originally, it had to be an executable subset of the program, 
though that is not always necessary now.  Static slicing shows every statement that may impact 
the variable of interest.  Dynamic slicing first appeared around 1988, and works on programs as 
they operate (run-time).  While static slicing shows all the statements that may affect the variable 
of interest, dynamic slicing shows only those that do affect the variable as the software is 
exercised. 

Program slicing by hand would be a tedious job.  Tools are beginning to be available for a 
variety of languages.   

Program slicing to determine what statements can (or do) affect safety-critical data may find 
defective code that can unintentionally impact that data.  It can also be used as a verification that 
non-critical code does not interact with the safety-critical data. 

Benefit Rating:  MEDIUM      Cost Rating: MODERATE

8.5 Code Analyses 

8.5.1 Code Logic Analysis 
Code logic analysis evaluates the sequence of operations represented by the coded program.  
Code logic analysis will detect logic errors in the coded software.  This analysis is conducted by 
performing logic reconstruction, equation reconstruction and memory decoding.  For complex 
software, this analysis is applied only to safety-critical components.  Other software components 
may be analyzed if they are deemed important to the system functionality. 
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• Logic reconstruction entails the preparation of flow charts from the code and comparing 
them to the design material descriptions and flow charts.  

• Equation reconstruction is accomplished by comparing the equations in the code to the 
ones provided with the design materials.  

• Memory decoding identifies critical instruction sequences even when they may be 
disguised as data.  The analyst should determine whether each instruction is valid and if 
the conditions under which it can be executed are valid.  Memory decoding should be 
done on the final un-instrumented code. 

This analysis is tedious if done by hand, and automatic tools are sparse.  Implementation errors, 
from the design into the code, are possible, but are not the primary source of problems.  Other 
methods, such as Formal Inspections, will usually find many of the same errors as this analysis.   

 

8.5.2 Code Data Analysis 
Code data analysis concentrates on data structure and usage in the coded software.  Data analysis 
focuses on how data items are defined and organized.  Ensuring that these data items are defined 
and used properly is the objective of code data analysis.  This is accomplished by comparing the 
usage and value of all data items in the code with the descriptions provided in the design 
materials. 

Of particular concern to safety is ensuring the integrity of safety-critical data against being 
inadvertently altered or overwritten.  For example, check to see if interrupt processing is 
interfering with safety-critical data.  Also, check the “typing” of safety-critical declared 
variables. 

 

8.5.3 Code Interface Analysis 

Benefit Rating:  LOW       Cost Rating: HIGH 

Benefit Rating:  MEDIUM t Rating: MODERATE     Cos

Code interface analysis verifies the compatibility of internal and external interfaces of a software 
component.  A software component is composed of a number of code segments working together 
to perform required tasks.  These code segments must communicate with each other, with 
hardware, other software components, and human operators to accomplish their tasks.  

Each of these interfaces is a source of potential problems.  Code interface analysis is intended to 
verify that the interfaces have been implemented properly.  Check that parameters are properly 
passed across interfaces.  Verify that data size, measurement unit, byte sequence, and bit order 
within bytes are the same on all sides of the interface. 

Benefit Rating:  HIGH       Cost Rating: MODERATE
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8.5.4 Unused Code Analysis 
A common real world coding error is generation of code which is logically excluded from 
execution; that is, preconditions for the execution of this code will never be satisfied.  Such code 
is undesirable for three reasons: 

1. It is potentially symptomatic of a major error in implementing the software design. 

2. It introduces unnecessary complexity and occupies memory or mass storage which is 
often a limited resource. 

3. The unused code might contain routines which would be hazardous if they were 
inadvertently executed (e.g., by a hardware failure or by a Single Event Upset.  SEU is a 
state transition caused by a high speed subatomic particle passing through a 
semiconductor - common in nuclear or space environments). 

There is no particular analysis technique for identifying unused code.  However, unused code is 
often identified during the course of performing other types of code analysis.  Unused code can 
be found during Formal Inspections, Code Logic Analysis, or during unit testing with code 
coverage analyzer tools. 

Care should be taken to ensure that every part of the code is eventually exercised (tested) at some 
time, within all possible operating modes of the system. 

Benefit Rating:  MEDIUM      Cost Rating: MODERATE

 

8.5.5 Interrupt Analysis 
Interrupt Analysis looks at how interrupts are used by the software.  The effect of interrupts on 
program flow and data corruption is the primary focus of this analysis.  Can interrupts lead to 
priority inversion or prevent a high priority or safety-critical task from completing?  If interrupts 
are locked out for a period of time, can the system stack incoming interrupts to prevent their 
loss?  Can a low-priority process interrupt a high-priority process and change critical data? 

When performing interrupt analysis, consider the following areas of the code: 
Program segments/components where interrupts are inhibited (locked out).  Look at 
how long the interrupts are inhibited and whether the system can buffer interrupts for this 
period of time.  The expected and maximum interrupt rates would be needed to check for 
buffering capacity.  Identify impacts from lost interrupts.  Look for possible infinite 
loops. 

• 

• 

• 

Re-entrant code.  Re-entrant code is designed to be interrupted without loss of state 
information.  Check that re-entrant components have sufficient data saved for each 
interruption, and that the data and system state are correctly restored.  Make sure that 
components that need to be re-entrant are implemented as such. 
Interruptible code segments/components.  Make sure that timing-critical areas are 
protected from interrupts, if a delay would be unacceptable.  Check for sequences of 
instructions that should not be interrupted.   

NASA-GB-8719.13 173  



Priorities.  Look over the process priorities of the real-time tasks.  Verify that time-
critical events will be assured of execution.  Also consider the operator interface.  Will 
the interface update with important or critical information in a timely fashion? 

• 

• Undefined interrupts.  What happens when an undefined interrupt is received?  Is it 
ignored?  Is any error processing required? 

Benefit Rating:  HIGH        Cost Rating: LOW

 

8.5.6 Test Coverage Analysis 
Test coverage analysis (also called code coverage analysis) is the process of: 

• Identifying areas of a program not exercised by a set of test cases. 

• Identifying redundant test cases that do not increase coverage. 

• Providing a quantitative measure of code coverage. 

Various types of “coverage” can be measured.  Each has advantages and disadvantages.  Ideally, 
all varieties of test coverage would be used.  In reality, usually only a subset is used.  For safety-
critical code, Table 9-4 recommends what types of coverage to verify, depending on the software 
safety effort for the project. 

There is a strong connection between software complexity and amount of testing required.  For 
example, “numerous studies and general industry experience have shown that the cyclomatic 
complexity measure correlates with errors in software modules.  Other factors being equal, the 
more complex a module is, the more likely it is to contain errors.” [93] Since complex 
components are more likely to have errors, testing should focus on these components, though not 
to the exclusion of all others. 

The types of Test Coverage include: 

• Statement Coverage verifies that each executable statement is executed.  The chief 
disadvantage of statement coverage is that it is insensitive to some control structures, 
such as loops, logical operators, and switch statements.  Also, test cases generally 
correlate more to decisions than to statements.  

• Decision Coverage verifies that Boolean expressions tested in control structures (such as 
if and while) evaluated to both true and false.  Additionally, this measure includes 
coverage of switch-statement cases, exception handlers, and interrupt handlers.  A 
disadvantage is that this measure ignores branches within Boolean expressions which 
occur due to short-circuit operators.  

• Condition Coverage is similar to decision coverage.  It verifies the true or false outcome 
of each Boolean sub-expression, separated by logical-and and logical-or if they occur. 
Condition coverage measures the sub-expressions independently of each other.  

• Multiple Condition Coverage reports whether every possible combination of Boolean 
sub-expressions occurs.  As with condition coverage, the sub-expressions are separated 
by logical-and and logical-or, when present.  A disadvantage of this measure is that it can 
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be tedious to determine the minimum set of test cases required, especially for very 
complex Boolean expressions.  

• Path Coverage verifies that each of the possible paths in each function has been 
followed.  A path is a unique sequence of branches from the function entry to the exit.  
Since loops introduce an unbounded number of paths, this measure considers only a 
limited number of looping possibilities.  Path coverage has the advantage of requiring 
very thorough testing.  Path coverage has two severe disadvantages: 1) the number of 
paths is exponential to the number of branches and 2) many paths are impossible to 
exercise due to relationships of data.  

• Function Coverage reports whether each function or procedure was invoked.  It is useful 
during preliminary testing to assure at least some coverage in all areas of the software.   

• Call Coverage verifies that each function call has been executed.  

• Loop Coverage reports whether each loop body was executed zero times, exactly once, 
and more than once (consecutively). This measure determines whether while-loops and 
for-loops execute more than once.  

• Race Coverage reports whether multiple threads execute the same code at the same time.  
It helps detect failure to synchronize access to resources.  

• Relational Operator Coverage reports whether boundary situations occur with 
relational operators (<, <=, >, >=).  The hypothesis is that boundary test cases find off-
by-one errors and mistaken uses of wrong relational operators such as < instead of <=.  

Many tools are available to provide the test coverage analysis.  They are often bound with, or can 
be integrated with, automated testing tools.  Testing tools will be operating system and language 
dependent.  The coverage tools often require instrumentation (adding extra code) of the source 
code. Section 9.5.1 provides a list (sample) of available tools. 

8.5.7 Formal Inspections of Source Code 
Formal Inspections, introduced in Section 6.5.5 Formal Inspections, should be performed on the 
safety-critical software components, at a minimum.  Consider doing Formal Inspections on other 
complex or critical software components.  Formal Inspections are one of the best methodologies 
available to evaluate the quality of code components and program sets.  Having multiple eyes and 
minds review the code, in a formal way, makes errors and omissions easier to find.   

Checklists should be developed for use during formal inspections to facilitate inspection of the 
code.  They should include: 

• requirements information for components under review 

• design details for components under review 

• coding standards (subset/most important) 

• language-independent programming errors 

• language-specific programming errors 
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Appendix H contains a sample checklists of common errors, both independent of language and 
language specific.  

 

8.5.8 Safety-Critical Unit Test Plans 
Because unit tests are usually in the hands of the software developers, they are often not 
reviewed by software assurance or safety.  However, safety-critical units must be treated more 
formally.  Written test plans should be produced and reviewed by Software Assurance and 
Software Safety.  Ideally, the plans should be Formally Inspected. 

Software Assurance and Software Safety should witness tests of safety-critical units.  Formal test 
reports should be written for these tests, and the test results reviewed by Software Assurance and 
Software Safety. 

The goal of this formal activity is not to create more useless paperwork.  The earlier problems 
are found, the less costly they are to fix.  Also, some aspects of the safety-critical code may not 
be accessible once it is integrated.  These tests may be the only time certain safety-critical 
components can be thoroughly tested.  Documentation is required to prove adequate safety 
testing of the software.  

8.5.9 Final Timing, Throughput, and Sizing Analysis 
With the completion of the coding phase, the timing, throughput, and sizing parameters can be 
measured.  The size of the executable component (storage size) is easily measured, as is the 
amount of memory space used by the running software.  Special tests may need to be run to 
determine the maximum memory used, as well as timing and throughput parameters.  Some of 
these tests may be delayed until the testing phase, where they may be formally included in 
functional or load/stress tests.  However, simple tests should be run as soon as the appropriate 
code is stable, to allow verification of the timing, throughput, and sizing requirements.  The 
earlier a problem is discovered, the easier and cheaper it is to fix. 

 

8.5.10 Update Previous Analyses 

Benefit Rating:  HIGH       Cost Rating: MODERATE

Benefit Rating:  HIGH t Rating: LOW       Cos

Software Fault Tree Analysis and Software Failure Modes and Effects Analysis 
Review any changes to the design that developed during the coding phase.  Often creating the 
actual code will point out problems with the design, or elements that are missing.  If the design 
was modified during this phase, review the Software FMEA and FTA and make any updates as 
necessary. 

Complexity Measurement 
Now that code exists, the complexity metrics can be recalculated.  Complex code should be 
evaluated by a human.  Some logic structures (such as case statements) may be flagged as 
complicated, when they really improve the comprehensibility of the software.   

NASA-GB-8719.13 176  



Complex software increases the number of errors, while making it difficult to find them.  This 
makes the software more likely to be unstable, or suffer from unpredictable behavior.  Reducing 
complexity is generally a good idea, whenever possible.  Modularity is a useful technique to 
reduce complexity.  Encapsulation can also be used, to hide data and functions from the “user” 
(the rest of the software), and prevent their unanticipated execution. 

Software flagged as complex should be analyzed in more depth, even if it is not safety-critical.  
These components are prime candidates for formal inspections and the logic/data/constraint 
analyses. 

Design Traceability Analysis 
The criteria for design constraints applied to the detailed design in Section 7.5.9 Design 
Traceability Analysis, can be updated using the final code.  At the code phase, real testing can be 
performed to characterize the actual software behavior and performance in addition to analysis. 

The physical limitations of the processing hardware platform should be addressed.  Timing, 
sizing and throughput analyses should also be repeated as part of this process (see section 8.5.9) 
to ensure that computing resources and memory available are adequate for safety-critical 
functions and processes. 

Underflows or overflows in certain languages (e.g., Ada) give rise to “exceptions” or error 
messages generated by the software.  These conditions should be eliminated by design if 
possible.  If they cannot be precluded, then error handling routines in the application must 
provide appropriate responses, such as automatic recovery, querying the user (retry, etc.), or 
putting the system into a safe state. 
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Chapter 9 Testing 
Testing is the operational execution of a software component in a real or simulated environment.  
Software testing verifies analysis results, investigates program behavior, and confirms that the 
program complies with safety requirements.  Software testing beyond the unit level (integration 
and system testing) is usually performed by someone other than the developer, except in the 
smallest of teams.   

Normally, software testing ensures that the software performs all required functions correctly, 
and can exhibit graceful behavior under anomalous conditions.  Safety testing focuses on 
locating program weaknesses and identifying extreme or unexpected situations that could cause 
the software to fail in ways that would violate safety requirements.  Safety testing complements 
rather than duplicates developer testing.   

One example of a special safety testing technique is software fault injection.  It has been 
successfully used to test safety-critical software (e.g. BART in San Francisco), and also for 
security testing and COTS verification.  Faults are inserted into code before starting a test and 
the response is observed.  In addition, all boundary and performance requirements should be 
tested at, below and above the stated limits.  It is necessary to see how the software system 
performs, or fails, outside of supposed operational limits. 

The safety testing effort should be encompass those software requirements classed as 
safety-critical items, but is not necessarily limited to just those items.  If the safety-critical 
components are separated from the others via a partition or firewall, the integrity of the 
partitioning must be tested.  In addition, testing should be performed to verify that non-safety-
critical software cannot adversely impact the safety-critical software.  Remember that any 
software that impacts or helps fulfill a safety-critical function is safety-critical as well.  Safety 
testing must verify that all safety requirements have been correctly implemented.  The actual 
safety tests can be performed independently or as an integral part of the developer's test effort.   

Integration testing is often done in a simulated environment, and system testing is usually done 
on the actual hardware.  However, hazardous commands or operations should be tested in a 
simulated environment first.  You don’t want to start the rocket engines or set off the ordnance 
by accident!   

Any problems discovered during testing should be analyzed and documented in discrepancy 
reports and summarized in test reports.  Discrepancy reports contain a description of the 
problems encountered, recommended solutions, and the final disposition of the problem.  These 
reports are normally generated after the software has reached a level of maturity (e.g. is 
baselined or in beta version).  Changes that result from identified problems usually go through a 
software Change Control Board for discussion and approval or rejection.  These problem reports 
need to be tracked, and management needs to have visibility into the past and current software 
problems. 

As software is being developed, defect information may be kept in a defect tracking database.  
Such a database not only allows tracking of problems for a particular project, but can serve as a 
source for “lessons learned” and improvement for subsequent projects.  When the software 
“moves up” into the formal system, some defects should be written up as problem reports for 
continued tracking.  In particular, defects that may indicate system problems (e.g. problems 
when running on incomplete flight hardware that could not be reproduced) or fixes that had far-
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reaching impacts (e.g. many components or an interface affected) should be considered for 
“formal” problem reports. 

9.1 Tasks and Analyses 

Table 9-1 System Testing Tasks 

Software Engineering Tasks System and Software Safety 
Tasks 

Software Assurance or 
IV&V Tasks 

Integrate individual software 
units into a complete software 
system.  Test throughout the 
process. 

Participate in Test Plan and 
Procedures Formal Inspections 
when safety-critical functions 
are to be tested. [Section 
9.5.2] 

Participate in Formal 
Inspections of test plans and 
procedures. [Section 9.5.2] 

Integrate the software with the 
hardware system and perform 
testing throughout the process. 

Review Analyses from 
Software Assurance for any 
safety implications. 

Analyze test reports for 
completeness and 
requirements coverage. 
[Section 9.5.4] 

Create and follow written test 
procedures for integration and 
system testing.* 

Verify all safety requirements 
have been adequately tested 
(Safety Verification Matrix). 

Verify all requirements have 
been adequately tested. 
[Section 9.5.1] 

Perform regression testing 
after each change to the 
system.* 

Witness testing of safety-
critical software and special 
safety tests. 
[Section 9.4.8] 

Review problem reports 

Participate in Formal 
Inspections of test plans and 
procedures. [Section 9.5.2] 

Review problem reports for 
safety implications. 

Witness all integration tests, 
or at least those involving 
safety-critical units. [Section 
9.4.8] 

Prepare Test Report upon 
completion of a test. 

Reliability Modeling [Section 
9.5.3] 

Witness all system tests. 
[Section 9.4.8] 

Verify COTS software 
operates as expected. 

Review previous analyses and 
update with new information. 

Review previous analyses and 
update with new information. 

Use formal Configuration 
Management system for 
source code , executables, test 
plans and procedures, and test 
data. [Section 4.5] 

Safety Verification Tracking 
Log Closeout  

Follow problem reporting and 
corrective action procedures 
when defects are detected. 

  

* Testing may be performed by a separate Test group 
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9.2 Documentation and Milestones 
The following table lists documents that are commonly produced for this phase of development: 

Table 9-2 Software Testing  Documentation 

Document Software Safety Section 

Integration Test Plan Testing should exercise the connections between safety-
critical units and non-critical units or systems. 

System Test Plan Extreme, but possible, environments should be tested 
(heavy load, other stressors) to verify the system 
continues to function safely within all plausible 
environments. 

Test Reports Verify test was completed as planned and all safety-
critical elements were properly tested.  Report results of 
testing safety-critical interfaces versus the 
requirements outlined in the Software Test Plan.  
Any safety-critical findings should be used to update 
the hazard reports. 

Configuration Management Audit Report Verify that configuration management system is properly 
used, especially for safety-critical elements. 

Formal Inspections Report All defects related to safety-critical elements should be 
considered major (must fix). 

Analysis Reports Identification of any safety-related aspects or safety 
concerns. 

Problem or Failure Reports (with Corrective 
Action) 

Problem or Failure reports should be reviewed for any 
safety implications.  Any corrective action should be 
verified to not cause an additional hazard, or to adversely 
impact any other safety-critical software or hardware. 

Traceability Matrix Verify that requirements are traceable all the way into the 
test cases.  Verify that all safety requirements have been 
adequately tested. 

 

Milestones that will usually occur during this phase include: 

• Test Readiness Review 

• Safety Verification Tracking Log Closeout (post Phase III) 
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9.3 Tailoring Guidelines 
See Section 3.2 Tailoring the Effort for how to determine the software safety effort required 
(full, moderate, or minimal).  . 

Table 9-3 Software Safety Effort for Testing Phase 

Technique or Analysis Safety Effort Level 

 MIN MOD FULL 

9.4.3 Integration Testing    
9.4.5 System & Functional Testing 
(Number of tests is tailorable)    

9.4.6 Regression Testing (amount of 
testing is tailorable)    

9.4.7  Software Safety Testing    
12.1.4 OTS Analyses and Test    
9.5.1 Test Coverage Analysis    
9.5.2 Formal Inspections of Test Plan and 
Procedures    

9.5.3 Reliability Modeling    
9.5.4 Test Results Analysis    
 

Recommendation Codes 
 Mandatory  Highly Recommended 

 Recommended  Not Recommended 
 

The tables below list various tests that might be performed.  Recommendations are based on a 
balance of the benefits to the cost.  What tests are actually performed should be determined by 
project-specific factors.  The availability of automated tools or analysis software, the cost of such 
tools or analysis software, number of team members and their level of knowledge, and schedule 
are some factors that will influence the number of tests performed.  Use the tailoring 
recommendations in the following tables as a starting point for further tailoring. 

Table 9-4 Dynamic Testing (Unit or Integration Level) 

Technique Safety Effort Level 
 MIN MOD FULL 

Typical sets of sensor inputs    

Test specific functions    

Volumetric and statistical tests    

Test extreme values of inputs    

Test all modes of each sensor    

Every statement executed once    
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Technique Safety Effort Level 
Every branch tested at least once    

Every predicate term tested    

Every loop executed 0, 1, many, max-1, 
max, max+1 times    

Every path executed    

Every assignment to memory tested    

Every reference to memory tested    

All mappings from inputs checked    

All timing constraints verified    

Test worst case interrupt sequences    

Test significant chains of interrupts    

Test Positioning of data in I/O space    

Check accuracy of arithmetic    

All components executed at least once    

All invocations of components tested    

 

Table 9-5 Software System Testing 

Technique Safety Effort Level 

 MIN MOD FULL 

Simulation (Test Environment)    

Load Testing [9.4.5]    

Stress Testing [9.4.5]    

Boundary Value Tests    

Test Coverage Analysis [9.5.1]    

Functional Testing [9.4.5]    

Performance Monitoring    

Disaster Testing [9.4.5]    

Resistance to Failure Testing [9.4.5]    

“Red Team” Testing [9.4.5]    

Regression Testing [9.4.6] (Tailored to 
the level of original testing)    
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9.4  Software Integration and Test 
Various tests that can be performed include: 

• 

* 

* 

• 

* 

* 

* 

* 

* 

* 

* 

* 

Integration Testing  

Unit integration and testing 

Integration of the software with the hardware 

System Testing 

Functional testing 

Performance testing 

Load testing 

Stress testing 

Disaster testing 

Stability testing 

Acceptance testing 

“Red Team” testing 

Note that the “system test” is not a single test, but a collection of possible tests to perform.  
These tests are done using the full system (hardware and software), though a simulator may be 
used under certain circumstances.  The point of the system tests is to exercise the system in such 
a way that all functionality is tested, its limits are known, and its ability to survive faults and 
failures is well understood. 

A very useful tool for testers, developers, and project management is a high level view of 
all test activities for a system (including subsystems and software).  This information may 
be displayed in a large table (often as a wall chart) listing all the various levels of testing 
in the column headers.  Pertinent data that differentiates each level of testing (e.g., who is 
responsible, when will it occur, what is the objective of the test, what is the characteristic 
of the test data, what environment is used to execute the tests, what products are 
produced, and what is the entry and exit criteria) is placed in the table rows. 

9.4.1 Testing Techniques and Considerations 
This section provides an introduction to software testing for those unfamiliar with it.  The section 
includes descriptions of various tests, how to write test cases, what to do when a defect is found, 
and suggestions for dealing with a tight testing schedule.  If you are familiar with software 
testing, you may wish to skip to section 9.4.2 which continues the safety-specific information. 

All of this section is taken, with permission, from the Frequently Asked Questions (FAQ) created 
by Rick Hower, © 1996-2000.  The website is “Software QA and Testing Frequently-Asked-
Questions”,  http://www.softwareqatest.com/, and is an excellent introduction to software testing. 

NASA-GB-8719.13 183  

http://www.softwareqatest.com/


9.4.1.1 What kinds of testing should be considered?  
 Black box testing - not based on any knowledge of internal design or code.  Tests are 

based on requirements and functionality.  

 White box testing - based on knowledge of the internal logic of an application's code.  
Tests are based on coverage of code statements, branches, paths, and conditions.  

 unit testing - the most 'micro' scale of testing; to test particular functions or code 
components.  Typically done by the programmer and not by testers, as it requires detailed 
knowledge of the internal program design and code.  Not always easily done unless the 
application has a well-designed architecture with tight code; may require developing test 
driver modules or test harnesses.  

 incremental integration testing - continuous testing of an application as new functionality 
is added; requires that various aspects of an application's functionality be independent 
enough to work separately before all parts of the program are completed, or that test 
drivers be developed as needed; done by programmers or by testers.  

 integration testing - testing of combined parts of an application to determine if they 
function together correctly.  The 'parts' can be code components, individual applications, 
client and server applications on a network, etc.  This type of testing is especially relevant 
to client/server and distributed systems.  

 functional testing - black-box type testing geared to functional requirements of an 
application; this type of testing should be done by testers.  This doesn't mean that the 
programmers shouldn't check that their code works before releasing it (which of course 
applies to any stage of testing.)  

 system testing - black-box type testing that is based on overall requirements 
specifications; covers all combined parts of a system.  

 end-to-end testing - similar to system testing; the 'macro' end of the test scale; involves 
testing of a complete application environment in a situation that mimics real-world use, 
such as interacting with a database, using network communications, or interacting with 
other hardware, applications, or systems if appropriate.  

 sanity testing - typically an initial testing effort to determine if a new software version is 
performing well enough to accept it for a major testing effort.  For example, if the new 
software is crashing systems every 5 minutes, bogging down systems to a crawl, or 
destroying databases, the software may not be in a 'sane' enough condition to warrant 
further testing in its current state.  

 regression testing - re-testing after fixes or modifications of the software or its 
environment.  It can be difficult to determine how much re-testing is needed, especially 
near the end of the development cycle.  Automated testing tools can be especially useful 
for this type of testing.  

 acceptance testing - final testing based on specifications of the end-user or customer, or 
based on use by end-users/customers over some limited period of time.  

 load testing - testing an application under heavy loads, such as testing of a web site under 
a range of loads to determine at what point the system's response time degrades or fails.  
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 stress testing - term often used interchangeably with 'load' and 'performance' testing.  
Also used to describe such tests as system functional testing while under unusually heavy 
loads, heavy repetition of certain actions or inputs, input of large numerical values, large 
complex queries to a database system, etc.  

 performance testing - term often used interchangeably with 'stress' and 'load' testing.  
Ideally 'performance' testing (and any other 'type' of testing) is defined in requirements 
documentation or QA or Test Plans.  

 usability testing - testing for 'user-friendliness'.  Clearly this is subjective, and will 
depend on the targeted end-user or customer.  User interviews, surveys, video recording 
of user sessions, and other techniques can be used.  Programmers and testers are usually 
not appropriate as usability testers.  

 install/uninstall testing - testing of full, partial, or upgrade install/uninstall processes.  

 recovery testing - testing how well a system recovers from crashes, hardware failures, or 
other catastrophic problems.  

 security testing - testing how well the system protects against unauthorized internal or 
external access, willful damage, etc; may require sophisticated testing techniques.  

 compatibility testing - testing how well software performs in a particular 
hardware/software/operating system/network/etc. environment.  

 user acceptance testing - determining if software is satisfactory to an end-user or 
customer.  

 comparison testing - comparing software weaknesses and strengths to competing 
products.  

 alpha testing - testing of an application when development is nearing completion; minor 
design changes may still be made as a result of such testing.  Typically done by end-users 
or others, not by programmers or testers.  

 beta testing - testing when development and testing are essentially completed and final 
bugs and problems need to be found before final release.  Typically done by end-users or 
others, not by programmers or testers. 

9.4.1.2 What steps are needed to develop and run software tests?  
The following are some of the steps to consider:  

 Obtain requirements, functional design, and internal design specifications and other 
necessary documents  

 Obtain budget and schedule requirements  

 Determine project-related personnel and their responsibilities, reporting requirements, 
required standards and processes (such as release processes, change processes, etc.)  

 Identify application's higher-risk aspects, set priorities, and determine scope and 
limitations of tests  

 Determine test approaches and methods - unit, integration, functional, system, load, 
usability tests, etc.  
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 Determine test environment requirements (hardware, software, communications, etc.)  

 Determine testware requirements (record/playback tools, coverage analyzers, test 
tracking, problem/bug tracking, etc.)  

 Determine test input data requirements  

 Identify tasks, those responsible for tasks, and labor requirements  

 Set schedule estimates, timelines, milestones  

 Determine input equivalence classes, boundary value analyses, error classes  

 Prepare test plan document and have needed reviews/approvals  

 Write test cases  

 Have needed reviews/inspections/approvals of test cases  

 Prepare test environment and testware, obtain needed user manuals/reference 
documents/configuration guides/installation guides, set up test tracking processes, set up 
logging and archiving processes, set up or obtain test input data  

 Obtain and install software releases  

 Perform tests  

 Evaluate and report results  

 Track problems/bugs and fixes  

 Retest as needed  

 Maintain and update test plans, test cases, test environment, and testware through life 
cycle 

9.4.1.3 What's a 'test case'?  
A test case is a document that describes an input, action, or event and an expected response, to 
determine if a feature of an application is working correctly.  A test case should contain 
particulars such as test case identifier, test case name, objective, test conditions/setup, input data 
requirements, steps, and expected results.  

Note that the process of developing test cases can help find problems in the requirements or 
design of an application, since it requires completely thinking through the operation of the 
application.  For this reason, it's useful to prepare test cases early in the development cycle if 
possible. 

9.4.1.4 What should be done after a bug is found?  
The bug needs to be communicated and assigned to developers that can fix it.  After the problem 
is resolved, fixes should be re-tested, and determinations made regarding requirements for 
regression testing to check that fixes didn't create problems elsewhere.  If a problem-tracking 
system is in place, it should encapsulate these processes.  A variety of commercial problem-
tracking/management software tools are available (see the 'Tools' section for web resources with 
listings of such tools).  The following are items to consider in the tracking process:  
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 Complete information such that developers can understand the bug, get an idea of its 
severity, and reproduce it if necessary.  

 Bug identifier (number, ID, etc.)  

 Current bug status (e.g., 'Released for Retest', 'New', etc.)  

 The application name or identifier and version  

 The function, component, feature, object, screen, etc. where the bug occurred  

 Environment specifics, system, platform, relevant hardware specifics  

 Test case name/number/identifier  

 One-line bug description  

 Full bug description  

 Description of steps needed to reproduce the bug if not covered by a test case or if the 
developer doesn't have easy access to the test case/test script/test tool  

 Names and/or descriptions of file/data/messages/etc. used in test  

 File excerpts/error messages/log file excerpts/screen shots/test tool logs that would be 
helpful in finding the cause of the problem  

 Severity estimate (a 5-level range such as 1-5 or 'critical'-to-'low' is common)  

 Was the bug reproducible?  

 Tester name  

 Test date  

 Bug reporting date  

 Name of developer/group/organization the problem is assigned to  

 Description of problem cause  

 Description of fix  

 Code section/file/component/class/method that was fixed  

 Date of fix  

 Application version that contains the fix  

 Tester responsible for retest  

 Retest date  

 Retest results  

 Regression testing requirements  

 Tester responsible for regression tests  

 Regression testing results  

A reporting or tracking process should enable notification of appropriate personnel at various 
stages.  For instance, testers need to know when retesting is needed, developers need to know 
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when bugs are found and how to get the needed information, and reporting/summary capabilities 
are needed for managers. 

9.4.1.5 What if there isn't enough time for thorough testing?  
Use risk analysis to determine where testing should be focused.  Since it's rarely possible to test 
every possible aspect of an application, every possible combination of events, every dependency, 
or everything that could go wrong, risk analysis is appropriate to most software development 
projects.  This requires judgment skills, common sense, and experience.  (If warranted, formal 
methods are also available.) 

Considerations can include:  

 Which functionality is most important to the project's intended purpose?  

 Which functionality is most visible to the user?  

 Which functionality has the largest safety impact?  

 Which functionality has the largest financial impact on users?  

 Which aspects of the application are most important to the customer?  

 Which aspects of the application can be tested early in the development cycle?  

 Which parts of the code are most complex, and thus most subject to errors?  

 Which parts of the application were developed in rush or panic mode?  

 Which aspects of similar/related previous projects caused problems?  

 Which aspects of similar/related previous projects had large maintenance expenses?  

 Which parts of the requirements and design are unclear or poorly thought out?  

 What do the developers think are the highest-risk aspects of the application?  

 What kinds of problems would cause the worst publicity?  

 What kinds of problems would cause the most customer service complaints?  

 What kinds of tests could easily cover multiple functionalities?  

 Which tests will have the best high-risk-coverage to time-required ratio? 

9.4.2 Test Environment 
Testing should be performed either in a controlled environment in which execution follows a 
structured test procedure and the results are monitored, or in a demonstration environment where 
the software is exercised without interference.  

Controlled testing executes the software on a real or a simulated computer using special 
techniques to influence behavior.  This is the usual mode of testing, where a test procedure 
(script) is developed and followed, and the results are noted.  Automatic testing is also included 
in this category.  All of the integration and system tests that will be discussed in the following 
sections are controlled tests.   
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When using a simulator, rather than the real system, the fidelity of the simulators should be 
carefully assessed.  How close is the simulator to the “real thing”?  How accurate is the 
simulator?  Has the simulator itself been verified to operate correctly? 

Demonstration testing executes the software on a computer and in an environment identical to 
the operational computer and environment.  Demonstrations may be used in the acceptance test, 
to show the user how the system works.  Autonomous systems, where the internal operation is 
completely under the control of the software, would also be demonstrated, especially for the 
acceptance test. 

Safety testing must be performed on the final system, both hardware and software.  These tests 
verify that all the hazard controls or mitigations work properly.  In addition, software safety 
testing may exercise the system under extreme or unexpected conditions, to show that other 
elements of the software cannot interfere with the software hazard controls or mitigations. 

Configuration Management should act as the sole distributor of media and documentation for all 
system tests and for delivery to [sub]system integration and testing.  Pulling the latest program off 
the developer’s machine is not a good idea.  One aspect of system testing is repeatability, which can 
only be assured if the software under test comes from a known, and fixed, source. 

9.4.3 Integration Testing 
Integration is the process of piecing together the “puzzle”, where each piece is a software unit.  
The end result is a complete system, and the final integration test is essentially the first system 
functional test. 

The order of integration of the units should be decided at the end of the architectural design, 
when the units are identified.  Various schemes can be used, such as creating a backbone 
(minimal functionality) and adding to it, or doing the most difficult components first.  Keep in 
mind the hardware schedule when deciding the order of integration.  Late hardware may hold up 
software integration, if the software that needs it is integrated early in the cycle.  

Stubs and drivers are used to “simulate” the rest of the system, outside of the integrated section.  
Stubs represent units below (called by) the integrated section.  Drivers represent the part of the 
software that calls the integrated section.   

Integration tests are black-box tests that verify the functionality of the integrated unit.  They are 
“higher level” black-box unit tests, where the “unit” is the new, integrated whole. 

Special safety tests may be run as safety-critical units are integrated.  These tests should exercise 
functionality that may be unavailable once the system is completely integrated.  Also, some 
safety tests may be run early, so that any problems can be corrected before development is 
completed. 

9.4.4 Integrating Object-Oriented Software 
Object-oriented software requires some changes in the integration test strategy.  Once the 
software is fully integrated, it doesn’t matter what the underlying software design is - a system is 
a system.  However, when the system is integrated, whole classes are added at a time.  Besides 
the normal “functional”  tests that are performed during integration testing, consider the 
following tests as well: 

Object A creates Object B, invoking B’s constructor • 
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A deletes B, invoking B’s destructor.  Check for memory leaks here! • 

• 

• 

• 

A sends a “message” to B (invokes a method of B).  Check for situations where B is not 
present (not created or already destroyed).  How does the error handling system deal with 
that situation? 

As each class is integrated into the system, it is the interfaces with other classes that must be 
tested. 

Object-oriented testing methods have not reached the maturity of more traditional testing.  The 
best way to test OO software is highly debated.  The following resources provide some useful 
insights or links regarding OO testing: 

“Testing Object-Oriented Software” (book), by David C. Kung, Pei Hsia, and Jerry Gao, 
October 1998. ISBN 0-8186-8520-4 

Cetus links on Object-Oriented Testing:  http://www.cetus-links.org/ 

State of the art in 1995: http://www.stsc.hill.af.mil/crosstalk/1995/04/index.html • 

 

9.4.5 System Testing 
System testing begins when the software is completely integrated.  Several types of tests are 
usually run.  Not every test is useful for every system, and the software developer should choose 
those that test specific requirements or that may show problems with the system. 

Functional Testing consists of running the system in a nominal manner.  The system is 
verified to perform all the functions specified in the requirements, and to not perform 
functions that are designated “must not work”.  A complete, end-to-end functional test is 
often designated as the System Test, though system testing actually encompasses many 
more types of tests.  A scaled-down version of the functional test is often used as the 
acceptance test. Mandatory Test  

• 

• Stress tests are designed to see how much the system can handle before it breaks down.  
While a capacity test (performance) may test that the system can store the required 
number of files, a stress test will see just how many files can be stored before the disk 
runs out of room.  Aspects of the system that might be stressed are CPU usage, I/O 
response time, paging frequency, memory utilization, amount of available memory, and 
network utilization.  The closer a system’s peak usage is to the breakdown point, the 
more likely it is that the system will fail under usage.  Give yourself adequate margin, if 
at all possible. Highly Recommended for safety-critical components 

• Stability tests look for sensitivity to event sequences, intermittent bad data, memory 
leakage, and other problems that may surface when the system is operated for an 
extended period of time.  Highly Recommended for Systems that must operate for 
long periods of time or where user access is limited. 

• Resistance to Failure tests how gracefully the software responds to errors.  Errors should 
be detected and handled locally.  Erroneous user input should be handled appropriately 
(e.g. ignored with an error message), as well as bad input from sensors or other devices.  
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Fault injection tests fit in this category.  Highly Recommended for safety-critical 
components 

• Compatibility tests verify that the software can work with the hardware and other 
software systems it was designed to interface with.  Mandatory Test 

• Performance testing verifies the “CARAT” parameters – Capacity, Accuracy, Response 
time, Availability, and Throughput.  Capacity is the number of records, users, disk space, 
etc.  Accuracy is the verification of algorithm results and precision.  Response time is 
often important in real-time systems, and will be included in the specifications.  
Availability is how long the system can be used (based on how often it fails, and how 
long to repair it when it does fail).  Throughput is the peak or average number of events 
per unit time that the system can handle.  Load tests are a form of performance testing. 
Mandatory Test for Performance, others are highly recommended, especially when 
resources are limited. 

• Disaster testing checks the software’s response to physical hardware failure.  Pulling the 
power plug while the software is running is one example.  Disaster tests point to areas 
where the software needs fixing, or where additional hardware is needed (such as a 
backup battery, to allow the software to shut down gracefully).  Recommended for 
safety-critical components  

• Hot and warm backup testing involves making sure that the “hot” or “warm” backup 
systems come on-line when necessary.  This usually involves causing the primary system 
to fail (pull the plug, etc.) and verifying that the necessary backup actually comes on-line. 
Recommended for systems that require hot or warm backup systems.  

• Installation test shows that the software can be installed successfully.  Recommended 
for systems that must be installed by end users.  

• Parallel Operations testing is necessary when a currently operational system with near 
zero down time requirements will be replaced with a newer system.  The new, 
replacement system needs to run in parallel with the operational system while it is being 
verified.  One method to do this is to split the operational input data streams to both 
systems.  The test system output data should be stored in a test database or file, and not 
mixed with the operational system’s output data.  Recommended for systems with zero 
down time requirements. 

• “Red Team” testing is a totally unscripted, “break the code” type of testing.  It is only 
performed after all other testing is completed, and in an environment where a true safety 
problem cannot develop (such as on a simulator).  The testers do whatever they want to 
the software except actually break the hardware it runs on (or related hardware).  This is a 
random test.  Successful completion suggests that the program is robust.  Failure 
indicates that something needs to be changed, either in the software or in the operating 
procedures.  Recommended if time permits or the testing team needs to have some 
fun. 
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9.4.6 Regression Testing 

Whenever changes are made to the system after it is baselined (first release), a regression test 
must be run to verify that previous functionality is not affected and that no new errors have been 
added.  This is vitally important!  “Fixed” code may well add its own set of errors to the code.  
If the system is close to some capacity limit, the corrected code may push it over the edge.  
Performance issues, race conditions, or other problems that were not evident before may be there 
now. 

If time permits, the entire suite of system and safety tests would be rerun as the complete 
regression test.  However, for even moderately complex systems, such testing is likely to be too 
costly in time and money.  Usually, a subset of the system tests makes up the regression test 
suite.  Picking the proper subset, however, is an art and not a science. 

Minimization is one approach to regression test selection.  The goal is to create a regression test 
suite with the minimal number of tests that will cover the code change and modified blocks.  The 
criteria for this approach is coverage – what statements are executed by the test.  In particular, 
every statement in the changed code must be executed, and every modified block must have at 
least one test. 

Coverage approaches are based on coverage criteria, like the minimization approach, but they 
are not concerned about minimizing the number of tests.  Instead, all system tests that exercise 
the changed or affected program component(s) are used.  

Safe approaches place less emphasis on coverage criteria, and attempt instead to select every test 
that will cause the modified program to produce different output than the original program.  Safe 
regression test selection techniques select subsets that, under certain well-defined conditions, 
exclude no tests (from the original test suite) that if executed would reveal faults in the modified 
software. 

Program slicing can be a helpful technique for determining what tests to run.  Slicing finds all the 
statements that can affect a variable, or all statements that a variable is involved with.  
Depending on the changes, slicing may be able to show what components may be affected by the 
modification.   

The requirements management program (section 6.4) is a useful tool in determining what tests 
need to be run.  When changes impact a specific requirement, especially a safety requirement, all 
test cases that test that requirement should be run.  Knowing what test cases test what 
requirements is one aspect of requirements traceability. 

Whatever strategy is used to select the regression tests, it should be a well thought out process.  
Balance the risks of missing an error with the time and money spent on regression testing.  Very 
minor code changes usually require less regression testing, unless they are in a very critical area 
of the software.  Also consider including in the regression suite tests that previously found errors,  
tests that stress the system, and performance tests.  You want the system to run at least as well 
after the change as it did before the change! For safety-critical code, or software that resides on 
the same platform as safety-critical code, the software safety tests must be repeated, even for 
minor changes.   

 

 

N

Regression testing should include functional, performance, stress, and safety testing of the 
altered code and all modules it interacts with. 
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9.4.7 Software Safety Testing 
The project must perform software safety testing to ensure that hazards have been eliminated or 
controlled to an acceptable level of risk.  This includes documenting and reviewing safety-related 
test descriptions, procedures, test cases, and the associated qualifications criteria.  
Implementation of safety requirements (inhibits, traps, interlocks, assertions, etc.) must be 
verified.  Verify that the software functions safely both within its specified environment 
(including extremes), and under specified abnormal and stress conditions.  For example, a two 
failure tolerant systems should be exercised in all predicted credible two failure scenarios. 

In addition to testing under normal conditions, the software should be tested to show that unsafe 
states can not be generated by the software as the result of feasible single or multiple erroneous 
inputs.  This should include those outputs which might result from failures associated with the 
entry into, and execution of, safety-critical computer software components.  Negative and No-Go 
testing should also be employed, and should ensure that the software only performs those 
functions for which it is intended, and no extraneous functions. 

Software safety tests may be included within other tests (unit, integration or system) or may be 
separate tests.  Regardless of where they are performed, it is vital that all safety features be 
verified and that other elements of the software cannot adversely influence the safety-critical 
software. 

IEEE 1228-1994, Software Safety Plans, calls for the following software safety tests: 

Computer software unit level testing that demonstrates correct execution of critical 
software elements. 

• 

• 

• 

• 

• 

• 

Interface testing that demonstrates that critical computer software units execute together 
as specified. 

Computer software configuration item (CSCI) testing that demonstrates the execution of 
one or more system components. 

System-level testing that demonstrates the software’s performance within the overall 
system. 

Stress testing that demonstrates the software will not cause hazards under abnormal 
circumstances, such as unexpected input values or overload conditions. 

Regression testing that demonstrates changes made to the software did not introduce 
conditions for new hazards. 

Software Safety, represented by the Software Assurance or System Safety organization, should 
participate in the testing of safety-critical computer software components at all levels of testing, 
including informal testing, system integration testing, and Software Acceptance testing. 

9.4.8 Test Witnessing 
Software Assurance should ensure that tests of safety-critical components are conducted in strict 
accordance with the approved test plans, descriptions, procedures, scripts and scenarios, and that 
the results are accurately logged, recorded, documented, analyzed, and reported.  Safety 
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personnel should also participate and witness as required or appropriate.  Software Assurance 
should verify that deficiencies and discrepancies are corrected and properly retested.   

Witnessing verifies that the software performs properly and safely during all system tests, 
including integration, stress testing and system acceptance testing.  System acceptance testing 
should be conducted under actual operating conditions or realistic simulations. 

The test witness is responsible for being familiar with the test procedure prior to the test.  Any 
questions of a significant nature should be answered prior to the start of testing.  Software Safety 
should note in the test procedure where safety-critical elements are tested.   

Software Assurance (or Software Safety) is responsible for making sure any non-
conformances or problems are recorded using the appropriate process.  Tracking those 
non-conformances to completion is an important task.  Problems with safety-critical 
software should be raised to attention of the appropriate level of management. 

9.4.9 Use of Computer Models for System Verification 
Computer simulations and models, such as finite element analyses programs (e.g. Nastran or 
Ansys), have become integrated into the system design process and interface directly with CAD 
programs.  These software packages “automatically” perform everything from linear and 
nonlinear stress analyses, to a variety of steady state and dynamic characteristic analyses, to the 
modeling of crash tests.  These modeling programs are used to examine a variety of things from 
children’s toys to rocket engines.  The use of computer modeling for design evaluation will 
continue to expand since the cost savings potential from limiting or eliminating prototype testing 
will continue to drive industry. 

The growing dependence on such computer modeling may lead to the potential misuse of 
these simulations.  There is a tendency to assume the software does the analysis correctly 
and completely.  The analyst must do “sanity checks” of the results, as a bare minimum, 
to verify that the modeling software is functioning correctly.  For safety-critical analyses, 
the modeling tool should be formally verified or tested.  In addition, the analyst needs to 
have knowledge of the proper application of these “virtual design environments”.  
Therefore, users of software simulation programs that analyze safety-critical hardware 
should be well trained, experienced and certified, if the software vendor provides 
certification.  All program input parameters such as loads, restraints, and materials 
properties, should be independently verified to assure proper modeling and analysis. 

Immersive virtual environment technology (virtual reality) has matured to the point where it is 
being used for the design and evaluation of safety-critical systems.  A virtual environment is a 
computer-generated environment that allows the user to interact with the virtual word being 
modeled through multisensory input and output devices.  A virtual environment can be used to 
help understand the limits of safe operation of the system being modeled or to help demonstrate 
compliance of the modeled system with safety requirements. [100] 

9.5 Test Analysis 
Two sets of analyses should be performed during the testing phase: 

1. analyses before the fact to ensure validity and completeness of tests 

2. analyses of the test results 
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Analysis before the fact should, as a minimum, consider test coverage for safety-critical Must-
Work-Functions and Must-Not-Work-Functions. 

9.5.1 Test Coverage Analysis 
For small pieces of code it is sometimes possible to achieve 100% test coverage (i.e., to exercise 
every possible state and path of the code).  However, it is often not possible to achieve 100% test 
coverage due to the enormous number of permutations of states in a computer program 
execution, versus the time it would take to exercise all those possible states.  Also there is often a 
large indeterminate number of environmental variables, too many to completely simulate. 

For information on the set of possible system tests, refer to Section 9.4.5 System Testing.  Test 
coverage analysis should verify adequate coverage for system tests and regression tests (Section 
9.4.6) 

Some analysis is advisable to assess the optimum test coverage as part of the test planning 
process.  There is a body of theory which attempts to calculate the probability that a system with 
a certain failure probability will pass a given number of tests.  This is discussed in "Evaluation of 
Safety-critical Software" [52]. 

Test coverage analysis is best if done prior to the start of testing.  At a minimum, analysis should 
be done to verify that the planned tests cover all paths through the program, that all branches are 
exercised, and that each statement is executed at least once.  Verify that boundary conditions are 
tested for all inputs, as well as nominal and erroneous input values. 

Automated tools are available to aid in the coverage analysis.  The list below is not complete and 
is not an endorsement of any particular tool. 

• C++ Test and Jtest, Parasoft, http://www.parasoft.com/ 

• CodeTEST, Metrowerks, http://www.metrowerks.com/  

• Code Warrior Analysis Tools, Metrowerks, http://www.metrowerks.com/  

• Cantata, IPL (for C code), http://www.iplbath.com/products/tools/pt200.shtml 

• C-Cover, Bullseye; Win32 and Unix; C and C++ 

• XPEDITER, Compuware; Win32; C, C++, Java and Visual Basic (VB) 

• PureCoverage, Rational; Win32 and Unix; C, C++, Java and VB 

• TestWorks, Software Research; Win32 and Unix; C, C++, and Java 

• LiveCoverage, Paterson Technology; Win32; C, C++, and VB 

• DACSTM-Object Coverage, DDC-I Inc; Ada; Qualified for FAA verification 

• CoverageScope, Real-Time Innovations; VxWorks 

• GCOV, GNU; Linux; C and C++ 

The software development group (or the safety engineer) should create a list of all tests that will 
be performed.  Section 9.4 Software Integration and Test discusses the different variety of tests 
that can be conducted.  The test checklist should be maintained by both the development and 
safety personnel.  That provides a cross-check, to make sure no tests are accidentally missed. 

NASA-GB-8719.13 195  

http://www.parasoft.com/
http://www.metrowerks.com/
http://www.metrowerks.com/
http://www.iplbath.com/products/tools/pt200.shtml
http://www.bullseye.com/
http://www.compuware.com/
http://www.rational.com/
http://www.soft.com/
http://www.patersontech.com/
http://www.ddci.com/
http://www.rti.com/products/scopetools/coverageScope/covscope.html
http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html


Included with this checklist should be an indication of who needs to witness the tests.  Software 
Assurance will usually witness the system tests, but Software Safety may need to witness some 
as well.  Having a list of those involved helps to prevent someone from being forgotten, with the 
potential of the test having to be run again.  In addition, it allows those involved to familiarize 
themselves with the test procedure prior to witnessing the test. 

 

9.5.2 Formal Inspections of Test Plan and Procedures 
Test plans should be created early in the software development lifecycle.  Once the requirements 
are known, a test plan that addresses how the requirements will be verified can be developed.  
Functional testing, acceptance testing, and off-nominal testing should be included, at a minimum. 

Test procedures are the specifics of what is being tested, how to conduct the test, and what the 
expected results are.  The procedures should reference the specific requirements verified by the 
test.  Places to check off the steps should be provided.  Important sections, including safety 
verification steps, have signature blocks for witnesses. 

The test plan and test procedures should be reviewed by the safety engineer for a project at the 
safety minimum level.  For higher safety levels, the plan and procedures should undergo formal 
inspections.  (Formal inspections are discussed in Section 6.5.5 Formal Inspections.)  The goals 
of the reviews or inspections are to: 

• Verify that safety inhibits or controls are not compromised by the test. 
• Verify that safety controls or mitigations are adequately tested (when they are included in 

a test). 
• Trace the requirements into the components under test, and determine if the test 

adequately verifies the requirement. 
At the end of testing, all requirements must be verified and all safety features must be tested. 

Benefit Rating:  HIGH t Rating: LOW to MODERATE     Cos

9.5.3 Reliability Modeling 

Benefit Rating:  HIGH        Cost Rating: LOW

Software reliability contributes to software safety.  If the software operates for a long period of 
time without a failure, then it will be “safe” for that period of time, assuming that an operational 
(non-failed) mode cannot lead to a hazard.  

According to the ANSI standard, software reliability is defined as “the probability of failure-free 
operation of a computer program for a specified time in a specified environment.”  Reliability 
modeling is the process of determining the probability of failure within that specified time.  The 
primary goal of software reliability modeling is to answer the question: Given a system, what is 
the probability that it will fail in a given time interval, or, what is the expected duration between 
successive failures? 

Software reliability models come in several flavors.  Prediction models attempt to predict what 
the reliability of the system will be when it is completed.  Prediction models may be developed 
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as early as the requirements phase, or in the design or implementation phase.  The questions that 
a predictive model tries to answer are: Can we reach the reliability goals or requirements?  How 
reliable will the system truly be?  Resources that prediction models may use are the failure data 
of the current system (if it is in test), metrics from the software development process, and failure 
data from similar systems. 

Estimation models evaluate the current software, usually during the test phase.  Based on 
defects found and other factors, the models attempt to estimate how many defects still remain or 
the time between failures, once the software is in operation.  Estimation models include 
reliability growth models, input domain models, and fault seeding models. 

Over 40 varieties of prediction and estimation software reliability models exist.  The accuracy of 
the models varies with the model, the project, and the expertise of the analyst. 

Details on reliability modeling, including problems and concerns, are given in the Appendix G.  

Benefit Rating:  LOW to MEDIUM Cost Rating: MODERATE to HIGH   

 

9.5.4 Test Results Analysis 
Once tests are conducted (and witnessed), a test report is written that describes what was done 
and how the results match (or differ from) the expected results.  The safety engineer uses these 
test reports, and problem-resolution reports, to verify that all safety requirements have been 
satisfied.  The test results analysis also verifies that all identified hazards have been eliminated or 
controlled to an acceptable level of risk.  The results of the test safety analysis are provided to 
the ongoing system safety analysis activity. 

All test discrepancies of safety-critical software should be evaluated and corrected in an 
appropriate manner. 

9.5.5 Testing Resources 
• http://www.chillarege.com/authwork/TestingBestPractice.pdf provides information on 

the testing, and test development, process.  

• Software Testing Hotlist, Resources for Professional Software Testers, 
http://www.io.com/~wazmo/qa/, is a very good reference site for testing information.  

• The Software QA and Testing Resource Center,  http://www.softwareqatest.com/, also 
provides useful information on testing and the QA process. 
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Chapter 10 Operations and Maintenance 
In an ideal world, software development stops when the product is delivered to the customer or 
placed into operation.  In our non-ideal world, defects (faults and failures) are often discovered 
during operation.  Operating software may also be changed to add or alter functionality, work 
with new hardware, or interface to other software. 

Software upgrades, patches, and other maintenance can have unexpected and unwelcome side 
effects, especially when the system is not well documented.  Changes in one part of the software 
may impact other areas of the software system.  Analysis of that impact needs to be performed 
prior to initiating the change.  In a safety-critical system it is vital to make sure that the latest fix 
or upgrade does not “break” any safety-critical software component. 

This section deals with the delivery of the system or software (section 10.4) as well as operations 
and maintenance tasks (section 10.5). 

10.1 Tasks and Analyses 

Table 10-1 Operations and Maintenance Tasks 

Software Engineering Tasks System and Software Safety 
Tasks 

Software Assurance or 
IV&V Tasks 

Determine causes of software 
defects and how to fix them. 

Evaluate problem reports for 
safety impacts. 

Help determine causes of 
software defects. 

Propose changes and upgrades 
to operational software. 

Evaluate proposed changes for 
safety impacts. 

Evaluate impact of proposed 
changes, including COTS. 
COTS [10.5.1] 
Change Impact Analysis 
[10.5.2] 

Implement approved changes. Witness regression testing of 
safety-critical software. Witness regression testing. 

Perform regression testing 
after changes implemented. 

Evaluate COTS changes for 
safety impact.  

Maintain COTS software, 
including patches and 
upgrades. 
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10.2 Documentation and Milestones 
The following table lists documents that are commonly produced for this phase of development: 

Table 10-2 Operations and Maintenance Documentation  

Document Software Safety Section 

Operations or User Manual 
Identify any hazardous commands or operations.  
Include information on how to operate the system 
safely. 

Version Description Document Safety-critical components should be clearly identified 
throughout the VDD. 

Acceptance Data Package Traceability Matrix of safety-critical requirements.  
Verification matrix for all hazard controls.  

Software Problem Reports and Change 
Requests 

Problem or Failure reports or software change requests 
should be reviewed for any safety implications.  Any 
corrective action or software update should be verified 
to not cause an additional hazard, or to adversely impact 
any other safety-critical software or hardware. 

Traceability Matrix Update to reflect software after changes implemented. 
 

Milestones that will usually occur during this phase include: 

• Software Acceptance Review 

• Flight Article Acceptance Review 

• Pre-ship Review 

• Operations Readiness Review 

10.3 Tailoring Guidelines 
See Section 3.2 Tailoring the Effort for how to determine the software safety effort required 
(full, moderate, or minimal).  Some of these techniques and analyses are provided with a Benefit 
and Cost rating.  The rating is based on engineering judgment, as quantitative evidence is sparse.  
Use the ratings as a guide only, rather than as an authoritative finding. 

Table 10-3 Software Safety Effort for Operations and Maintenance Phase 

Technique or Analysis Safety Effort Level 
 MIN MOD FULL 
10.5.2 Software Change Impact Analysis    
 

Recommendation Codes 
 Mandatory  Highly Recommended 

 Recommended  Not Recommended 
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10.4 Software Acceptance and Delivery 
Once the software has passed acceptance testing it can be released either as a stand-alone item, 
or as part of a larger system. 

An Acceptance Data Package (ADP) should accompany the release of the software.  This 
package should include the following items for safety-critical software: 

 Instructions for installing all safety-critical items.  

 Definition of the hardware environment for which the software is certified. 

 Identification of all safety-related software liens, such as missing design features or 
untested features. 

 Description of the operational constraints for hazardous activities. List all open, corrected 
but not tested, or uncorrected safety-related problem reports. Describe environmental 
limitations of use and the allowable operational envelope. 

 Description of all operational procedures and operator interfaces. Include failure 
diagnosis and recovery procedures. 

 Certificate of Conformance to requirements, validated by Quality Assurance organization 
and the IV & V organization (if applicable). 

 List of any waivers of safety requirements, and copies of the waiver forms. 

 Acceptance Test Results detailing the results of safety tests. 

 List of approved change requests for safety-critical items, and copies of the change 
requests. 

 List of  safety-related problem reports, with copies of the reports. 

 Version Description Document(s) (VDD) describing the as-built version of the software 
to be used with this release of the system.  Each CSCI may have a separate VDD, or 
several CSCIs may be grouped together and detailed in a single VDD. 

10.5 Software Operations and Maintenance 
Maintenance of software differs completely from hardware maintenance.  Unlike hardware, 
software does not degrade or wear out over time7, so the reasons for software maintenance are 
different.  The main purposes for software maintenance are as follows: 

• to correct defects (previously known or discovered during operation) 

• to add or remove features and capabilities (as requested by customer, user or operator) 

• to compensate or adapt for hardware changes, wear out or failures. 

• to compensate for changes in other software components, such as COTS patches or 
upgrades 

                                                      
7 While software does not “wear out”, continuously operating software may degrade due to memory leaks, 
program errors, or other effects. Such software often requires a restart to clear the problem. It is important 
to check for and eliminate such problems in systems that must operate for long periods of time. 
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Proposed changes must go through a change control board and be approved before they are 
implemented.  The changes can be a result of a problem or a request for new features.  The safety 
analyst must ensure that proposed changes do not disrupt or compromise pre-established hazard 
controls. 

The most common safety problem during this phase is lack of configuration control, resulting in 
undocumented and poorly understood code.  “Patching” is a common method used to “fix” 
software “on the fly”.  Software with multiple undocumented patches has resulted in major 
problems where it has become completely impossible to understand how the software really 
functions, and how it responds to its inputs. 

When maintainability was not designed in, the problem of maintaining “clean” code becomes 
more difficult.  The lifetime of the software is often not considered, or not anticipated, when it is 
designed.  Some software will have to operate for years, either in space or on the ground.  If the 
code is not designed for easy change, it will end up looking like spaghetti code once several fixes 
and upgrades have been applied.  Designing for maintainability was discussed in Section 7.4.9. 

Sometimes additional software will be added to compensate for unexpected behavior which is 
not understood.  (It is beneficial to determine and correct the root cause of unexpected behavior, 
otherwise the software can “grow” in size to exceed available resources, or become 
unmanageable. 

After software becomes operational, rigorous configuration control must be enforced.  For any 
proposed software change, it is necessary to repeat all life cycle development and analysis tasks 
performed previously from requirements (re-) development through code (re-)test.  Regression 
testing should include all safety-critical test cases, a subset of the full system test suite, as well as 
any additional tests for new features.  It is advisable to perform the final verification testing on 
an identical off-line analog (or simulator) of the operational software system, prior to placing it 
into service. 

Analysis of safety-related anomalies and problem/failure reports during spacecraft flight can help 
us learn how to make our software safer.  This analysis includes the observation, documentation, 
measurement, and evaluation of post-launch failures and anomalies (including unexpected 
behavior).  From this flight experience we gain insights into how to build, test, and operate safer 
systems, and how to avoid, detect, and control circumstances that have historically been sources 
of risk in the systems. 

10.5.1 COTS Software 
Commercial Off-the-shelf (COTS) software is often a moving target.  Fixes, patches, and 
upgrades are common.  For software systems with a short lifetime (less than a year), it is usually 
possible to use the original COTS software and ignore all upgrades.  Sometimes, however, fixes 
that correct defects in the COTS software are desirable.  In addition, software that has a long 
lifetime will often have to upgrade the COTS software to maintain compatibility with other 
systems or hardware. 

Section 12.1 discusses what to consider when deciding to use COTS software.  From the 
maintenance standpoint,  the following are most important: 

• How responsive is the vendor to bug-fixes?  Does the vendor inform you when a bug-fix 
patch or new version is available? 
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• How compatible are upgrades to the software?  Has the API changed significantly 
between upgrades in the past?  Will your interface to the OTS software still work, even 
after an upgrade?  Will you have to update your glueware with each iteration? 

• Is source code included, or available for purchase at a reasonable price?  Will support still 
be provided if the source code is purchased or if the software is slightly modified?  

• Can you communicate with those who developed the software, if serious questions arise?  
Is the technical support available, adequate, and reachable?  Will the vendor talk with you 
if you modify the product?   

• Will the vendor support older versions of the software, if you choose not to upgrade?  
Many vendors will only support the newest version, or perhaps one or two previous 
versions. 

• Is there a well-defined API (Application Program Interface), ICD (interface control 
document), or similar documentation that details how the user interacts with the 
software?  Are there “undocumented” API functions?  

The first and best choice regarding COTS upgrades is to ignore them.  If you do not change that 
software, nothing in your system needs to be changed.  If you are planning to not upgrade, then it 
is important to purchase the source code of the COTS software, if at all possible.  Having the 
code means that you can make the changes you want to the system.  It also means that if the 
company goes out of business a year from now, you can still maintain your system.  For the same 
reasons, the COTS software should be kept under configuration management control.  If you 
need to reconstruct the version of your software system you ran two years ago, you need to have 
all the necessary pieces.  Newer versions of compilers, libraries, and other COTS software are 
rarely identical to the old versions, and unexpected interactions can occur. 

If you must upgrade, then you need to evaluate the change and its impact on your software.  
Questions to ask yourself include: 

• What exactly is being changed and how will it affect your software?  How much detail is 
available on what the change actually affects? 

• Has the functionality changed? Has any functionality been added? Has any been removed 
or deprecated? 

• Has the interface (API) changed? 

• Will you have to change your glueware when the COTS software is upgraded? 

• If you purchased the source code, will you also get the source for the fix or upgrade? 

• Is there anything in the COTS upgrade that will not work with your hardware or other 
software? 

• Will you require more capability (memory, storage, etc.) after the upgrade? 

• How will the upgrade occur?  Can you take your system down long enough for the 
upgrade to be implemented?  What happens if it doesn’t work the first time?  

• Can you test the upgrade on a simulator or other system, both for initial verification of 
the change and to make sure safety has not been compromised? 
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10.5.2 Software Change Impact Analysis 
Software change impact analysis determines what parts of the software, documentation, and 
other software products will be affected if a proposed software change is made.  Knowing what 
will be affected by a change reduces the chance of unanticipated side-effects once the change is 
implemented.  Fixes or upgrades are supposed to improve the software, not break it in a new 
location. 

The information provided by impact analysis can be used for planning changes, implementing 
the changes, and tracing through the effects of changes.  Impact analysis provides visibility into 
the potential effects of changes before the changes are made. 

A major goal of impact analysis is to identify the software work products affected by the 
proposed changes.  Impact analysis starts with the set of software lifecycle objects (SLOs), such 
as the software specification, design documentation, and source code.  These SLOs are then 
analyzed with respect to the software change.  The result is a list of items that should be 
addressed during the change process.  The information from such an analysis can be used to 
evaluate the consequences of planned changes, as well as the trade-offs among the approaches 
for implementing the change. 

Typical examples of impact analysis techniques include: 

• Using cross-referenced listings to see what other parts of a program contain references to 
a given variable or procedure. 

• Using program slicing to determine the program subset that can affect the value of a 
given variable.  

• Browsing a program by opening and closing related files. 

• Using traceability relationships to identify software artifacts associated with a change. 

• Using configuration management systems to track and find changes. 

• Consulting designs and specifications to determine the scope of a change. 

Dependency analysis of source code is one type of impact analysis.  Basically, the analysis 
determines “what depends on what” – what objects, modules, variable, etc. depend on other 
modules.  Other analyses that provide information on dependencies include: 

• Program slicing.  (Section 8.4.4)  

• Data flow analysis.  (Section 8.5.2) 

• Control flow analysis.  (Section 8.5.1) 

• Test-coverage analysis.   (Section 8.5.6) 

• Cross-referencing (Section 6.5.7) and Traceability Matrices (Sections 6.4.2 and 7.5.9) 

• Browsing (source code and documentation).   

Most automated software analysis tools support source code dependencies.  Examples of tools 
include program slicers, cross-referencers, data-flow and control-flow analyzers, source-code 
comparators, test-coverage analyzers, and interactive debuggers.  These tools provide the analyst 
with automated assistance in identifying the consequences of the proposed change. 
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Traceability analysis uses the defined relationships among the SLOs to determine the impact. 
Types of tools used for this analysis include:  

• Requirements management tools with traceability.  (Section 6.4) 

• Database of SLOs with querying capabilities. 

• Impact analysis tools.  

• Brute-force (manual method using traceability matrix). 

The extent of the impact is determined by the number of components affected and how much of 
each component will be affected if a particular component is changed.  Impact determination 
analyses uses algorithms to identify the impacts. 

• Transitive closure algorithms take a graph of objects and relationships as input and 
determine all objects reachable from any object to any other object through paths of 
length zero or more.  This algorithm finds all components that a particular component 
could impact. 

• Inferencing uses rules to characterize relationships among objects.  Inferencing systems 
usually consist of a database of facts, a way to infer new facts from previous ones, and 
some executive for managing the search.  For example, a database may contain a list of 
modules and module call information (A calls B, B calls C and D, etc.).  Given the 
calling information, it can be inferred that changes to A will affect B, C, and D – B 
directly and C and D indirectly. 

• Program slicing (Section 8.4.4) provides a mechanism looking only at the parts of the 
software program (not documentation) that is affected by the change. 

Determining the extent of impact also includes evaluating the amount of change, and the risk that 
imposes.  No specific techniques support this aspect of impact analysis.  Evaluation is a matter of 
intelligently looking at the extent of the change, what is changed, and reasoning about the 
potential consequences (and the likelihood of those consequences). 

 As a general rule of thumb, the following types of changes are more likely to have unanticipated 
effects or are generally riskier: 

 Changes that impact many modules. 

 Changes that impact interfaces, especially low-level interfaces used throughout the 
system. 

 Changes to requirements. 

 Changes to low-level modules, classes, or other components used throughout the system. 

Much of this section was derived from the book “Software Change Impact Analysis” [104], 
which is a collection of papers on the topic.  Many papers are tutorial or general in nature.  
Others provide theoretical or experimental approaches.  
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Chapter 11 Software Development Issues 
In this chapter, we’ll look at various programming languages, operating systems, tools, and 
development environments being used to create or as part of safety-critical software.  Also 
included are various new technologies that have particular (and usually unsolved) problems with 
determining their safety.   

Choosing a programming language is a necessity for any project.  This chapter examines a subset 
of the over one hundred available languages.  These languages are commonly used in safety-
critical or embedded environments.  Several languages are included that might be considered 
because they are popular or new.  For each language, any safety-related strengths are discussed, 
and guidance is given on what aspects to avoid. 

This chapter will also look at the environment the software will be developed and run in.  Issues 
with compilers, tools, Integrated Development Environments (IDEs), automatic code generation, 
and operating systems (especially Real-Time (RTOS)) will be considered. 

Software is being used in new environments and new ways.  Assuring the safety of these systems 
is still an area for improved understanding.  Distributed computing, artificial intelligence, 
autonomous systems, programmable logic devices, and embedded web technology are areas 
considered in this guidebook.  The interaction between humans and software systems, in 
operation or during development, is also a factor in safer software. 

11.1 Programming Languages 
11.2 Compilers, Editors, Debuggers, IDEs and other Tools 
11.3  CASE tools and Automatic Code Generation 
11.4  Operating Systems 
11.5  Distributed Computing 
11.6 Programmable Logic Devices 
11.7 Embedded Web Technology 
11.8 AI and Autonomous Systems 
11.9 Human Factors in Software Safety 

 

Why does software have bugs?8  
 miscommunication or no communication - as to specifics of what an application should 

or shouldn't do (the application's requirements).  

 software complexity - the complexity of current software applications can be difficult to 
comprehend for anyone without experience in modern-day software development. 
Windows-type interfaces, client-server and distributed applications, data 
communications, enormous relational databases, and sheer size of applications have all 
contributed to the exponential growth in software and system complexity.  And the use of 
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object-oriented techniques can complicate instead of simplify a project unless it is well-
engineered.  

 programming errors - programmers, like anyone else, can make mistakes.  

 changing requirements - the customer may not understand the effects of changes, or 
may understand and request them anyway - redesign, rescheduling of engineers, effects 
on other projects, work already completed that may have to be redone or thrown out, 
hardware requirements that may be affected, etc.  If there are many minor changes or any 
major changes, known and unknown dependencies among parts of the project are likely 
to interact and cause problems, and the complexity of keeping track of changes may 
result in errors.  Enthusiasm of engineering staff may be affected.  In some fast-changing 
business environments, continuously modified requirements may be a fact of life.  In this 
case, management must understand the resulting risks, and QA and test engineers must 
adapt and plan for continuous extensive testing to keep the inevitable bugs from running 
out of control - see 'What can be done if requirements are changing continuously?' in Part 
2 of the FAQ.  

 time pressures - scheduling of software projects is difficult at best, often requiring a lot 
of guesswork.  When deadlines loom and the crunch comes, mistakes will be made.  

 egos - people prefer to say things like:  

'no problem'  
'piece of cake' 
'I can whip that out in a few hours' 
'it should be easy to update that old code' 

instead of: 

'that adds a lot of complexity and we could end up making a lot of mistakes' 
'we have no idea if we can do that; we'll wing it' 
'I can't estimate how long it will take, until I take a close look at it' 
'we can't figure out what that old spaghetti code did in the first place' 

If there are too many unrealistic 'no problem's', the result is bugs. 

 poorly documented code - it's tough to maintain and modify code that is badly written or 
poorly documented; the result is bugs.  In many organizations management provides no 
incentive for programmers to document their code or write clear, understandable code.  In 
fact, it's usually the opposite: they get points mostly for quickly turning out code, and 
there's job security if nobody else can understand it ('if it was hard to write, it should be 
hard to read').  

 software development tools - visual tools, class libraries, compilers, scripting tools, etc. 
often introduce their own bugs or are poorly documented, resulting in added bugs. 

Whenever possible, select for safety.   Otherwise, take steps to 
mitigate the risks to safety. 
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11.1 Programming Languages 
The language chosen to convert the design into executable code can have an impact on the safety 
of the system.  Some languages are more prone to certain errors, making rigorous development, 
review, and testing important.  Other languages are designed with safety in mind, though they are 
not perfect.  Determining what language to use is a matter of weighing the risks and benefits of 
each language. 

 

Section 11.1.1 discusses subsets of languages that are designed for safety. 
Section 11.1.2 mentions some insecurities common to all languages. 
Section 11.1.3 provides a method of assessment for choosing a language. 
Section 11.1.4 introduces a collection of  languages (Ada, Assembly Languages, C, C++, C#,
Forth, FORTRAN, Java, LabVIEW, Pascal, Visual Basic) 
Section 11.1.5 discusses miscellaneous problems present in most languages. 
Section 11.1.6 summarizes this section and provides recommendations. 

11.1.1 Safe Subsets of Languages 
A safe subset of a language is one that restricts certain features that are error-prone or are 
undefined or poorly defined.  In some cases, a subset may be created by a particular vendor, or 
may grow out of the user community.  In many cases, a standard subset does not exist, but 
“coding standards” are used to create the subset.  Using coding standards means that the 
compiler will not enforce the subset, however.  

There are two primary reasons for restricting a language definition to a subset:  

1) some features are defined in an ambiguous manner  

2) some features are excessively complex or error-prone.   

A language is considered suitable for use in a safety-critical application if it provides the 
necessary functionality, has a precise definition, is logically coherent, and has a manageable size 
and complexity. The issue of excessive complexity makes it virtually impossible to verify certain 
language features.  Overall, the issues of logical soundness and complexity will be the key 
toward understanding why a language is restricted to a subset for safety-critical applications.  

Compilers for “safer” language subsets are often certified to provide correct translation from the 
source code to object code.  The subset usually undergoes vigorous study and verification before 
it is accepted by the user community. 

Besides formal language subsets, safety specific coding standards are used to stipulate 
requirements for annotation of safety-critical code and prohibit use of certain language 
features which can reduce  software safety.  Avoid including programming style 
requirements in a coding standard.  Put those in a separate coding style document.  While 
you want programmers to use the same style, it is far more important that they follow the 
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safety-critical coding standards.  A “style war” can lead to some programmers ignoring 
the whole document, if style and standards are mixed.  

11.1.2 Insecurities Common to All Languages 
All programming languages have insecurities either in their definition or their implementation.  
Newer languages (or updates to existing language standards) try to correct the shortfalls of older 
generation languages, while adding additional functionality.  In reality, they often add new 
insecurities as well. 

Some common problems are: 

• Use of uninitialized variables.  Uninitialized variables are the most common error in 
practically all programming languages.  In particular, uninitialized or improperly 
initialized pointers (in languages that support them) often cause insidious errors.  This 
mistake is very hard to catch because unit testing will not flag it unless explicitly 
designed to do so.  The typical manifestation of this error is when a program that has 
been working successfully is run under different environmental conditions and the results 
are not as expected. 

• Memory management concerns.  Calls to deallocate memory should be examined to 
make sure that not only is the pointer released but that the memory used by the structure 
is released.  Also, it is important to verify that only one deallocation call is made for a 
particular memory block.  On the other side of the problem, memory that is not 
deallocated when no longer used will lead to a memory leak, and perhaps to an eventual 
system crash. 

• Unspecified compiler behavior.  The order in which operands are evaluated is often not 
defined by the language standard, and is left up to the compiler vendor.  Depending on 
the order of evaluation for certain “side effects” to be carried out is poor programming 
practice!  The order of evaluation may be understood for this compiler and this version 
only.  If the program is compiled with a different vendor, or a different version, the side 
effects may well change.  Other unspecified behaviors include the order of initialization 
of global or static variables. 

11.1.3 Method of Assessment 
When comparing programming languages, we will not deal with differences among vendor 
implementations.  Compiler implementations, by and large, do not differ significantly from the 
intent of the standard.  However, standards are not unambiguous and they are interpreted by the 
vendor.  Be aware that implementations will not adhere 100% to the standard because of the 
extremely large number of states a compiler can produce.  We will present information on the 
strengths and weaknesses of popular programming languages, and discuss safety related 
concerns.  Common errors specific to the language will be discussed as well. 

Safer software can be written in any language.  Coding standards can designate how to program 
in a particular language to produce safer code.  But we’re human.  We make mistakes, we get in 
a hurry, and the coding standards may not be followed.  Languages that are “safer” are those that 
enforce the standards, that check for common errors, and that do so as early as possible!   
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When evaluating a language, the following questions should be asked of the language as a 
minimum:  

 Can it be shown that the program cannot jump to an arbitrary location? 

 Are there language features that prevent an arbitrary memory location from being 
overwritten? 

 Are the semantics of the language defined sufficiently for static code analysis to be 
feasible? 

 Is there a rigorous model of both integer and floating point arithmetic within the 
standard? 

 Are there procedures for checking that the operational program obeys the model of the 
arithmetic when running on the target processor? 

 Are the means of typing strong enough* to prevent misuse of variables? 

 Are there facilities in the language to guard against running out of memory at runtime? 

 Does the language provide facilities for separate compilation of modules with type 
checking across module boundaries? 

 Is the language well understood so designers and programmers can write safety-critical 
software? 

 Is there a subset of the language which has the properties of a safe language as evidenced 
by the answers to the other questions? 

*Strong typing implies an explicit data type conversion is required when transforming one type to another 

11.1.4 Languages 
There are over one hundred programming languages, with more being developed each year.  
Many are generated within academia as part of a research project.  However, the subset of  well 
established languages is more limited.  The following languages will be examined in detail, 
focusing on the strengths and weaknesses each has with regards to producing safe software. 

• Ada83, Ada95 and safe subsets 
• Assembly Languages 
• C 
• C++ 
• C# 
• Forth 
• FORTRAN 
• Java 
• LabVIEW 
• Pascal 
• Visual Basic 
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11.1.4.1 Ada83 and Ada95 Languages 
One of the most commonly used languages in military and safety-critical applications is Ada.  
From the inception of Ada83 until 1997, Ada was mandated by the Department of Defense for 
all weapons-related and mission critical programs.  Though currently not mandated, Ada is still 
commonly used within military projects.  In addition, safety-critical commercial software is 
being written in Ada.  Ada is also the primary language of the International Space Station.  The 
Ada language was designed with safety and reliability in mind.  The goal of Ada is to maximize 
the amount of error detection as early in the development process as possible. 

The Ada standard was first released on 17th February 1983 as ANSI/MIL-STD-1815A 
“Reference Manual for the Ada Programming Language”.  This original version is now called  
Ada83.  The first major revision of the Ada standard was released on 21 December 1994 via 
ISO/IEC 8652:1995(E), and is commonly known as Ada95.  Ada95 corrects many of the safety 
deficiencies of Ada83 and adds full object oriented capabilities to the language. 

One Ada subset of note is the SPARK language (http://www.sparkada.com/spark.html), which is 
designed to support the development of software used in applications where correct operation is 
vital either for reasons of safety or business integrity. A SPARK program has a precise meaning 
which is unaffected by the choice of Ada compiler and can never be erroneous.  SPARK includes 
Ada constructs regarded as essential for the construction of complex software, such as packages, 
private types, typed constants, functions with structured values, and the library system. It 
excludes tasks, exceptions, generic units, access types, use clauses, type aliasing, anonymous 
types, default values in record declarations, default subprogram parameters, goto statements, and 
declare statements. SPARK was designed for use in high integrity applications; it is therefore 
essential that it exhibits logical soundness, simplicity of the formal definition, expressive power, 
security, verifiability, bounded space and time requirements, and minimal runtime system 
requirements. 

The strengths of Ada95 lie in the following attributes: 

• Object orientation 
Ada95 supports all the standard elements of object orientation: encapsulation of objects, 
inheritance, and polymorphism.  Encapsulation “hides” information from program 
elements that do not need to know about it, and therefore decreases the chance of the 
information being altered unexpectedly.  Inheritance and polymorphism contribute to the 
extensibility of the software.   

Software reuse is one “plus” of object orientation.  A previously tested object can be 
extended, with new functionality, without “breaking” the original object.   

• Strongly typed 

Ada enforces data typing.  This means that you cannot use an integer when a floating 
point number is expected, unless you explicitly convert it.  Nor can you access an integer 
array through a character pointer.  Strong typing finds places where the programmer 
assumed one thing, but the source code actually lead to another implementation.  Forcing 
conversions helps the programmer think about what she is doing, and why, rather than 
allowing the compiler to make implicit (and perhaps undefined) conversions. 

• Range checking 
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Range checking for arrays, strings, and other dimensioned elements is included in the 
language.  This prevents accidentally overwriting memory outside of the array.  The 
compiler will usually find the error.  If not, a Run Time Exception (RTE) will be 
generated.  Also included is checking for references to null. 

• Support for multitasking and threads 
Tasking is built into the language.  Support is included to deal with threads and 
concurrency issues.  Protected objects provide a low overhead, data-oriented 
synchronization mechanism.  Asynchronous transfer of control, with “clean up” of the 
interrupted process, is part of the language. 

• Clarity of source code 
Ada code is closer to “regular” language than most languages, and this makes it easy to 
read.  Often, coming back to code you wrote awhile ago is difficult.  Much of the context 
has been forgotten, and it may be difficult to understand why you did something.  When 
the code is easy to read, those problems are reduced.  Also, when the code is reviewed or 
inspected, others find it easier to understand. 

• Mixed language support 
Ada allows modules written in other languages to be used.  Usually, just a “wrapper” 
must be created before the non-Ada routines can be accessed.  This allows well-tested, 
legacy code to be used with newer Ada code. 

• Real-time system support  
Ada95 has added support for real-time systems.  Hard deadlines can be defined.  
Protected types give a “low overhead” type of semaphore.  With dynamic task priorities, 
the priority of a task can be set at run-time rather than compile-time.  Priority inversion, 
used to prevent deadlock when a high priority task needs a resource being used by a 
lower priority task, can be bounded.  This allows Rate Monotonic Analysis to be used. 

• Distributed systems support  
A “unit” in an Ada95 distributed system is called a partition.  A partition is an 
aggregation of modules that executes in a distributed target environment.  Typically, each 
partition corresponds to a single computer (execution site).  Communication among 
partitions of a distributed system is based upon extending the remote procedure call 
paradigm. 

• Exception handling 

Exceptions are raised by built-in and standard library functions, when events such as an 
integer overflow or out-of-bounds check occurs.  Exceptions can also be raised by the 
program specifically, to indicate that the software reached an undesirable state.  
Exceptions are handled outside of the normal program flow, and are usually used to put 
the software into a known, safe state.  The exception handler, written by the programmer, 
determines how the software deals with the exception. 

• Support for non-object-oriented (traditional) software development styles 
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Though Ada95 supports object-oriented programming, the language can be used with 
other styles as well.  Functional (structural) programming techniques can be used with the 
language.   

Additional safety-related features are 

• Compiler validation  
All Ada compilers must be validated.  This means the compiler is put through a standard set of 
tests before it is declared a true Ada compiler.  This does not mean that the compiler does not 
have defects, however.  When choosing a compiler, ask for the history list of defects. 

• Language restriction ability 
Ada95 added a restriction pragma that allows features of the language to be “turned off”.  
You can specify a subset of the language, removing features that are not needed or that 
may be deemed unsafe.  If a feature is not included, it does not have to be validated, thus 
reducing the testing and analysis effort. 

• Validity checking of scalar values 
Ada95 has added a Valid attribute which allows the user to check whether the bit-pattern 
for a scalar object is valid with respect to the object's nominal subtype.  It can be used to 
check the contents of a scalar object without formally reading its value.  Using this 
attribute on an uninitialized object is not an error of any sort, and is guaranteed to either 
return True or False (and not raise an exception).  The results are based on the actual 
contents of the object and not on what the optimizer might have assumed about the 
contents of the object based on some declaration.  

Valid can also be used to check data from an unchecked conversion, a value read from 
I/O, an object for which pragma Import has been specified, and an object that has been 
assigned a value where checks have been suppressed. 

• Reviewable object code  
Ada provides mechanisms to aid in reviewing the object code produced by the compiler.  
Because the compiler will have defects, it is important in safety-critical applications to 
review the object code itself. 

The pragma Reviewable can be applied to a partition (program) so that the compiler can 
provide the necessary information.  The compiler vender should produce information on 
the ordering of modules in the object code,  what registers are used for an object (and 
how long is the assignment valid), and what machine code instructions are used.  In 
addition, a way to extract the object code for a particular module, so that other tools can 
use it, is suggested.  Other information should support Initialization Analysis (what is the 
initialization state of all variables), determining the relationship between Source and 
Object Code, and Exception Analysis (indicating where compiler-generated run-time 
checks occur in the object code and which exceptions can be raised by any statement) 
may also be supported by the compiler vendor. 

An Inspection Point pragma provides a “hook” into the program similar to a hardware 
test point.  At the inspection point(s) in the object code, the values of the specified 
objects, or all live objects, can be determined. 
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However, no language is perfect.  Ada95 does not detect the use of uninitialized variables, 
though using the “Normalize_Scalars” pragma will help.  Some aspects of the language to 
consider restricting, for a safety-critical application, are: 

• The ability to turn off the type checking and other safety features 

• Garbage collection…turn it off if timing issues are important.   

“Ada Programming Guidelines” are available from Rational Software Corporation. 

11.1.4.2 Assembly Languages 
Assembly languages are the human-readable version of machine code.  They are specific to a 
processor or processor family.  Programming in assembly requires intimate knowledge of the 
workings of the processor.   

Modern assembly languages include macros that allow “higher level” logic flow, such as if…else 
statements and looping.  Variables can be declared and named.  Subroutines (procedures) can 
also be declared and called.  All “higher level” constructs improve the readability and 
maintainability of the assembly program.  

Few large programs are written entirely in assembly language.  Often, a small section of the 
software will be rewritten in assembly to increase execution speed or decrease code size.  Also, 
the code used on bootup of a system (that loads the operating system) and BIOS-like utilities are 
often written in assembly.  Interrupt service routines are another place you will find assembly 
language used.  In addition, software that runs on small microcontrollers are often space-limited 
and therefore assembly coding is a good alternative to a high-level language. 

Why use assembly? 

Execution Speed • 

• 

• 

• 

Smaller code size 

Ability to do something that higher level languages do not allow. 

Tweaking the compiler’s optimization, by editing the assembly output it produces 

Problems and safety concerns: 

• Can do anything with the processor and access any part of memory 

• No notion of data type – a sequence of bytes can be anything you want! 

• You can jump anywhere in address space 

• All higher level constructs (structures, arrays, etc.) exist only in the programmer’s 
implementation, and not in the language. 

• Not portable between processors 

Compilers can usually produce assembly source code from the higher level language.  This is 
useful for checking what the compiler does, and verifying its translation to that level.  In fact, if 
the compiler produces correct assembly source code but incorrect object code, creating the 
assembly source and then using a different assembler to generate the object code could bypass 
the problem.   
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More often, the assembly output is used to “tweak” performance in a slow routine.  Use a 
profiling program to find out where the slow sections are first.  The part of the program that  the 
programmer thinks is likely to be slow is often not the actual problem.  Running the program 
with a profiler will give hard numbers, and point to the truly sluggish sections of code. 

11.1.4.3 C Language 
The C language is extremely popular because of its flexibility and support environment.  C is 
often used in embedded and real-time environments because hardware access is fairly easy and 
compact code can be generated. In many ways, C is a higher level assembly language. This gives 
it great flexibility, and opens a Pandora’s box of possible errors.  The support environment 
includes a wide variety of mature and inexpensive development and verification tools.  Also, the 
pool of experienced vendors and personnel is quite large.   

However, C’s definition lacks the rigor necessary to qualify it as a suitable vehicle for safety-
critical applications. There are dozens of dialects of C, raising integrity concerns about code 
developed on one platform and used on another. Despite its problems, many safety-critical 
applications have been coded in C and function without serious flaws.  If C is chosen, however, 
the burden is on the developer to provide a thorough verification of code and data sequences, and 
sufficient testing to verify both functionality and error handling.  

One characteristic of C that decreases its reliability is that C is not a strongly typed language.  
That means that the language doesn’t enforce the data typing, and it can be circumvented by 
representational viewing.  (This means that by unintended use of certain language constructs, not 
by explicit conversion, a datum that represents an integer can be interpreted as a character.)  The 
definition of strong typing implies an explicit conversion process when transforming one data 
type to another.  C allows for implicit conversion of basic types and pointers.  One of the features 
of strong typing is that sub-ranges can be specified for the data.  With a judicious choice of data 
types, a result from an operation can be shown to be within a sub-range.  In C it is difficult to 
show that any integer calculation cannot overflow.  Unsigned integer arithmetic is modulo the 
word length without overflow detection and therefore insecure for safety purposes.   

Another feature of C that does not restrict operations is the way C works with pointers.  C does 
not place any restrictions on what addresses a programmer can point to and it allows arithmetic 
on pointers.  While C's flexibility makes it attractive,  it also makes it a less reliable 
programming language.  C has other limitations which are mentioned in reference [33].   

Restricting the C language to certain constructs would not be feasible because the resulting 
language would not have the necessary functionality.  However, rigorous enforcement of coding 
standards will decrease certain common errors and provide some assurance that the software will 
function as expected.  Structured design techniques should be used.   

Limitations and Problems with the C language: 

• Pointers 
Pointers in C allow the programmer to access anything in memory, if the operating 
system does not prevent it.  This is good when writing a device driver or accessing 
memory-mapped I/O.  However, a large number of C errors are due to pointer problems.  
Using a pointer to access an array, and then running past the end of the array, leads to 
“smash the stack” (see below).  Pointer arithmetic can be tricky, and you can easily point 
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outside of the data structure.  Use of undefined pointers can trash memory or the stack, 
and lead the program to wander into undefined territory.   

•  Lack of Bounds Checking 
C does not provide any bounds checking on arrays and strings.  It is left to the 
programmer to make sure that the array element is truly in bounds.  Since the 
programmer is fallible, “smash the stack” and “fandango on core” often result.  The 
problem is especially evident when passing an array to a function, which references it via 
a pointer.  The function must know the length of the array, or it may run past the end.  
Calculations that determine the element to access must also be checked, as a negative or 
too large value can result, leading to “out of bounds” accesses. 

 A “wrapper” function can be used when accessing an array or string which checks that 
the element is within bounds.  This adds runtime overhead, but decreases the number of 
errors. 

• Floating Point Arithmetic  
The ANSI C standard does not mandate any particular implementation for floating point 
arithmetic.  As a result every C compiler implements it differently.  The following test 
calculation can be executed: 

x = 1020+1 

y = x-1020 

The resulting value for y will differ greatly from compiler to compiler, and none of them 
will be correct due to word length round-off. 

• Casting from void* 
void* points to data of any type.  It is left to the programmer to recast it when the pointer 
is used.  There is no compile time nor run time checking to verify that the pointer is cast 
to a valid type (based on what the pointer actually points to).  This method is inherently 
tricky and prone to errors. 

• Commenting problems 
The C comment /* … */ can lead to unexpected problems, by accidentally commenting 
out working code.  Forgetting the end comment marker (*/) can cause the code that 
follows to be comment out, until another comment end marker is found.  A good editor 
will often show this problem while the code is being developed, if it marks commented 
text in a different color.  Also, compilers should be set up to generate warnings or errors 
to be generated if an open comment (/*) is found within a comment. 

• Global variables 
Global variables can be considered as input parameters to any function, since a function 
has full access to them.  So a function that takes 2 parameters, in a program with 100 
global variables, actually has 102 parameters.  This makes verifying the program very 
difficult.  It is best to avoid global variables as much possible.  Global variables also 
cause problems in a multi-threaded program, e.g. when different threads believe they 
have control of the variable, and both change the global. 
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• Common language errors 
o Confusing = with == (assignment with logical equality) 

o Confusing & vs. && (Bitwise AND with logical AND) 

o premature semicolon in control structures 

o fall-through behavior in switch statements when "break" is omitted 

o Comparing signed and unsigned variables.  Particularly, testing “unsigned < 0” or 
“unsigned < negative signed value”. 

• Side effects and macros 
Side effects, such as incrementing a variable with ++, when mixed with macros 
(including “functions” that are actually implemented as a macro, such as putchar()), may 
produce unexpected results. 

• “smash the stack”* 

<jargon> In C programming, to corrupt the execution stack by writing past the end of a 
local array or other data structure.  Code that smashes the stack can cause a return from 
the routine to jump to a random address, resulting in insidious data-dependent bugs.  

Variants include “trash the stack”, “scribble the stack”, and “mangle the stack”.  

• “precedence lossage”* 
/pre's*-dens los'*j/ A C coding error in an expression due to unintended grouping of 
arithmetic or logical operators.  Used especially of certain common coding errors in C 
due to the nonintuitively low precedence levels of "&", "|", "^", "<<" and ">>".  For 
example, the following C expression, intended to test the least significant bit of x,   

x & 1 == 0 
is parsed as  
         x & (1 == 0) 
which the compiler would probably evaluate at compile-time to  

(x & 0) 
and then to 0.  

Precedence lossage can always be avoided by suitable use of parentheses.  For this 
reason, some C programmers deliberately ignore the language's precedence hierarchy and 
use parentheses  defensively.  

• “fandango on core”* 
 (Unix/C, from the Mexican dance)   In C, a wild pointer that runs out of bounds, causing 
a core dump, or corrupts the malloc arena in such a way as to cause mysterious failures 
later on, is sometimes said to have "done a fandango on core".  On low-end personal 
machines without an MMU, this can corrupt the operating system itself, causing massive 
lossage.  Other frenetic dances such as the rumba, cha-cha, or watusi, may be substituted. 
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• “overrun screw”* 
A variety of fandango on core produced by a C program scribbling past the end of an 
array (C implementations typically have no checks for this error).  This is relatively 
benign and easy to spot if the array is static; if it is auto, the result may be to smash the 
stack - often resulting in heisenbugs of the most diabolical subtlety.  The term "overrun 
screw" is used especially of scribbles beyond the end of arrays allocated with malloc; this 
typically overwrites the allocation header for the next block in the arena, producing 
massive lossage within malloc and often a core dump on the next operation to use stdio or 
malloc itself. 

• “C Programmer's Disease”* 
The tendency of the undisciplined C programmer to set arbitrary but supposedly generous 
static limits on table sizes (defined, if you're lucky, by constants in header files) rather 
than taking the trouble to do proper dynamic storage allocation.  If an application user 
later needs to put 68 elements into a table of size 50, the afflicted programmer reasons 
that he or she can easily reset the table size to 68 (or even as much as 70, to allow for 
future expansion) and recompile.  This gives the programmer the comfortable feeling of 
having made the effort to satisfy the user's (unreasonable) demands, and often affords the 
user multiple opportunities to explore the marvelous consequences of fandango on core.  
In severe cases of the disease, the programmer cannot comprehend why each fix of this 
kind seems only to further disgruntle the user.  

*These quotations were taken from Imperial College, London, UK, world wide web home page ”The Free On-Line Dictionary of 
Computing”   Copyright Denis Howe 1993-1999,  (http://foldoc.doc.ic.ac.uk/foldoc/index.html).   It contains graphic descriptions 
of common problems with C.  The quotations were reproduced by permission of Denis Howe  <dbh@doc.ic.ac.uk>. 

Reference [54] discusses the important problem of dynamic memory management in C. Note that simply 
prohibiting dynamic memory management is not necessarily the best course, due to increased risk of 
exceeding memory limits without warning. 

Programming standards for C should include at least the following: 

• Use parentheses for precedence of operation, and do not rely on the default precedence.  The 
default may not be what you thought it was, and it will come back to bite you. 

• Use parentheses within macros, around the variable name 

• Don’t use the preprocessor for defining complex macros 

• Explicitly cast or convert variables.  Do not rely on the implicit conversions. 

• Avoid void* pointers when possible.   

• Check arrays and strings for “out of bounds” accesses. 

• Always use function prototypes.  This allows the compiler to find problems with inconsistent 
types when passing variables to a function. 

• Minimize the use of global variables.  Each global can be considered a parameter to every 
function, increasing the chance of accidentally changing the global. 

• Always include a default clause in a switch…case statement. 

• Avoid recursion when possible. 

• Make extensive use of error handling procedures and status and error logging. 
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The Ten Commandments for C Programmers 
by Henry Spencer  

1. Thou shalt run lint frequently and study its pronouncements with care, for verily its 
perception and judgment oft exceed thine.  

2. Thou shalt not follow the NULL pointer, for chaos and madness await thee at its end.  

3. Thou shalt cast all function arguments to the expected type if they are not of that type 
already, even when thou art convinced that this is unnecessary, lest they take cruel 
vengeance upon thee when thou least expect it.  

4. If thy header files fail to declare the return types of thy library functions, thou shalt 
declare them thyself with the most meticulous care, lest grievous harm befall thy 
program.  

5. Thou shalt check the array bounds of all strings (indeed, all arrays), for surely where thou 
typest "foo" someone someday shall type "supercalifragilisticexpialidocious".  

6. If a function be advertised to return an error code in the event of difficulties, thou shalt 
check for that code, yea, even though the checks triple the size of thy code and produce 
aches in thy typing fingers, for if thou thinkest "it cannot happen to me", the gods shall 
surely punish thee for thy arrogance.  

7. Thou shalt study thy libraries and strive not to re-invent them without cause, that thy code 
may be short and readable and thy days pleasant and productive.  

8. Thou shalt make thy program's purpose and structure clear to thy fellow man by using the 
One True Brace Style, even if thou likest it not, for thy creativity is better used in solving 
problems than in creating beautiful new impediments to understanding.  

9. Thy external identifiers shall be unique in the first six characters, though this harsh 
discipline be irksome and the years of its necessity stretch before thee seemingly without 
end, lest thou tear thy hair out and go mad on that fateful day when thou desirest to make 
thy program run on an old system.  

10. Thou shalt foreswear, renounce, and abjure the vile heresy which claimeth that "All the 
world's a VAX", and have no commerce with the benighted heathens who cling to this 
barbarous belief, that the days of thy program may be long even though the days of thy 
current machine be short. 

A checklist of Generic and C-specific programming standards is included in Appendix B.  
Additional guidelines on C programming practices are described in the book “Safer C: 
Developing Software for High-integrity and Safety-critical Systems” (Reference [55], and also in 
[56] and [57]).  Included in the book are lists of undefined or implementation defined behaviors 
in the language. 

11.1.4.4 C++ Language 
The C++ programming language was created by Bjarne Stroustrup as an extension (superset) of 
the C programming language discussed above (Section 11.1.4.3 C Language).  The goal was to 
add object-oriented features, while maintaining the efficiency of C.  The language was 
standardized in November, 1997 as ISO/IEC 14882.  C++ adds Object Orientation (OO) as well 
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as fixing or updating many C features.  C++ is also more strongly typed than C.  However, C++ 
suffers from many of the same drawbacks as C. 

A standard "safe subset" of  C++ does not presently exist. 

Strengths of the C++ Language 
Object Orientation • 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Object orientation allows data abstraction (classes), encapsulation of data and the 
functions that use the data,  and reusable and extensible code. 

Stronger type checking than C 
C++ type checking can be subverted, but it is much better than C’s.  Most of the 
mechanisms that reduce the type checking were left in to support compatibility with the C 
language.   

Const to enforce the “invariability” of variables and functions 
Declaring a function const means that the function will not change any passed 
parameters, even if they are passed by reference.  A const variable cannot be changed, 
and replaces the “#define” preprocessor directives.  The programmer can get around 
const with a cast. 

Generic programming (templates).   
C++ has the ability to use generic containers (such as vectors) without runtime overhead. 

C++ supports both Object-Oriented and Structural design and programming styles. 

The user-defined types (classes) have efficiencies that approach those of built-in 
types.   C++ treats built-in and user-defined types uniformly 

Exceptions and error handling 
Exceptions allow errors to be “caught” and handled, without crashing the program.  They 
may not be the best way to handle errors, and the software does have to be explicitly 
designed to generate and deal with exceptions.  However, exceptions are an improvement 
over C’s setjmp() and longjmp() means of exception handling. 

Namespaces 
Namespaces are most useful for libraries of functions.  They prevent function names from 
conflicting, if they are in different libraries (namespaces).  While not primarily a safety 
feature, namespaces can be used to clearly identify to the reader and the programmers 
what functions are safety related. 

References to variables 
A reference is like a pointer (it points to the variable), but it also simplifies the code and 
forces the compiler to create the pointer, not the programmer.  Anything the compiler 
does is more likely to be error free than what the programmer would do. 

Inline Functions 
Inline functions replace #define macros.  They are easier to understand, and less likely to 
hide defects. 
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Good practices to reduce C++ errors:  
• Never use multiple inheritance, only use one to one (single) inheritance.  This is because 

interpretations of how to implement multiple inheritance are inconsistent (Willis and 
Paddon, [58] 1995.  Szyperski supports this view.); 

• Minimize the levels of inheritance, to reduce complexity in the program. 

• Only rely on fully abstract classes, passing interface but not implementation (suggestion 
by Szyperski at 1995 Safety through Quality Conference - NASA-KSC [59]). 

• Minimize the use of pointers. 

• Do not allow aliases.  

• No side-effects in expressions or function calls. 

• Make the class destructor virtual if the class can be inherited. 

• Always define a default constructor, rather than relying on the compiler to do it for you. 

• Define a copy constructor.  Even if a “bitwise” copy would be acceptable (the default, if 
the compiler generates it), that may change in the future.  If any memory is allocated by 
the class methods, then a copy constructor is vital.  If the class objects should not be 
copied, make the copy constructor and assignment operator private, and do not define 
bodies for them. 

• Define an assignment operator for the class, or add a comment indicating that the 
compiler-generated one will be used. 

• Use operator overloading sparingly and in a uniform manner.  This creates more readable 
code, which increases the chance of errors being found in inspections, and reduces errors 
when the code is revisited. 

• Use const when possible, especially when a function will not change anything external to 
the function.  If the compiler enforces this, errors will be found at compile time.  If not, it 
will aid in finding errors during formal inspections of the code. 

• Don’t use the RTTI (Run-Time Type Information).  It was added to support object 
oriented data bases.  If you think it’s necessary in your program, look again at your 
design. 

• Avoid global variables.  Declare them in a structure as static data members. 

• Make sure that the destructor removes all memory allocated by the constructor and any 
member functions, to avoid memory leaks. 

• Use templates with care, including the Standard Template Library.  The STL is not 
thread-safe. 

• Take special care when using delete for an array.  Check that delete[] is used.  Also check 
for deleting (freeing) a pointer that has been changed since it was allocated.  For 
example, the following code will cause problems: 

p = new int[10]; // allocate an array of 10 integers 
p++;   // change the pointer to point at the second integer 
delete p;  // error, not array delete (delete[]) and  pointer changed 
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A review of potential problems in C++ was published by Perara [60].  The headings from that 
paper are as follows: 

• Don’t rely on the order of initialization of globals 

• Avoid variable-length argument lists 

• Don’t return non-constant references to private data 

• Remember ‘The Big Three’ 

• Make destructors virtual 

• Remember to de-allocate arrays correctly 

• Avoid type-switching 

• Be careful with constructor initialization lists 

• Stick to consistent overloading semantics 

• Be aware of the lifetimes of temporaries 

• Look out for implicit construction 

• Avoid old-style casts 

• Don’t throw caution to the wind exiting a process 

• Don’t violate the ‘Substitution Principle’ 

• Remember there are exceptions to every rule. 

A detailed discussion is provided on each point, in that reference. 

11.1.4.5 C# Language 
C# is a new language created by Microsoft . C# is loosely based on C/C++, and bears a striking 
similarity to Java in many ways.  Microsoft describes C# as follows: 

"C# is a simple, modern, object oriented, and type-safe programming language derived 
from C and C++.  C# (pronounced 'C sharp') is firmly planted in the C and C++ family 
tree of languages, and will immediately be familiar to C and C++ programmers.  C# aims 
to combine the high productivity of Visual Basic and the raw power of C++." 

C# has been created as part of Microsoft’s .NET environment, and is primarily designed for it.  
Any execution environment will have to support aspects that are specific to the Microsoft 
platform.  Since they must support the Win32 API, C# may be restricted to Win32 machines.  
However, at least one company is considering porting C# to Linux. 

C# has the following features: 

Exceptions • 

• 

• 

References can be null (not referencing a real object).  C# throws an exception if the 
reference is accessed. 

Garbage collection.  You CAN’T delete memory, once it is allocated! 
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Array bounds checking (throws an exception) • 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Like Java, machine-independent code which runs in a managed execution environment 
(like the JVM) 

No pointers, except in routines marked unsafe 

Multi-dimensioned arrays 

Switch statements do not allow “fall through” to next case. 

Thread support, including locking of shared resources 

No global variables 

All dynamically allocated variables initialized before use.  

The compiler produces warnings if using uninitialized local variable. 

Overflow checking of arithmetic operations (which can be turned off if needed) 

“foreach” loop – simpler way to do a for loop on an array or string.  This decreases the 
chance of going out of bounds, because the compiler determines how often to loop, not 
the programmer. 

Everything is “derived” from the base class (system class).  This means that integers, for 
example, have access to all the methods of the base class.  The following code in C# 
would  convert an integer to a string and write it on the console: 

int i = 5; 
System.Console.WriteLine (i.ToString()); 

 
Has a goto statement but it may only point anywhere within its scope, which restricts it to 
the same function or finally block, if it is declared within one.  It may not jump into a 
loop statement which it is not within, and it cannot leave a try block before the enclosing 
finally block(s) are executed. 

Pointer arithmetic can be performed in C# within methods marked with the unsafe 
modifier. 

“Internet” oriented (like Java) 

The following features are of concern in embedded or safety environments: 

 Garbage collection can lead to non-deterministic timing.  It is a problem in real-time 
systems. 

 Portability:  C# is currently only designed to work on Microsoft Windows systems. 

 Speed: C# is an interpreted language, like Java.  Unlike Java, there is currently no 
compiler that will produce native code. 
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11.1.4.6 Forth Language 
The Forth language was developed in the 1960’s by Charles Moore.  He wanted a language that 
would make his work of controlling telescopes both easier and more productive.   

Forth is “stack based” – the language is based on numbers and words.  Numbers are pushed on 
the stack.  Words are “executed” on the stack numbers, and are essentially functions.  Words are 
kept in a Forth dictionary.  The programmer can create new words (new functions), usually using 
existing words. 

Forth uses reverse polish notation.  The last number pushed on the stack is the first off it.  A 
simple Forth statement to add 3 and 4 is: 3 4 + (pushes 3, then pushes 4, + pops the top two 
numbers off the stack and adds them, then pushes the result onto the stack.).  In this case, + is a 
built-in word (function). 

Forth has the benefits of “higher level” language (like C), but it is also very efficient (memory 
and speed-wise).  It is used mainly in embedded systems.  Forth can be used as the Operating 
System (OS) as well, and it often is in small embedded microcontrollers. 

Forth has no “safety” features.  The programmer can do just about anything!  It is very similar to 
C and assembly language this way.  The flexibility and speed it gives must be balanced with the 
need to rigorously enforce coding standards, and to inspect the safety-critical code. 

The Forth programmer must know where each parameter or variable is on the stack, and what 
type it is.  This can lead to errors, if the type or location is incorrectly understood. 

One positive aspect of Forth, from a safety standpoint, is that it is very easy to unit test.  Each 
“word” is a unit and can be thoroughly tested, prior to integration into larger “words”.  There is 
work on applying formal methods to Forth. 

The following quote is from Philip J. Koopman Jr.9  The italics are added to emphasize particular 
aspects of concern to programming a safe system. 

“Good Forth programmers strive to write programs containing very short (often one-line), well-
named word definitions and reused factored code segments.  The ability to pick just the right 
name for a word is a prized talent.  Factoring is so important that it is common for a Forth 
program to have more subroutine calls than stack operations.  Factoring also simplifies speed 
optimization via replacing commonly used factors with assembly language definitions…. 

Forth programmers traditionally value complete understanding and control over the machine and 
their programming environment.  Therefore, what Forth compilers don't do reveals something 
about the language and its use.  Type checking, macro preprocessing, common subexpression 
elimination, and other traditional compiler services are feasible, but usually not included in Forth 
compilers. …. 

Forth supports extremely flexible and productive application development while making ultimate 
control of both the language and hardware easily attainable.”  

                                                      
9 Philip J. Koopman Jr. by permission of the Association for Computing Machinery; A Brief Introduction to Forth; 
This description is copyright 1993 by ACM, and was developed for the Second History of Programming Languages 
Conference (HOPL-II), Boston MA.     koopman@cmu.edu 
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11.1.4.7 FORTRAN Language 
FORTRAN was developed in the 1950’s by IBM, and first standardized in the 1960’s, as 
FORTRAN 611.  It is primarily a numerical processing language, great for number crunching.  
FORTRAN has gone through several standards since the 1960’s.  The versions of the language 
considered here are FORTRAN 77 and Fortran 90. 

While not usually used in embedded systems, FORTRAN can still be used in a safety-critical 
system (or a part of the system), if the numerical results are used in safety decisions. 

FORTRAN 77 is a structured, procedural language.  It contains all the elements of a high level 
language (looping, conditionals, arrays, subroutines and functions, globals, independent 
compilation of modules, and input/output (formatted, unformatted, and file)).  In addition, it has 
complex numbers, which are not part of the other languages considered here.  There is no 
dynamic memory (allocate, deallocate) in FORTRAN 77. 

Elements of FORTRAN 77 related to safety 

• 

• 

• 

• 

• 

• 

• 

• 

• 

                                                     

Weak data typing.  The data type of a variable can be assumed, depending on the first 
letter of the name, if it is not explicitly defined.   

GOTO statements.  The programmer can jump anywhere in the program. 

Fixed-form source input.  This relates to safety only in that it can look OK (in an 
inspection) and be wrong (incorrect column).  However, the compiler should prevent this 
problem from occurring. 

Limited size variable names.  The length of the variable name was limited to 8 
characters.  This prevented using realistic names that described the variable.  
Programmers often used cryptic names that made understanding and maintaining the 
program difficult. 

Lack of dynamic memory.  This prevents the problems related to dynamic memory, 
though it limits the language for certain applications. 

The EQUIVALENCE statement should be avoided, except with the project manager's 
permission.  This statement is responsible for many questionable practices in Fortran 
giving both reliability and readability problems.10 

Use of the ENTRY statement.  This statement is responsible for unpredictable behavior 
in a number of compilers.  For example, the relationship between dummy arguments 
specified in the SUBROUTINE or FUNCTION statement and in the ENTRY statements 
leads to a number of dangerous practices which often defeat even symbolic debuggers.* 

Use of COMMON blocks.  COMMON is a dangerous statement.  It is contrary to 
modern information hiding techniques and if used freely, can rapidly destroy the 
maintainability of a package. 

Array bounds checking is not done dynamically (at run time), though compilers may have 
a switch that allows it at compile time. 

 
 

10 These elements were extracted from Appendix A of Hatton, L. (1992) "Fortran, C or C++ for geophysical 
software development", Journal of Seismic Exploration, 1, p77-92. 
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Fortran 90 is an updated version of FORTRAN 77 that provides rudimentary support for Object 
Oriented programming, and other features.  Fortran 90 includes: 

Dynamic memory allocation, specifically allocatable pointers and arrays. • 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Rudimentary support for OOP.  Inheritance is not supported.  Constructors simply 
initialize the data members.  There are no destructors.  It does have derived types and 
operator overloading. 

Rudimentary pointers.  A FORTRAN pointer is more of an alias (reference) than a C-
style pointer.  It cannot point to arbitrary locations in memory or be used with an 
incorrect data type.  Variables that will be pointed to must declare themselves as 
TARGETs. 

Free-style format and longer variable names (31 characters).  These increase 
readability of the code. 

Improved array operations, including operating on a subsection of the array and array 
notation (e.g. X(1:N)).  Statements like A=0 and C=A+B are now valid when A and B are 
arrays.  Also, arrays are actually array objects which contain not only the data itself, but 
information about their size.  There is also a built-in function for matrix multiplication 
(matmul). 

Better function declarations (prototyping).  

Modern control structures (SELECT CASE, EXIT, ...)  

User defined data types (modules).  Like struct in C, or record in Pascal. 

Recursive functions are now a part of the language. 

Problems with Fortran 90: 

Order of evaluation in if statements (if (a and b)) is undefined.  A compiler can evaluate b 
first, or a first.  So the statement “if (present(a) .and. a)” could cause a problem, if the 
compiler evaluates ‘a’ (right side) first, and ‘a’ doesn’t exist.  Do not rely on order of 
evaluation in if statements. 

Allocatable arrays open the door to memory leakage (not deallocating when done) and 
accessing the array after it has been deallocated.  

Implicit variables are still part of the language.  Some compilers support the extension of 
declaring IMPLICIT NONE, which forces the data type to be declared. 

11.1.4.8 Java Language 
Java was created by Sun Microsystems in 1995, with the first development kit (JDK 1.0) 
released in January, 1996.  Since then, Java has become a widespread language, particularly in 
internet applications.  Java is used in embedded web systems as the front end (usually GUI) for 
other embedded systems, and for data distribution or networking systems, among many other 
applications. 

Java was created to be platform independent.  Java programs are not normally compiled down to 
the machine code level.  They compile to “byte code”, which can then be run on Java Virtual 
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Machines (JVM).  The JVM’s contain the machine-specific coding.  When a Java program is 
run, the JVM interprets the byte code.  This interpreted mode is usually slower than traditional 
program execution.  In addition, timing will not be deterministic. 

Work is in process to create Java specifications for real-time, embedded systems.  In December, 
1998, the Java Real-Time Expert Group was formed to create a specification for extensions to 
Java platforms that add capabilities to support real-time programming in Java and to support the 
adoption of new methodologies as they enter into practice.  The group has focused on new APIs, 
language, and virtual machine semantics in six key areas (the Java thread model, 
synchronization, memory management, responding to external stimuli, providing accurate 
timing, and asynchronous transfer of control).  JSR-000001, Real-time Specification for Java, 
was released in June, 2000. 

Compilers for Java programs do exist.  They compile the program down to the machine level.  
This decreases the portability and removes the platform independence, but allows an increase in 
execution speed and a decrease in program size.  Compiled Java programs do not need a Java 
Virtual Machine (JVM). 

Java has the following features: 

Fully Object Oriented.  This has the plusses of reusability and  encapsulation • 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Dynamic loading of new classes, and object and thread creation at runtime. 

No pointers allowed!  No pointer arithmetic and other pointer problems common in C.  
However, objects can be accessed through references. 

Garbage collection to free unused memory.  The programmer doesn’t have to remember 
to delete the memory. 

Support for threads, including synchronization primitives. 

Support for distributed systems. 

No goto statement, though labeled break and continue statements are allowed. 

Allows implicit promotion (int to float, etc.), but conversion to lower type needs explicit 
cast 

Variables initialized to known values (including references) 

Allows recursion 

Checks array bounds and references to null 

Java's document comments (//*) and standard documentation conventions aid in 
readability. 

Type safe (compile variable and run-time types must match) 

No operator overloading 

Built-in GUI, with support for events 

Built-in security features (language limits uncontrolled system access, bytecode 
verification is implemented at run-time, distinguishes between trusted and untrusted 
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(foreign) classes, and restricts changing of resources.  Packages – downloaded code can 
be distinguished from local)  However, still not secure.  Ways to circumvent are found, 
and “bug fixes” are released 

Java automatically generates specifications (prototypes) (as opposed to using redundant 
specifications). 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Java has these limitations: 

can’t interface to hardware; must use native methods of another language to do so. 

Uses a Java Virtual Machine, which must be tested or certified, unless compiled to native 
code. 

Garbage collection to free unused memory can’t be turned off!  This affects determinism 
in real-time systems. 

Selfish threads (those that do not call sleep()), on some OS’s, can hog the entire 
application.  Threads can interfere with each other if using the same object.  
Synchronization makes the thread not be interrupted until done, but deadlock can still 
occur. 

Doesn’t detect “out of range” values (such as integer multiplication leading to an integer 
value that is too large). 

When passing arguments to functions, all objects, including arrays, are call-by-reference.  
This means that the function can change them!  

Java is an interpreted language, which is often slower than a compiled language.  
Compilers are available, however, which will get around this problem. 

Non-deterministic timing.  Real-time extensions are being worked on, but they are not 
standardized yet. 

The Java language has not been standardized by a major standards group.  It is in the 
control of Sun Microsystems. 

11.1.4.9 LabVIEW 
LabVIEW is a graphical programming language produced by National Instruments.  It is used to 
control instrumentation, usually in a laboratory setting.  LabVIEW allows the user to display 
values from hardware (temperatures, voltages, etc.), to control the hardware, and to do some 
processing on the data.  It is primarily used in “ground stations” that support hardware (such as 
space flight instruments).  The LabVIEW “code” will be considered safety-critical if the “ground 
station” it supports is safety-critical.  In addition, it has been used to support infrastructures (e.g. 
wind tunnel) that have safety-critical aspects, as well as small flight experiments. 

The use of LabVIEW in safety-critical systems is possible, but several factors make it 
undesirable.  The operating system LabVIEW runs on (such as Windows NT) and 
LabVIEW itself may not be deterministic.  There is no “source code” to inspect, so the 
correct translation from graphical display to executable can only be verified via test.  
There is no way to partition safety-critical software components from the rest of the 
LabVIEW program.  Testing LabVIEW programs for unexpected interactions among 
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program elements is not a well understood process.  For these reasons, LabVIEW should 
only be used for the non-critical portions of the software, or adequate hardware controls 
should be in place.  

In LabVIEW, the method by which code is constructed and saved is unique.  There is no text 
based code as such, but a diagrammatic view of how the data flows through the program.  
LabVIEW is a tool of the scientist and engineer (who are not always proficient programmers) 
who can often visualize data flow, but are unsure of how to convert that into a conventional 
programming language.  Also, LabVIEW’s graphical structure allows programs to be built 
quickly. 

Data flow is the fundamental tenet by which LabVIEW code is written.  The basic philosophy is 
that the passage of data through nodes within the program determines the order of execution of 
the functions of the program.  LabVIEW VI's (Virtual Instruments) have inputs, process data and 
produce outputs.  By chaining together VI's that have common inputs and outputs it is possible to 
arrange the functions in the order by which the programmer wants the data to be manipulated. 

LabVIEW development is supported by Windows 9x/2000/NT, Macintosh, PowerMax OS, 
Solaris, HP-Unix, Sun, Linux, and Pharlap RTOS (Real-Time Operating System).  Executables 
can be compiled under their respective development systems to run on these platforms (native 
code).  Code developed under one platform can be ported to any of the others, recompiled and 
run. 

LabVIEW has rich data structures (For and While loops, Shift registers, Sequencing, and Arrays 
and clusters).  It supports polymorphism and compound arithmetic.  Display types include 
Indicators, Graphs and charts, and Instrument simulation.  Strings and file handling are included 
in LabVIEW.  Many debugging techniques, such as breakpoints, single stepping, and probes, are 
supported. 

A real-time version of LabVIEW (LabVIEW-RT) exists for embedded processors. 

Though you can’t “pop the hood” of LabVIEW and review the source code, formal inspections 
can be performed on the graphical layout (Virtual Instrument files).  Thorough analysis and 
testing are highly recommended if LabVIEW is used in safety-critical systems. 

11.1.4.10 Pascal Language 
The Pascal language was originally designed in 1971 by Niklaus Wirth, professor at the 
Polytechnic of Zurich, Switzerland.  Pascal was designed as a simplified version for educational 
purposes of the language Algol, which dates from 1960.  The Pascal language was has been used 
as a tool to teach structured programming.  While there is still a strong subset of Pascal 
advocates, the language is not commonly used anymore. 

The original Pascal standard is ISO 7185 : 1990.  The Extended Pascal standard was completed 
in 1989 and is a superset of ISO 7185.  The Extended Pascal standard is ANSI/IEEE 770X3.160-
1989 and ISO/IEC 10206 : 1991.  Object Oriented Pascal was released as a Technical Report by 
ANSI in 1993.  Object Pascal is the language used with the Delphi Rapid Applications 
Development (RAD) system. 
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SPADE Pascal11  is a subset that has undergone the study and verification necessary for safety-
critical applications.  The major issue with Pascal is that no provision for exception handling is 
provided.  However, if a user employs a good static code analysis tool, the question of overflow 
in integer arithmetic can be addressed and fixed without needing exception handlers.  The 
SPADE Pascal subset is suited to safety-critical applications. 

11.1.4.11 Visual Basic 
Visual Basic is a Microsoft version of the Basic language for use with Windows operating 
systems.  It is oriented toward GUIs (Graphical User Interfaces), and is proprietary.  However, 
because Visual Basic is easy to use, many programs that will run under Windows use it as the 
user interface, and some other language for the “meat” of the program.  Visual Basic is a Rapid 
Application Development (RAD) tool, like Delphi (which uses Pascal). 

Visual Basic is being used within programs that provide command and control interfaces to 
hardware instrumentation.  For example, the program that an astronaut will run on a standard 
laptop to control a particular experiment will often be written in Visual Basic.  Such software 
may include safety-critical elements if it can issue hazardous commands or if the displayed 
values are used in a safety-critical decision. 

Features of Visual Basic: 

• 

• 

• 

• 

• 

• 

                                                     

Strongly typed, if “type checking” is turned on; weakly typed if it is not!  Variable types 
do not have to be declared.  The older style of a type suffix on the end of the name (e.g. 
str$ for a string variable) is still allowed.  

Has a variant data type that can contain data in various formats (numerical, string, etc.).  
Use of this data type subverts the attempt to enforce strong data typing. 

Component based and not true Object Oriented.  A component is a binary package with a 
polymorphic interface.  Other components in the system depend upon nothing but the 
interface.  The underlying implementation can be completely changed, without affecting 
any other component in the system, and without forcing a re-link of the system.  
Inheritance is not supported in VB. 

Interpreted environment.  The Visual Basic environment checks the syntax of each line of 
code as you type it in, and highlights these errors as soon as you hit the enter key.  
Compilers are now available for VB, which speeds up program execution speed. 

Trapping.  Visual Basic lets the programmer catch runtime errors.  It is possible to 
recover from these errors and continue program execution. 

The code is hidden from the programmer.  This is a strength of Visual Basic, as it makes 
programming much easier (graphical, drag-and-drop).  However, the code is very 
difficult to inspect, unless the inspectors are intimately knowledgeable about Microsoft 
Windows and Visual Basic.  In many ways, Visual Basic is an automatic code generating 
program. 

 
11 SPADE PASCAL is a commercially available product and is used here only as an example to illustrate 
a technical point. 
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11.1.5 Miscellaneous Problems Present in Most Languages 
The following quotations were taken from the Imperial College, London, UK, world wide web 
home page ”The Free On-Line Dictionary of Computing” Copyright Denis Howe 1993-1999,  
(http://foldoc.doc.ic.ac.uk/foldoc/index.html).110  It contains graphic descriptions of common 
problems. 

• aliasing bug 
<programming> (Or "stale pointer bug") A class of subtle programming errors that can 
arise in code that does dynamic allocation, especially via malloc or equivalent.  If 
several pointers address (are "aliases for") a given hunk of storage, it may happen that 
the storage is freed or reallocated (and thus moved) through one alias and then 
referenced through another, which may lead to subtle (and possibly intermittent) 
lossage depending on the state and the allocation history of the malloc arena.  This bug 
can be avoided by never creating aliases for allocated memory.  Use of a higher-level 
language, such as Lisp, which employs a garbage collector is an option.  However, 
garbage collection is not generally recommended for real-time systems. 

Though this term is nowadays associated with C programming, it was already in use in 
a very similar sense in the ALGOL 60 and FORTRAN communities in the 1960s. 

• spam 
<jargon, programming> To crash a program by overrunning a fixed-size buffer with 
excessively large input data.  

• heisenbug 
<jargon> /hi:'zen-buhg/ (From Heisenberg's Uncertainty Principle in quantum physics) 
A bug that disappears or alters its behaviour when one attempts to probe or isolate it.  
(This usage is not even particularly fanciful; the use of a debugger sometimes alters a 
program's operating environment significantly enough that buggy code, such as that 
which relies on the values of uninitialized memory, behaves quite differently.)  

In C, nine out of ten heisenbugs result from uninitialized auto variables, fandango on 
core phenomena (especially lossage related to corruption of the malloc arena) or errors 
that smash the stack.  

• Bohr bug 
<jargon, programming> /bohr buhg/ (From Quantum physics) A repeatable bug; one 
that manifests reliably under a possibly unknown but well-defined set of conditions.  

• mandelbug 
<jargon, programming> /man'del-buhg/ (From the Mandelbrot set) A bug whose 
underlying causes are so complex and obscure as to make its behaviour appear chaotic 
or even nondeterministic.  This term implies that the speaker thinks it is a Bohr bug, 
rather than a heisenbug.  

• schroedinbug 
<jargon, programming> /shroh'din-buhg/ (MIT, from the Schroedinger's Cat thought-
experiment in quantum physics).  A design or implementation bug in a program that 
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doesn't manifest until someone reading source or using the program in an unusual way 
notices that it never should have worked, at which point the program promptly stops 
working for everybody until fixed.  Though (like bit rot) this sounds impossible, it 
happens; some programs have harboured latent schroedinbugs for years.  

• bit rot 
(Or bit decay).  Hypothetical disease the existence of which has been deduced from the 
observation that unused programs or features will often stop working after sufficient 
time has passed, even if "nothing has changed".  The theory explains that bits decay as 
if they were radioactive.  As time passes, the contents of a file or the code in a program 
will become increasingly garbled.  

There actually are physical processes that produce such effects (alpha particles 
generated by trace radionuclides in ceramic chip packages, for example, can change the 
contents of a computer memory unpredictably, and various kinds of subtle media 
failures can corrupt files in mass storage), but they are quite rare (and computers are 
built with error-detecting circuitry to compensate for them).  The notion long favoured 
among hackers that cosmic rays are among the causes of such events turns out to be a 
myth; see the cosmic rays entry for details.  

Bit rot is the notional cause of software rot.  

• software rot 
Term used to describe the tendency of software that has not been used in a while to 
lose; such failure may be semi-humourously ascribed to bit rot.  More commonly, 
"software rot" strikes when a program's assumptions become out of date.  If the design 
was insufficiently robust, this may cause it to fail in mysterious ways.  

For example, owing to endemic shortsightedness in the design of COBOL programs, 
most will succumb to software rot when their 2-digit year counters wrap around at the 
beginning of the year 2000.  Actually, related lossages often afflict centenarians who 
have to deal with computer software designed by unimaginative clods.  One such 
incident became the focus of a minor public flap in 1990, when a gentleman born in 
1889 applied for a driver's licence renewal in Raleigh, North Carolina.  The new system 
refused to issue the card, probably because with 2-digit years the ages 101 and 1 cannot 
be distinguished.  

Historical note: Software rot in an even funnier sense than the mythical one was a real 
problem on early research computers (eg. the R1).  If a program that depended on a 
peculiar instruction hadn't been run in quite a while, the user might discover that the 
opcodes no longer did the same things they once did.  ("Hey, so-and-so needs an 
instruction to do such-and-such.  We can snarf this opcode, right? No one uses it.")  

Another classic example of this sprang from the time an MIT hacker found a simple 
way to double the speed of the unconditional jump instruction on a PDP-6, so he 
patched the hardware.  Unfortunately, this broke some fragile timing software in a 
music-playing program, throwing its output out of tune.  This was fixed by adding a 
defensive initialization routine to compare the speed of a timing loop with the real-time 
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clock; in other words, it figured out how fast the PDP-6 was that day, and corrected 
appropriately. 

• memory leak 
An error in a program's dynamic store allocation logic that causes it to fail to reclaim 
discarded memory, leading to eventual collapse due to memory exhaustion.  Also 
(especially at CMU) called core leak.  These problems were severe on older machines 
with small, fixed-size address spaces, and special "leak detection" tools were 
commonly written to root them out.  

With the advent of virtual memory, it is unfortunately easier to be sloppy about wasting 
a bit of memory (although when you run out of virtual memory, it means you've got a 
*real* leak!).  

• memory smash 
 (XEROX PARC) Writing to the location addressed by a dangling pointer. 

11.1.6 Programming Languages: Recommendations  
The “safest” languages are Ada95 (and Ada83) and the SPARK Ada subset.  Ada was 
specifically created with safety in mind.  However, Ada is not the most popular language, and 
finding and keeping good Ada programmers can be difficult.  This is one reason other languages 
are often chosen. 

Staffing issues and the effects of learning a new language on the project schedule need to 
be considered, as well as the technical merits of the language.  A newly created language, 
or one that is not familiar to the software developers, will require training and extra 
development time.  Some level of training should be given to Software Assurance and 
Software Safety, so that oversight of the development process can be adequately 
accomplished.  New developers may need to be hired who have an expertise in the 
chosen language.  The defect rates of developers using a newly-learned language are 
often higher, and will need to be compensated by extra reviews, inspections and tests.  
Often staying with a well-understood language is the best choice. 

If choosing a language other than Ada, especially C, assembly language, or Forth, be 
aware of the limitations.  Create and enforce a coding standard.  Devote extra time to 
inspections, analysis and test.  Educate the developers on the “best” programming 
practices for that language, and on the pitfalls of the language chosen.  Take a proactive 
approach to reducing errors up front, then test the stuffing out of the software! 

11.2 Compilers, Editors, Debuggers, IDEs and other Tools 
The minimal set of tools (programs) that a software developer needs is: 

Editor to create the software (source code) with. • 

• 

• 

• 

Compiler (or cross-compiler) to create object code with, from the source code. 

Linker to create an executable application from the object code. 

Debugger to find the location of defects in the software. 
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Often these tools come bundled in an Integrated Development Environment (IDE), where the 
developer can shift from editing to compiling to linking to debugging, and back to editing, 
without leaving the programming environment.  Many IDE’s have additional tools, or have the 
ability to add in tools from other vendors.  How well the tools can be integrated is something the 
developer should look at when choosing an IDE.  In an embedded environment, the IDE can 
include simulators for the target hardware, the ability to download the software generated into 
the target hardware, and sophisticated debugging and monitoring capabilities. 

Some IDE’s are designed for safety-critical software development.  For example, DDC-I, 
a company that specialized in safety-critical software development and tools, has an IDE 
called SCORE (Safety-Critical Object-oriented Real-time Embedded).  “The SCORE 
development environment has been designed to address the needs of safety-critical, real-
time, embedded systems”, according to their website. 
http:/www.ddci.com/products_SCORoot.shtml 

 

Humans make mistakes, and programmers are only human (despite what some may claim).  The 
goal of a tool is to find as many of the errors as quickly as possible.  Some tools help enforce 
good programming practice.  Others make life difficult for the programmer and lead to additional 
errors, because the programmer is annoyed or is actively subverting the intent of the tool! 

In general, look for tools that are: 

 Easy to learn. 

 Well integrated (if in an IDE) or easy to integrate with other tools.  Well integrated 
means that it is easy to switch between the different tools. 

 Default to enforcing standards, rather than relying on the programmer to set the right 
switches 

 Well documented.  This includes not only documentation on how to use the tool, but 
limitations and problems with using the tool.  Knowing what the tool cannot do is as 
important as what it can do. 

A good article on choosing tools for embedded software development is “Choosing The Right 
Embedded Software Development Tools”[61] 

Editors can be a simple text editor (such as Windows NotePad), a text editor designed for 
programmers (that handles indenting, etc.) or a sophisticated, graphical-interfaced editor.  
Whatever kind is chosen, look for these features: 

 Can the “style” (such as indentation) be set to match that chosen for the project? 

 Does the editor show language keywords and constructs (including comments) in a 
different way (e.g. various colors), to help the programmer catch errors such as mistyping 
a keyword or forgetting to close out a multi-line comment? 

 What kinds of errors can the editor flag? 

 Can the editor support multiple files and perform search and replace among all of them?  
Can a variable be tracked across multiple files? 
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Compilers and linkers usually come together as one piece of software.  Cross-compilers run on 
one system (usually a desktop computer) and produce object code for another processor.  When 
choosing a compiler, consider the following: 

• Can warnings (possible problems) be treated as errors?  Can this compiler switch be set 
as the default mode? 

• Is there a list of defects (bugs) in the compiler?  Is there a list of historical defects, and 
the versions or patches they were corrected in? 

• Can the compiler produce assembly language output?  What assembler program is the 
output targeted to? 

• Does the compiler support integration with a debugging tool?  Does it include the option 
of symbolic information, that allows the debugger to reference high-level language 
source code? 

• Does the compiler (or cross-compiler) support the particular processor being used?  Does 
it optimize for that processor? For example, if the software will run on a Pentium II, the 
compiler should optimize the code for that processor, and not treat it like an 80386. 

• Does the compiler offer optimization options that allow you to choose size over speed (or 
vice versa), or no optimization at all? 

• If used in an embedded system, does the compiler support packed bitmaps (mapping 
high-level structures to the hardware memory map), in-line assembly code, and writing 
interrupt handlers in the high-level language? 

• How optimized is the run-time library that comes with the compiler? Can you use “stubs” 
to eliminate code you don’t need?  Is the source code available, so that unneeded code 
can be stripped out, or for formal verification or inspection? 

Debuggers are a vital tool to finding errors, once the defects have reared their ugly little heads.  
Software debuggers run the defective software within the debugging environment.  This can lead 
to some problems, if the problem is memory violations (out of bounds, etc.), since the debug 
environment and the normal runtime environment differ.  Hardware debuggers (e.g. In-Circuit 
Emulators) run the code on a simulated processor, with the ability to stop and trace at any 
instruction. 

Debuggers operate by stopping program execution at breakpoints.  Breakpoints can be a 
particular instruction, a variable going to a specific value, or a combination of factors.  Once the 
program is stopped, the environment can be interrogated.  You can look at the values of 
variables, the stack, values in specific memory locations, for example.  From the breakpoint, you 
can single-step through the program, watching what happens in the system, or run until the next 
breakpoint is triggered. 

Debuggers usually need some symbolic information to be included in the object or executable 
code for them to be able to reference the source code.  When debugging, you usually want to be 
able to see the source code, and not the assembly equivalent.  The debugger, the compiler, and 
the linker must know how to talk to each other for this to happen. 

When evaluating debuggers, consider the following: 
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• How well do the debugger and the compiler get along?  Will they talk to each other? 

• How much of the system will the debugger let you get at?  Can you see memory 
locations, variable values, and the stack trace?  Can you change what’s in a memory 
location or variable? 

• Does the debugger allow you to trace back through procedure calls? 

• Can you trigger on multiple events simultaneously, such as a variable being set to a value 
while another variable is at a defined value?  Can you stop at a memory location only if 
the value of a variable matches a preset condition? 

• Does the debugger support debugging at the high level language, mixed high level and 
assembly language, and at the assembly language level? 

• Can the debugger display the high-level data structures used? 

In addition to “the basics”, these tools are very useful in creating good (and safe) code: 

 Lint – finds problems in the code that compilers might miss.  Not everything is a true 
problem, but should be evaluated.  If it’s “non standard”, treat it as an error!   

 Profiler – checks speed of program.  Good for finding routines that take the most time.  
Points to areas to where optimization may be useful. 

 Memory check programs – find memory leaks, writing outside of bounds. 

 Locator – needed for embedded environments, when you must separate what parts go in 
ROM (program) and what go in RAM (variables, stack, etc.) 

11.3  CASE tools and Automatic Code Generation 

11.3.1  Computer-Aided Software Engineering (CASE) 

Computer-aided software engineering (CASE) is a collection of automated tools that support the 
process of software engineering.  CASE can include:  

Structured Analysis (SA) • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

Structured Design (SD) 
Code Generators 
Documentation Generators 
Defect Tracking 
Requirements Tracing 
Structured Discourse and Collaboration tools 
Integrated Project Support Environments (IPSEs) 
Inter-tool message systems 
Reverse Engineering 
Metric Generators and Analyzers.  

Tools such as editors, compilers, debuggers, and Integrated Development Environments may 
technically be CASE tools, but are usually considered separately.  Project management tools 
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(scheduling and tracking) and Configuration Management (Release Management, Change 
Management (CM)) may also be considered CASE tools. 

When CASE was first promoted in the 1980’s, the quality of the tools provided was not very 
good.  CASE tools did not cover enough of the software development cycle, did not integrate 
well with other tools, and were very expensive for what you actually got out of them.  While 
CASE tools are still rather expensive, their quality, reliability, and interoperability have greatly 
improved.  There are even efforts to produce free CASE tool suites. 

CASE tools are now classified in three types that describe their functionality and usage.  Upper 
CASE is used during the early phases of software development when initial design, data and 
process requirements, and the interface design are determined.  Requirements analysis and 
traceability tools, and design tools are included in this classification.  Lower CASE tools are 
primarily those that generate code from the design (output of the Upper CASE tools).  These 
tools can also modify an existing application into a new application with minimal new 
programming.  The third category is integrated CASE (I-CASE), which joins the Upper and 
Lower CASE tools and helps in the complete software development process. 

CASE tools include: 

Analyzers for software plans, requirements and designs • 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 

• 
• 

Methodology support (design, state charts, etc.) 
Model Analysis (consistency checking, behavior analysis, etc.) 
Source code static analyzers (auditors, complexity measurers, cross-referencing tools, 
size measurers, structure checkers, syntax and semantics analyzers) 
Requirements Tracing 
Design tools (UML modeling, etc.) 
Configuration Management 
System or Prototype simulators 
Requirements-based Test Case Generators 
Test Planning tools 
Test Preparation Tools (data extractors, test data generators) 
Test Execution Tools (dynamic analyzers-assertion analyzers, capture-replay tools, 
coverage and frequency analyzers, debuggers, emulators, network analyzers, performance 
and timing analyzers, run-time error checkers, simulators, test execution managers, 
validation suites) 
Test evaluators (comparators, data reducers and analyzers, defect or change trackers) 
Reengineering tools 

11.3.2  Automatic Code Generation 
Automatic code generation is one aspect of CASE.  It has the advantages of allowing the 
software to be designed at a higher level then translated, without human error, into source code.  
The design becomes the “source code”.   
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The downside to automatic code generation is that the tools are only now becoming 
mature.  While human error is eliminated in the translation from design to code, tool error 
still exists.  The correct translation from design to code must be verified for safety-critical 
software.  Keep in mind that in some environments, the source code may not be 
accessible.  In addition, how well the code is optimized may affect performance or size 
criteria. 

Code can be automatically generated in several ways: 

Visual languages, such as LabVIEW, have the developer “design” the program 
graphically.  The underlying source code is not visible (or accessible) to the programmer.  

• 

• 

• 

Visual programming environments (e.g. Visual Basic) provide graphical programming, 
with access to the source code produced.  Wizards automatically generate applications or 
parts of applications based on feedback about the desired features from the programmer.  
The wizards automatically generate code based on this feedback. 

Generating code from design models.  These models usually use a set of diagrams that 
depict the structure, communication, and behavior of the system.  The model may be 
supplemented with text-based specifications of system actions, such as computations.  
Design methodologies that can be used for code generation include the following.  Not all 
tools or approaches will support all design modeling methodologies. 

 Unified Modeling Language (UML) 

 Object Modeling Technique (Rumbaugh) 

 Object-Oriented Software Engineering (Jacobson) 

 Object-Oriented Analysis and Design (Booch) 

 Specification and Description Language (SDL) 

 Real-time Object-Oriented Method (ROOM) 

 Object-Oriented Analysis (OOA – Shlaer and Mellor) 

 Harel’s hierarchical statecharts 

11.3.2.1 Visual Languages 
A visual language is one that uses a visual syntax, such as pictures or forms, to express 
programs.  Text can be part of a visual syntax as well.  LabVIEW by National Instruments, VEE 
by Hewlett Packard, and PowerBuilder (Austin Software Foundry) are examples of visual 
languages.   

Visual languages are wonderful for prototyping applications, especially when the user interface 
is important.  The development can be “participatory”, with the users and developers sitting 
down at a machine and designing the application interface together. 

A problem with visual languages in safety-critical applications is the inability to inspect the 
“code”.  What happens between the graphical program creation and the operations of the 
program is a black box.  In addition, little formal development is done when visual languages are 
used.  Formal specifications are usually lacking or non-existent.  Configuration control is often 

NASA-GB-8719.13 237  



not considered, and configuration management tools may have problems with the visual 
representations (“language”).  

11.3.2.2 Visual Programming Environments 
A visual programming environment (VPE) uses a visual representation of the software and 
allows developers to create software through managing and manipulating objects on a visual 
palette.  Examples are Visual Basic (Visual C++, and other “visual” languages) and Delphi (by 
Borland). 

A visual programming environment uses a graphical interface to allow the developer to construct 
the software.  From the visual elements (often the user interface), code is generated in the 
appropriate language.  The developer must hand-code the interactions between elements, and 
must hand-code all the “guts” of the program.  This is very close to traditional programming, 
with the addition of easily creating graphical user interfaces.  In fact, VPE’s can be used to create 
“regular” programs without the fancy user interface, or to hand-code the user interface if desired. 

Since VPE’s produce source code, it can be formally inspected and analysis tools can be used 
with it.  However, since the code was not generated by the developers, it may not follow the style 
or coding standards of the development team.  The source code may be difficult to follow or 
understand, and its relationship back to the graphical environment may not always be obvious. 

11.3.2.3 Code Generation from Design Models 
Model-based code generation (see section 4.2.2.4) produces application source code 
automatically from graphical models (designs) of system behavior or architecture.  One 
advantage of  model-based development is to raise the level of abstraction at which developers 
can work.  The design (model) becomes the program, and only the design has to be maintained.  
“Code Generation from Object Models” [62] discusses the various approaches to code generation 
for object-oriented systems, and gives some of the plusses and minuses of using each approach.  

In many ways, the move to model-based code generation parallels the move from assembly to 
high-level languages.  Each move along the path is a step up the abstraction ladder.  Each step 
frees the developer from some of the gritty details of programming.  However, each step also 
brings with it challenges in verifying that the program is safe!   

The methodology and tools go hand in hand.  Some tools support multiple design methodologies, 
some only  support one.  When choosing a methodology and/or tool, consider: 

The suitability of the modeling language for representing the problem.  (How good is the 
modeling methodology for your particular problem?) 

• 

• 

• 

• 

The sufficiency of modeling constructs for generating code. (How much of the code can 
it generate, how much will have to be hand coded?) 

The maturity of translators for generating quality code. (Have the translators been used 
for years, or created yesterday? How much analysis has been done to verify the software 
that is produced by the translators?) 

Tools for development tasks related to code generation. (Does it integrate with the 
debugger?) 
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Methodologies for employing code generation effectively. (What method does the tool 
use to translate your design into code?) 

• 

• 

• 

• 

• 

• 

The selection of tools and methods appropriate to the application. (What’s the right 
method for the problem?  What’s the right tool for the development environment?  Do 
they match (best tool works with best methodology)?) 

The language the tool produces source code in. (Is it Ada?  C++?).   

For object-oriented systems, there are three approaches to model-based code generation: 

The Structural approach is based on state machines.  It can create an object framework 
from the model design.  Dynamic behavior and object communication is added by the 
programmer (hand coded).  This includes hard deadlines and interrupt handling.  This 
approach is used with UML and the Rumbaugh, Jacobson, and Booch OO design 
techniques.  Most tool vendors support this approach.  The tools usually can be used to 
reverse engineer can be done on existing code as well. 

The Behavioral approach is based on state machines augmented with action 
specifications.  It includes both static and dynamic behavior (state transitions).  
Specification and Description Language (SDL – a telecommunications standard) and 
UML, among other methods, support this approach.  What needs to be hand coded are 
event handlers and performance optimizations.  Developers must adopt a state-machine 
view of the system functionality in addition to an object view of the system structure.  
Because the behavior is fully specified, a simulated model for test and debug can be 
created prior to code completion. 

The Translative approach is based on application and architecture models that are 
independent of one another.  The application model uses Object-Oriented Analysis 
(OOA) by Shlaer and Mellor.  This approach can simulate the system before developing 
code (same as behavioral).  The architecture model is a complete set of translation rules 
that map OOA constructs onto source code and implementation (run-time) mechanisms.  

Some tools support other design methodologies.  Structured analysis and design can be used to 
create code frames for the system structure.  The frames have to be fleshed out by the developer, 
however.  Also, data flow diagrams can be used by several tools.  One tool can produce code for 
Digital Signal Processors (DSP).  The code generated implements the flow of system.  
Processing steps are either hand-coded or standard library routines.  Data flow diagrams are used 
in specific application tools for control systems, instruments (e.g. LabVIEW), and parallel data 
processing. 

In an ideal world, the CASE tool would be certified to some standard, and the code generated by 
it would be accepted without review, in the same way that the object code produced by a 
compiler is often accepted.  However, compilers produce errors in the object code.  
Automatically generated code is in its infancy.  When the code is safety-critical, or resides in an 
unprotected partition with safety-critical code, the automatically generated code should be 
subjected to the same rigorous inspection, analysis, and test as hand-generated code. 
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11.4  Operating Systems 

11.4.1 Types of operating systems 
Operating Systems (OS) are the software that runs the programmers applications.  The OS is 
loaded when the system boots up.  It may automatically load the application program(s), or 
provide a prompt to the user.  Examples of  operating systems are MS-DOS, Windows 
9x/NT/2000/XP, Macintosh OS X, and VxWorks.  

Not all systems use an operating system.  Small, embedded systems may load the application 
program directly.  Or a simple “scheduler” program may take the place of the OS, loading the 
appropriate application (task) and switching between tasks. 

The types of operating systems are: 

No operating system.  Just a boot loader (BIOS) program that loads the application 
directly and gives it control.  The application deals with the computer hardware 
(processor) as well as any attached hardware, directly.  This is sometimes used in small, 
embedded systems. 

• 

• 

• 

• 

• 

Simple task scheduler.  Usually written by the software developer.  Acts as a mini-OS, 
switching between different applications (tasks).  No other OS services provided. 

Embedded OS.  This will be a fully-functional operating system, designed with small 
systems in mind.  It will take a minimal amount of storage space (both RAM and disk).  It 
provides task switching, some method for inter-task communications, shared resources, 
and other basic OS functions. 

Real-time Operating System.  An RTOS is usually designed for embedded systems 
(small size), but this is not necessary for it to be “real-time”.  An RTOS has timing 
constraints it must meet.  If it cannot respond to events (interrupts, task switches, 
completing a calculation, etc.) within a specific time, then the result is wrong.  “Soft” 
real-time systems have some flexibility in the timing.  “Hard” real-time systems have no 
flexibility for critical deadlines.   

“Regular” Operating Systems.  These systems have no timing constraints and are 
designed for systems that do not have limited resources.  Examples are the Windows 
variants that run on PCs, Linux, Macintosh’s OS X, and main-frame operating systems.   

11.4.2 Do I really need a real-time operating system (RTOS)? 
If an operating system is selected for use in the safety-critical system, it will most likely be an 
RTOS.  Even if the timing aspects aren’t important, most non-real-time operating systems are not 
designed for safety-critical environments.  What may be acceptable on your desktop (program 
freezes, frequent rebooting, or the blue screen of death) is not acceptable when safety is 
involved. 

The first question to answer is: Do I need an operating system?  Small projects often use just a 
“boot loader” to boot up the system and load an application program.  “Get by without an 
RTOS” by Michael Melkonian [63] describes a method that provides most operating system 
functionality.  For small projects, such a system may be the best option.  It avoids the overhead 
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of having to learn an RTOS.  And since commercial operating systems are COTS software, they 
would require extra analysis and testing in a safety-critical application. 

Once you determine that you need (or want) an operating system, the next question is: build, 
reuse, or buy?  Do you create your own operating system, reuse an existing, proprietary one, or 
purchase a commercial OS?  If you have an existing OS that was used in safety-critical 
applications before, or that has been thoroughly tested, it may be best to use that.  Building your 
own OS is not an easy option.  The advantage is that you can build in only what you need, 
eliminate options that might affect safety, and do formal development and/or thorough testing.  
For many systems, purchasing a commercial OS is the most cost-effective choice.  This has the 
disadvantages associated with Off-The-Shelf software in general, but the advantages of time and 
money.  The developers can spend time developing the applications, and not creating the 
operating system. 

11.4.3 What to look for in an RTOS 
What makes an OS a RTOS? 

1. An RTOS (Real-Time Operating System) has to be multi-threaded and preemptible. 

2. It must support a scheduling method that guarantees response time, especially to critical 
tasks. 

3. Threads (tasks) must be able to be given a priority (static or dynamic).  An alternative 
would be a deadline driven OS. 

4. The OS has to support predictable thread synchronization mechanisms (semaphores, etc.) 

5. A system of priority inheritance has to exist. 

6. OS behavior should be known.  This includes the interrupt latency (i.e. time from 
interrupt to task run), the maximum time it takes for every system call, and the maximum 
time the OS and drivers mask the interrupts.  The developer also needs to know the 
system interrupt levels and device driver parameters (IRQ levels, maximum time within a 
device IRQ, etc.). 

Every system is unique, and there is no simple universal set of criteria for selecting an operating 
system.  Some commonly encountered issues to consider in the selection process are: 

• Memory management.  Operating systems which support a dedicated hardware MMU 
(Memory Management Unit) are superior from a safety viewpoint.  An MMU guarantees 
protection of the designated memory space.  In a multitasking application, it ensures the 
integrity of memory blocks dedicated to individual tasks by preventing tasks from writing 
into each others' memory space.  It protects each task from errors such as  bad pointers in 
other tasks.  For small, single task systems (such as those running on a microcontroller), 
an MMU may not be needed.  In such cases, even more than a minimal operating system 
may be overkill. 

• Determinism.  Determinism is the ability of the operating system to: 

o Meet deadlines 

o Minimize jitter, (i.e. variations in time stamping instants, the difference between 
the actual and believed time instant of a sample) 
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o Remain steady under dynamic occurrences, e.g. off nominal occurrences 

o Bounding of priority inversion (time the inversion is in place). 

• Priority inversion.  Priority inversion is a problem where a higher priority task is 
blocked by a low priority task that has exclusive access to a resource. The problem occurs 
when a medium priority task is running, preventing the low priority one from finishing 
and releasing the resource. Priority inheritance is a temporary state used to resolve 
priority conflicts.  The low priority task is temporarily assigned a higher level priority to 
ensure its orderly completion prior to releasing a shared resource requested by the higher 
priority task.  The priority change occurs when the higher priority task raises a 
"semaphore" flag.  It is vital that the lower priority task releases its shared resource 
before delay of the higher priority task causes a system problem.  The period of 
temporary increase of priority is called the "priority inheritance" time  

• Speed.  The context switching time is the most important speed issue for real-time 
operating systems.  Context switching is how quickly a task can be saved, and the next 
task made ready to run.  Other speed issues are the time it takes for a system call to 
complete. 

• Interrupt latency.  Interrupt latency is how fast an interrupt can be serviced. 

• Method of scheduling.  The method of scheduling can be predetermined logical 
sequences (verified by Rate Monotonic Analysis).  It can be priority-based preemptive 
scheduling in a multitasking environment (such as UNIX, Windows NT or OS2).  
Another method is "Round Robin" time slice scheduling at the same priority for all tasks.  
“Cooperative” schedule can also be used, where the task keeps control until it completes, 
then relinquished control to the scheduler.  Cooperative scheduling may not be a good 
idea in a safety-critical system, as a task can “hog” the processor, keeping the safety-
critical code from running. 

• POSIX compliance(1003.1b/c).  POSIX compliance is a standard used by many 
operating systems to permit transportability of applications between different operating 
systems.  For single use software, or software that will never be used on other operating 
systems, this is not as important. 

• Support for synchronization.  What support for synchronization and communication 
between tasks does the OS use?  How much time does each method take? 

• Support for tools.  Does the OS have support for tools such as debuggers, ICE (In 
Circuit Emulation) and multi-processor debugging.  Consider also the ease of use, cost 
and availability of tools. 

• Support for multiprocessors.  Does the OS support a multiprocessor configuration 
(multiple CPU’s) if required. 

• Language used to create the OS.  Consider the language in which the operating system 
kernel is written, using the same criteria as selecting application programming languages.  

• Error handling in OS system calls.  How does the OS handle errors generated within 
system calls?  What does the application need to check to verify that a system call 
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operated correctly?  Does the OS return an error code or can it access a user-created error 
handler? 

• Safety Certifications.  Some operating systems go through levels of safety-related 
certification, often for use in medical or aviation applications.   

11.4.4 Commonly used Operating Systems  
The following is a list of Operating Systems used in embedded or real-time systems.  This is not 
a complete list, and no endorsement  is meant by the ordering, inclusion, or exclusion of any OS.  
If the OS has been certified to any safety standard, that will be mentioned. 

VxWorks (Wind River Systems, http://www.windriver.com/) – This is a popular RTOS 
with a tool-rich  integrated development environment.  There is a version of VxWorks 
certified to DO-178B, a standard used for aviation software.  VxWorks is available for 
most higher-level processors.

 

 

 OSE (http://www.enea.com) – This operating system is certified to the safety standard 
IEC 61508.  It is also being certified to DO-178B.  OSE also provides an integrated 
development environment with many tools useful to embedded or real-time applications.  
OSE supports many processors, including DSPs. 

PSOSystem 3 (http://www.windriver.com/products/psosystem_3/index.html)–This RTOS 
is now owned by Wind River.  “pSOSystem™ 3 is a modular, high-performance, 
memory protected, highly reliable real-time operating system, designed specifically for 
embedded microprocessors” according to Wind River.  pSOSystem supports the 
PowerPC and MIPS families of processors. 

 

QNX (http://www.qnx.com/) – This RTOS supports x86 (80386 and higher) processors 
only.  It uses a microkernel with minimal required functionality that can be extended by 
dynamically plugging in service-providing processes.  A free, non-commercial  version is 
available for download and evaluation. 

 

CMX (http://www.cmx.com/) - CMX provides both a full-featured RTOS and a “tiny” 
one that runs on lower-level microcontrollers (with as little as 512 bytes of RAM).  The 
RTOS supports a wide range of microprocessors. 

 

OS-9 (http://www.radisys.com/microware.cfm) – According to Microware, “OS-9® is a 
system-secure, fault-tolerant RTOS with high availability and reliability.  Users can 
dynamically add and replace modules while the system is up and running.” OS-9 supports 
many higher-level processors. 

 

AMX (http://www.kadak.com/) - This small, compact RTOS runs on x86, 68K family, 
Coldfire, ARM, PowerPC, and Z80 architectures.  Depending on the processor, AMX can 
fit in 12K to 36K of ROM, with 2K to 4K of RAM needed.  Besides the standard RTOS 
services, AMX claims rapid task context switching and fast interrupt response.  Timing 
information is given on their website. 

 

LynxOS (http://www.lynuxworks.com/products/whatislos.html) - LynxOS is a Linux-
compatible real-time operating system that “is a hard RTOS that combines performance, 
reliability, openness, and scalability together with patented technology for real-time event 
handling.” It supports processors from Intel, Motorola, and MIPS. 
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RTEMS (http://www.rtems.com/) – RTEMS is a free, open source operating system.  It 
was originally developed for the U.S. Army Missile Command.  It contains all the basics 
of an RTOS, and the source code is available.  RTEMS supports most commonly used 
processors. 

 

Linux (http://www.linux.org and http://www.embedded-linux.org/) - Linux is the “open 
source” version of Unix.  It is not normally a real-time operating system, but there are 
versions developed for embedded systems.  In addition, there are extensions to Linux for 
real-time systems.  Linux has been ported to many processors, though it is not usually 
available for the latest processors.  You can “roll your own” version of Linux, creating a 
smaller system with only the elements you need. 

 

Windows NT/2000/XP (http://www.microsoft.com) - Windows NT (and its descendents, 
Windows 2000 and Windows XP) are general purpose operating systems that have many 
“real-time” abilities.  Out of the box, neither are “hard” real-time systems, but several 
companies provide extensions that meet the “hard” timing criteria.  Windows NT and 
2000 are more robust than the desktop versions of Windows (95,98), with fewer memory 
leaks and greater memory protection. 

 

 Windows CE (http://www.microsoft.com) - Microsoft describes Windows CE 3.0 as  “the 
modular, real-time, embedded operating system for small footprint and mobile 32-bit 
intelligent and connected devices that enables rich applications and services.”.  It 
supports many 32-bit microprocessors.  It contains many “real-time” aspects, such as task  
priority, priority inheritance, and nested interrupts.  It is not “hard” real-time, however. 

11.5  Distributed Computing 
Having multiple processors working together may “share the load” of a complex calculation, or 
may distribute the appropriate part of a problem to a processor optimized for that particular 
calculation or control.  Such “multi-brained” systems constitute a distributed computing system.  
Distributed systems can be defined as two or more independent processors, working together, 
and communicating across a medium that may have substantial transmission delays.   

Distributed computing is used for many different purposes.  For complex computational 
problems, parallel processors or clustered processors are used.  Distributed computing is also 
used when high availability is required (continuing on if one processor has a hard failure).   

Distributed systems may reside on the same processor board (multiprocessors), in the same 
system, or in widely separated areas.  The processors in a distributed system usually use one of 
two main methods to communicate:  shared memory or message passing.  Shared memory 
systems have real or simulated RAM available to all the processors, and use this to communicate 
(pass values, signal use of resources, etc.).  Shared memory is normally used in distributed 
systems that are physically compact (processors are near each other) and tightly coupled, such as 
multiprocessor systems. 

Shared memory allows large or complex data structures to be easily communicated between 
processes.  Issues with shared memory distributed systems are  

Data consistency.  The consistency of the data in shared memory (accuracy at any given 
moment) is a problem because of network latency.  Most processes will cache the shared 
memory to improve performance.  The value in Process A’s cache may be outdated, 

• 
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because process B has updated it, but delays may lead the update information to arrive 
after A has read the value.  Various scenarios are implement to prevent this. 

Access synchronization.  Distributed systems must also provide ways to prevent multiple 
processes from accessing the shared data at the same time.  Usually a locking mechanism 
is used. 

• 

• 

• 

Address space structure.  A system may use a single shared distributed address space, 
where all the processes appear as threads within this space.  The advantage is that objects 
appear at the same addresses on all nodes.  However, security and protection are a major 
problem in such systems.  Another approach divides each process’s address space into 
fixed regions, some of which are shared and the rest are private.  Shared data may or may 
not appear at the same address in each process. 

Fault tolerance.  Distributed shared memory systems have some problems with fault 
tolerance.  Most systems ignore it or maintain that it is an operating system issue.  If one 
node that is sharing data with other processes fails, all the connected sites may fail as 
well.   

Message passing distributed systems communicate via a network, sending and receiving 
messages.  Messages are blocks of data, usually wrapped in a protocol layer that contains 
information on the sender and recipient, time stamp, priority, and other parameters.  A 
distributed system may pass messages synchronously or asynchronously.  In synchronous 
message passing, the system has two phases: delivery and local computation.  During the 
delivery phase, each process may send one or more messages to its immediate neighbors.  The 
local computation phase encompasses receiving messages, state changes, and queuing messages 
to be sent during the next delivery phase. 

Asynchronous message passing distributed system do not have phases where messages are 
transmitted.  Any process can send or receive messages at any time.  Propagation delays are 
arbitrary, though in real systems they are often bounded (given a maximum delay value).  

The underlying network in a distributed system may or may not guarantee that all messages are 
eventually delivered to the correct recipient and that the messages will be without error or 
duplication. 

A distributed computing system may be fixed (i.e. known processors and processes that never 
change, except for failure) or dynamic.  In a dynamic system, new processes can be added to the 
network and other processes can leave at arbitrary times.  The protocols (message passing, 
usually) must adapt to the changing topology. 

Nodes (processes) in a distributed system can fail completely, intermittently (where the node 
operates correctly some of the time and at other times fails), or randomly (Byzantine).  In the 
Byzantine failure mode, the node behaves arbitrarily, sending valid-looking messages 
inconsistent with the state it is in and the messages it has received.  Failures can occur in the 
communications medium.  Links between nodes can be broken.  Intermittent problems may lead 
to the loss, garbling, reordering, or duplication of messages.  Delays in message transfer may be 
interpreted as a lost message, or the data in the message, when it finally arrives, may be out of 
date.  Breaking up software across (possibly) diverse multiple processors, communicating 
through some medium (serial line, network, etc.), creates a complex environment, full of 
potentially complex errors.  Distributed systems have an inherent complexity resulting from the 
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challenges of the latency of asynchronous communications, error recovery, service partitioning, 
and load balancing.  Since distributed software is concurrent as well, it faces the possibility of 
race conditions, deadlock, and starvation problems.  An excellent article that discusses the 
complexities of distributed computing is “Distributed Software Design: Challenges and 
Solutions” [64], which describes  some problems inherent to distributed computing : 

Processing site failures.  Each processor in a distributed system could fail.  The 
developer must take this into account when building a fault-tolerant system.  The failure 
must be detected, and the other processors must “pick up the slack”, which may involve 
reallocating the functionality among the remaining processors or switching to another 
mode of operation with limited functionality.   

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Communication media failure (total loss, or loss between links).  If the 
communication medium goes down, one or more processors are isolated from the others.  
Depending on how they are programmed, they may undertake conflicting activities.   

Communication media failure (intermittent).  Intermittent failures include loss of 
messages, reordering of messages or data (arriving in a different order than when sent), 
and duplicating messages.  They do not imply a hardware failure.  

Transmission delays.  A delayed message may be misconstrued as a lost message, if it 
does not arrive before a timeout expires.  Variable delays (jitter) make it hard to specify a 
timeout value that is neither too long nor too short.  Delayed messages may also contain 
out-of-date information, and could lead to miscalculations or undesirable behavior if the 
message is acted on. 

Distributed agreement problems.  Synchronization between the various processors 
poses a problem for distributed systems.  It is even more difficult when failures 
(intermittent or complete) are present in the system. 

Impossibility result.  It has been formally proven that it is not possible to guarantee that 
two or more distributed sites will reach agreement in finite time over an asynchronous 
communication medium, if the medium between them is lossy or if one of the distributed 
sites can fail.   

Heterogeneity.  The processors and software involved in a distributed system are likely 
to be very different from each other.  Integration of these heterogeneous nodes can create 
difficulties. 

System establishment.  A major problem is how distributed sites find and synchronize 
with each other.   

More information on distributed computing problems and solutions can be found at: 

“Distributed Software Design: Challenges and Solutions” by Bran Selic, Embedded 
Systems Programming, Nov. 2000 

FINITE STATE MACHINES IN DISTRIBUTED SYSTEMS, Class 307.  Speaker: Knut 
Odman, Telelogic 

Distrib. Syst. Eng. 3 (1996) 86–95.  Printed in the UK, Implementing configuration 
management policies for distributed applications, Gerald Krause y and Martin 
Zimmermann  
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11.6 Programmable Logic Devices 
Until recently, there was a reasonably clear distinction between hardware and software.  
Hardware was the pieces-parts: transistors, resistors, integrated circuits, etc.  Software ran on the 
hardware (operating systems, applications programs) or resided inside the hardware (firmware).  
The design, construction, and testing process for hardware and software differed radically.  

Programmable logic devices (PLDs) blur the lines between hardware and software.  Circuitry is 
developed in a programming language (such as VHDL or Verilog), run on a simulator, compiled, 
and downloaded to the programmable device.  While the resulting device is “hardware”, the 
process of programming it is “software”.  Some versions of programmable devices can even be 
changed “on the fly” as they are running. 

Programmable logic is loosely defined as a device with configurable logic and flip-flops, linked 
together with programmable interconnects.  Memory cells control and define the function that 
the logic performs and how the logic functions are interconnected.  PLDs come in a range of 
types and sizes, from Simple Programmable Logic Devices (SPLDs) to Field Programmable 
Gate Arrays (FPGAs). 

System safety normally includes hardware (electronic) safety.  However, given the hybrid 
nature of programmable logic devices, software safety personnel should be included in 
the verification of these devices.  Because PLDs are hardware equivalents, they should be 
able to be verified (tested) in a normal “hardware” way.  However, because they are 
programmed devices, unused or unexpected interconnections may exist within the device 
as a result of software errors.  These “paths” may not be tested, but could cause problems 
if accidentally invoked (via an error condition, single event upset, or other method).  As 
the PLDs become more complex, they cannot be fully and completely tested.  As with 
software, the process used to develop the PLD code becomes important as a way to give 
confidence that the device was programmed properly. 

The variety of programmable logic devices is described in the sections below.  Guidance is given 
on the safety aspects of verifying each type of device. 

“Frequently-Asked Questions (FAQ) About Programmable Logic” [65] provides good 
introductory information on PLDs.  An article in Embedded Systems programming [66] also 
gives a good introduction. 

11.6.1 Types of Programmable Logic Devices 
Simple Programmable Logic Devices (SPLDs) are the “original” Programmable Logic Devices.  
These are the smallest of the PLDs – each can replace only a few logic chips.  Inside a PLD is a 
set of macrocells, each of which are composed of some amount of logic (AND gate, for example) 
and a flip-flop.  Each macrocell is fully connected.  SPLD types include PAL (Programmable 
Array Logic), GAL (Generic Array Logic), PLA (Programmable Logic Array), and PLD 
(Programmable Logic Device). 

Complex Programmable Logic Devices (CPLDs) have a higher capacity than the SPLDs, 
typically equivalent to 2 to 64 SPLDs.  The macrocells within a CPLD may not be fully 
connected, so not all theoretically possible designs may be implementable in a particular CPLD.  
Varieties of CPLDs include EPLD (Erasable Programmable Logic Device), PEEL, EEPLD 
(Electrically-Erasable Programmable Logic Device) and MAX (Multiple Array matrix). 
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Field Programmable Gate Arrays (FPGAs) have an internal array of logic blocks, surrounded by 
a ring of programmable input/output blocks, connected together via programmable interconnects.  
These devices are more flexible than CPLDs, but may be slower for some applications because 
that flexibility leads to slightly longer delays within the logic. 

11.6.2 “Program Once” Devices 
“Program once” devices require an external programming mechanism and cannot be 
reprogrammed, once inserted on the electronics board.  Included in this category are erasable-
reprogrammable  devices and “on-the-board” reprogrammable devices where the ability to 
reprogram is removed or not implemented, as well as true “write once” devices.  Simple 
Programmable Logic Devices (SPLDs) nearly always are “program once”.  Depending on the 
underlying process technology used to create the devices, CPLDs and FPGAs may be “program 
once”, “field reprogrammable”, or fully configurable under operating conditions. 

With “program once” devices, safety only needs to be concerned with the resulting final chip.  
Once the device is verified, it will not be changed during operations. 

Simple Programmable Logic Devices (SPLDs) are fairly simple devices.  Don’t worry about the 
development process, just test as if they were “regular” electronic devices.  Treat them as 
hardware. 

Complex Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays 
(FPGAs) are complex enough that unexpected connections, unused but included logic, or 
other problems could be present.  Besides a complete test program that exercises all the 
inputs/outputs of the devices, the software should be developed according to the same 
process used for regular software, tailored to the safety-criticality of the device or system.  
Requirements, design, code, and test processes should be planned, documented, and 
reviewed.  For full safety effort, analyses should be performed on the documents from 
each stage of development.     

11.6.3 “Reprogram in the Field” Devices 
Both Complex Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays 
(FPGAs) come in a in-the-field-programmable variety.  The internals of these devices is based 
on EEPROM (Electrically-Erasable Programmable Read Only Memory) and FLASH 
technology.  If the circuitry is present on the board (and implemented within the chip), then these 
devices can be reprogrammed while on their electronics board.  This is not “on-the-fly” 
reprogramming while in operation.  Reprogramming erases what was there and totally replaces 
what was in the chip.   

One scenario that might be used is to hook up the CPLD or FPGA “reprogramming” circuitry to 
an external port, such as a serial port.  During development, an external computer (laptop, etc.) is 
connected to the port, and the device is reprogrammed.  When no computer is connected, the 
device cannot be reprogrammed.  This scenario allows for changes in the device during 
development or testing, without having to physically disassemble the instrument and remove the 
device from the electronics board.   

Another scenario could be that a new CPLD or FPGA “program” is sent to a microprocessor in 
the system, which would then reprogram the CPLD or FPGA.  The ability to do this would have 
to be included in the microprocessor’s software, as well as the physical circuitry being present.  
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This scenario would allow the device to be reprogrammed in an environment where physical 
connection is impossible, such as in orbit around Earth. 

When the device can only be reprogrammed by making a physical connection, it is relatively 
“safe” during operation.  A software error in the main computer (processor) code, or a bad 
command sent by a human operator, is not going to lead to the unexpected reprogramming of the 
device.  The main concern is that reprogramming invalidates all or most of the testing that has 
gone before.  The later the reprogramming is done in the system development cycle, the riskier it 
is.  A set of regression tests should be run whenever the device is reprogrammed, once the 
instrument is out of the development phase. 

If the device can be reprogrammed by an in-system processor, then the possibility exists 
that it could accidentally be reprogrammed.  If the device is involved in a hazard control 
or can cause a hazardous condition, this could be very dangerous.  The legitimate 
command to reprogram the device would be considered a hazardous command.  
Commanding in general would have to be looked at closely, and safeguards put in place 
to make sure the reprogramming is not accidentally commanded.  Other checks should be 
put in place to make sure that software errors do not lead to the unintentional 
reprogramming of the device. 

11.6.4 Configurable Computing 
Some FPGAs (and CPLDs) use SRAM (Static RAM) technology inside.  These SRAM-based 
devices are inherently re-programmable, even in-system.  However, they require some form of 
external configuration memory source on power-up.  The configuration memory holds the 
program that defines how each of the logic blocks functions, which I/O blocks are inputs and 
outputs, and how the blocks are interconnected together.  The device either self-loads its 
configuration memory or an external processor downloads the memory into the device.  The 
configuration time is typically less than 200 ms, depending on the device size and configuration 
method. 

The ability to change the internal chip logic “on the fly” can be very useful in some applications, 
such as pattern matching, encryption, and high-speed computing.  Configurable computing’s key 
feature is the ability to perform computations in hardware to increase performance, while 
retaining much of the flexibility of a software solution.  Applications that benefit the most from 
configurable computing solutions are those with extremely high I/O data rate requirements, 
repetitive operations on huge data sets, a large number of computational operations per input 
data point, or with a need to adapt quickly to a changing environment. 

One strength of configurable computing machines (CCMs) is their inherent fault tolerance.  By 
adding structures to detect faults, the hardware can be reconfigured to bypass the faults without 
having to shut down the instrument. 

The downside of flexibility, however, is the difficulty in verifying the functionality and safety of 
a configurable system.  When you can change the hardware in the middle of an operation, how 
do you assure its safety?  That question has not been well addressed yet, as configurable 
computing is still a new concept.  However, if your design uses CCMs, then consider very 
carefully how to test and verify them, as well as how to guard against internal and external errors 
or problems.   
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An article by Villasenor and  Mangione-Smith [67] discusses various aspects of configurable 
computing.  

11.6.5 Safety and Programmable Logic Devices 
IEC 1131-3 is the international standard for programmable logic controller (PLC) programming 
languages.  As such, it specifies the syntax, semantics and display for the following suite of PLC 
programming languages:  

Ladder diagram (LD)  • 

• 

• 

• 

• 

• 
• 
• 
• 
• 
• 
• 
• 

Sequential Function Charts (SFC)  

Function Block Diagram (FBD)  

Structured Text (ST)  

Instruction List (IL) 

However, IEC 1131-3 does not address safety issues in programming PLCs.  The SEMSPLC 
project was developed to address those issues.  They have issued “SEMSPLC Guidelines: safety-
related application software for programmable logic controllers” [68], available from the 
Institution of Electrical Engineers. 

Language choice for the PLC should meet with the standard IEC 1131-3.  Coding standards 
should be created.  In addition, the language should conform to the following criteria, if possible: 

Closeness to application domain 
Definition and standardization 
Modular 
Readable and understandable 
Traceability 
Checkable 
Analyzable 
Deterministic 

Standard software engineering practices should be used in the creation of PLC software.  This 
includes requirements specification, design documentation, implementation, and rigorous testing.  
For safety-critical systems, Formal Inspections should be used on the products from the various 
stages, in particular on the requirements. 

PLC development can be very formal, up to and including using Formal Methods.  However, 
tailoring of many of the techniques for PLC development has not been done.  This an emerging 
field that requires much more study, to determine the best development practices and the best 
safety verification techniques. 

Besides the SEMSPLC guidelines [68], some general guidelines for better (and safer) PLC 
programming are: 

 Spaghetti code results in spaghetti logic.  Create a coding style or standard and stick to 
it.  The better your code is, the faster or smaller the resulting logic will be! 

NASA-GB-8719.13 250  



 Keep it under 85.  Don’t use more than 85% of the available resources.  This makes it 
easier to place-and-route the design and allows room for future additions or changes. 

 Modularize.  As much as possible, use modules in your PLC software.  This helps avoid 
spaghetti code, and aids in testing and debugging. 

 Use black-and-white testing.  Use both black-box and white-box testing.  Verify proper 
response to inputs (black-box), and also that all paths are executed (white-box), for 
example. 

 Research safety techniques for PLC application.  Work is being done to see which 
software engineering techniques are useful for PLC applications.  Work by the 
SEMSPLC project has shown that control-flow analysis produces little information on 
the errors, but mutation analysis and symbolic execution have revealed a number of 
complex errors. [69]  

11.7 Embedded Web Technology 
Everything is connected to everything else…through the Internet, or so it seems.  Once the realm 
of academics sharing research data and ideas, the Internet (and its multimedia child, the World 
Wide Web) is now the medium for information exchange, conversation, and connectivity. 

From the Embedded Web Technology site at the NASA Glenn Research Center 
(http://vic.lerc.nasa.gov/): “Embedded Web Technology (EWT) is the application of software 
developed for the World Wide Web to embedded systems.  Embedded systems contain 
computers, software, input sensors and output actuators all of which are dedicated to the control 
of a specific device.  Examples of devices with embedded systems include cars, household 
appliances, industrial machinery, and NASA Space Experiments. EWT allows a user with a 
computer and Web browser to monitor and/or control a remote device with an embedded system 
over the Internet using a convenient, graphical user interface.” 

Many embedded devices are now including web servers and network hardware for 
communications with the outside world, instead of (or in addition to) serial or parallel ports.  
Some devices (Internet appliances) have no user interface hardware (keyboard, monitor).  The 
user connects through any computer with a web browser to interact with the appliance.  
Embedded web servers allow remote access to the instrument (hardware) from nearly anywhere 
in the world.   

Instruments can operate as distributed systems, with a central processor and various 
microcontrollers, communicating back and forth via a network.  In the same way that multi-
tasking operating systems “break up” the application software into various independent tasks, a 
distributed system “breaks up” the tasks and runs them on specialized or remote processors.  A 
distributed instrument will have the same problems as described in Section 11.5 Distributed 
Computing. 

11.7.1 Embedded Web Servers 
Most web server software is designed for desktop systems, with a keyboard, monitor, file system, 
and large hard-disk.  For embedded systems, the web server needs to be scaled down, as well as 
addressing some embedded-specific issues.  Reduced memory footprint, increased efficiency and 
reliability, and source portability are important in the embedded world. 
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The requirements for an embedded web server include [70]:  

 Memory usage.  A small memory footprint (amount of memory used, including code, 
stack, and heap) is a very important requirement for an embedded web server.  Memory 
fragmentation is also important, as frequently creating and destroying data (such as web 
pages) may create a myriad of tiny memory blocks that are useless when a larger memory 
block must be allocated.  If the embedded software does not provide memory 
defragmentation, then embedded web servers should use only statically allocated or pre-
allocated memory blocks.  

 Support for dynamic page generation.  Most of the HTML pages produced by 
embedded systems are generated on the fly.  An embedded device will have only a few 
pages in memory and will often generate part or all of their content in real-time.  The 
current status of the device, sensor values, or other information may be displayed on the 
dynamically generated page.   

 Software integration.  Without source code, integrating the web server with the 
embedded operating system and applications code may be difficult or impossible.  When 
source code is available, ease of integration (and good documentation!) are still important 
factors to consider.  

 ROMable web pages.  Embedded systems without disk drives often store their data in 
ROM (or flash memory), sometimes within the executable file, and sometimes external to 
it.  The ability to “pull out” an HTML file or other data from the executable, or find it on 
the flash disk, is lacking in most desktop-based web servers. 

 Portability.  Nothing stays the same in the embedded world.  Technology changes fast, 
and the processor or operating system used today may be obsolete tomorrow.  The ability 
to port the web server to different processors or operating systems is important for long-
term usage. 

11.7.2 Testing Techniques 
Some aspects of standard web-site testing do not apply to embedded web servers.  However, 
consider checking the following areas: 

 Load Handling Capacity.  What is the total data rate the server can provide?  How 
many transactions per second can the server handle?  Are these values in line with the 
expected usage?  What happens when the limits are exceeded? 

 User Interface.  Even if the web pages are not meant for world-wide viewing, there is a 
customer or two who need to view the provided data.  Review the generated web pages 
for clarity of communication (tone, language), accessibility (load time, easy to understand 
and follow links), consistency (“look and feel”, repeating themes), navigation (links 
obvious in intent and destination, standard way to move between pages), design (page 
length, hyperlinks), and visual presentation (use of color, easy on the eyes). 

 Data age.  Is there a way to know how fresh the data is?  Is the data time-tagged?  When 
the data refreshes, does it show up on the web page? 

 Speed of page generation.  Since most pages are generated “on the fly” in embedded 
web servers, the speed at which they are constructed is important. 

NASA-GB-8719.13 252  



 Can the user “break” the system?  Check all user-input elements on the web page 
(buttons, etc.).  Try combinations of them, strange sequences, etc. to see if the user can 
create problems with the web server.  If you have a colleague who seems to break his 
web client on a regular basis, put him to work testing your system. 

 Security testing.  If you will not be on a private network, test the security provision in 
your web server.  Can an unauthorized user get into the system? 

 Link testing.  If you provide links between pages, make sure they are all operational. 

 HTML and XML validation.  Are the HTML and/or XML standard?  Will it work with 
all the browsers expected to interface with the web server?  All browser versions? 

 Control of instrumentation.  If the embedded server provides a way to control 
instrumentation, test this thoroughly.  Look for problems that might develop from missed 
commands, out of sequence commands, or invalid commands. 

 Error handling.  Does the web page handle invalid input in a graceful way?  Do any 
scripts used anticipate and handle errors without crashing?  Are “run time” handlers 
included?  Do they work? 

Good sources for information on error handling and website testing are: 

“Handling and Avoiding Web Page Errors Part 1: The Basics” (and parts 2 and 3 as well) 
http://msdn.microsoft.com/workshop/author/script/weberrors.asp 

• 

• “WebSite Testing”, http://www.soft.com/eValid/Technology/White.Papers/website.testing.html 

11.8 AI and Autonomous Systems 
Artificial Intelligence (AI) and Autonomous Systems reside on the “cutting edge” of software 
technology.  They are two separate entities that, combined, have the potential to create systems 
that can operate in changing environments without human control.  Space exploration, 
particularly in environments far from Earth, where human intervention would come far too late, 
is an ideal use for Intelligent Autonomous Systems.   

Artificial Intelligence encompasses any system where the software must “think” like a human.  
This involves information gathering, information pattern recognition, planning, decision making, 
and execution of the decision.  That’s a lot for a software system to do!  Various aspects of AI 
includes: 

Game Playing.  Games such as chess or checkers. • 

• 

• 

Expert Systems.  Systems that capture a large body of information about a domain to 
answer a question posed to them.  Diagnosing a disease based on symptoms is one 
example of an expert system. 

Agents.  A computational entity which acts on behalf of other (most often human) 
entities in an autonomous fashion, performs its actions with proactivity and/or 
reactiveness and exhibits some level of learning, co-operation and mobility.  For 
example, an agent may perform independent searches for information, on the Internet or 
other sources, based on subjects needed for an upcoming technical meeting you will be 
attending. 
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• 

• 

• Robotics.  Controlling machines that can “see” or “hear” (via sensors) and react to their 
environment and input stimuli.  AI robots have a “thinking” capability, unlike factory 
robotics that perform specific functions as programmed. 

Natural Language.  Understanding and processing natural human languages. 

Neural Networks.  Connecting the information “nodes” in ways similar to the 
connections within an animal brain.  Neural nets “learn” with repetitive exercising. 

Whereas several versions of AI can exist independent of “hardware” (e.g. on a desktop 
computer), autonomous systems almost always control real-world systems.  A robot that operates 
without human intervention, except for the issuance of orders (“clean the first floor on Tuesday 
night, the second and third on Wednesday, …”) is an example of an autonomous system.  One 
definition for an autonomous system is “a combination of a computational core, sensors and 
motors, a finite store for energy, and a suited control allowing, roughly speaking, for flexible 
stand-alone operation.”[71] 

This section focuses on Intelligent Autonomous Systems that control hardware systems capable 
of causing hazards.  As an immature technology, methods to design, code, test, and verify such 
systems are not well known or understood.  The issue of assuring the safety of such systems is 
being researched, but the surface has barely been scratch.  Hopefully, much more will be learned 
in the coming years about creating and verifying safety-critical Intelligent Autonomous Systems. 

In the future, when you travel to Jupiter in cryogenic sleep, with an Intelligent Autonomous 
System operating the spacecraft and watching your vital signs, you want it to operate correctly 
and safely.  HAL 9000 needed a bit more software verification! 

11.8.1 Examples of Intelligent Autonomous Systems (IAS) 
Intelligent spacecraft are one promising application of IAS.  In the past, the on-board software 
had some “built-in intelligence” and autonomy in responding to problems, but planning for both 
the mission and any failures was performed by humans back on Earth.  As we send probes out 
into the far reaches of the solar system, where communications lag time is measured in hours, 
having a spacecraft that can “think for itself” would be useful.  Even for nearby objects, such as 
Mars, the communications lag time is enough to cause problems in a rover moving at speed over 
a varied terrain.  Removing the “human” from the details of operation can increase the amount of 
science returned, as intelligent spacecraft and robots no longer have to wait for responses from 
Earth whenever a problem is encountered.  The Deep Space 1 mission focused on technology 
validation, and contained an experiment in Intelligent Autonomous Systems.  Called Remote 
Agent, it actually controlled the spacecraft for several days, responding to simulated faults.  This 
experiment is described and discussed in Section 11.8.3 Case Study. 

Back down to Earth, cleaning office buildings is a monotonous, dirty, dull and “low-esteem” task 
that does not use the higher faculties of human intelligence.  Intelligent mobile cleaning robots 
are currently under development to automate the process [72], moving humans from “grunts” to 
supervisors. 

“Fly-by-wire” aircraft systems have replaced hydraulic control of the aircraft with computer 
control (via wire to electromechanical hardware that moves the parts or surfaces).  The computer 
keeps the aircraft stable and provides smoother motions than would be possible with a strictly 
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mechanical system.  Computers also provide information to the pilots, in the form of maps, 
trajectories, and aircraft status, among other items. 

At this time, most of the fly-by-wire systems are not intelligent.  Humans still direct the systems, 
and usually have overrides if the system misbehaves.  However, the trend is to move the human 
pilot farther from direct control of the aircraft, leaving the details to the computerized system.  At 
some time in the future, fly-by-wire computers could control nearly all aircraft functions, with 
the pilot providing guidance (where the plan should go) and oversight in the case of a 
malfunction. 

Despite the fact that software used in aircraft is subjected to a stringent development process and 
thorough testing, an increasing number of accidents have “computer problems” as a contributing 
factor.  In some cases, the computer displayed inaccurate information, which misled the flight 
crew.  In others, the interface between the pilot and software was not well designed, leading to 
mistakes when under pressure.  This points to the increased likelihood of aircraft accidents as 
computers and software become the “pilots”.  Finding reliable methods for creating and verifying 
safe software must become a priority. 

The Intelligent Transportation System (ITS) is being researched and developed under the 
direction of the US Department of Transportation (http://www.its.dot.gov/).  Major elements of 
ITS include: 

Advanced Traffic Management Systems (ATMS) which monitor traffic flow and provide 
decision support to reduce congestion on highways. 

• 

• 

• 

• 

• 

Advanced Traveler Information Systems (ATIS) which provide travelers with directions, 
route assistance and real-time information on route conditions. 

Automated Highway Systems (AHS) which support and replace human functions in the 
driving process 

Intelligent Vehicle Initiative (IVI) which focuses efforts on developing vehicles with 
automated components 

Advanced commercial vehicle Systems (ACS) which provide support for commercial 
vehicle operations including logistics. 

Software safety will obviously be important in developing ITS, though information on how it 
will be implemented has been difficult to come by.  The DOT document on Software Acquisition 
for the ITS, which consists of over 250 pages, devotes only 4 pages to Software Safety issues. 

 

11.8.2 Problems and Concerns 
Like distributed systems and other complex software technologies, verifying the safety of 
Intelligent Autonomous Systems poses a large problem.  Remember that for NASA, safety 
means more than just injury or death.  Safety refers to the vehicle and payload as well.  So even 
though no one can be killed by your space probe, loss of the probe would be a safety issue! 

The complex interactions that occur between hardware and software must be considered for 
Intelligent Autonomous Systems, as for any software that controls hardware.  In addition, the 
choices made by the software (plans and decisions based on past performance, current hardware 
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status, and desired goals) form a subset of millions of possible “paths” the system may take.  If 
that subset was known, it could be thoroughly tested, if not formally verified.  The number of 
paths, and the complexities of the interactions between various software modules and the 
hardware, make complete testing or formal verification essentially impossible. 

Various areas of concern with Intelligent Autonomous Systems (IAS) are: 

Technology is more complicated and less mature.  Intelligent Autonomous Systems 
are new, and therefore not mature, software technology. 

• 

• 

• 

• 

Sensitivity to the environment or context.  Traditional flight software (and other 
complicated embedded software) was designed to be independent of the system 
environment or software context.  When a command was received, it was executed, 
regardless of what the spacecraft was doing at the time (but within the safety and fault 
tolerance checks).  Whether or not the command made sense was the responsibilities of 
the humans who sent it.  An IAS, on the other hand, must know what the environment 
and system context are when it generates a command.  It must create a command 
appropriate to the system state, external environment, and software context. 

Increased Subsystem interactions.  Traditional software systems strive for minimal 
interactions between subsystems.  That allows each subsystem to be tested independently, 
with only a minimal “integrated” system testing.  IAS subsystems, however, interact in 
multiple and complicated ways.  This increases the number of system tests that must be 
performed to verify the system. 

Complexity.  Intelligent Autonomous Systems are complex software.  Increased 
complexity means increased errors at all levels of development – specification, design, 
coding, and testing.   

New software technology often stresses the ability of traditional verification and validation 
techniques to adequately authenticate the system.  You can’t formally specify and verify the 
system without tremendous effort, you cannot test every interaction, and there is no way to know 
for certain that every possible failure has been identified and tested!   

The state-of-the-art for Intelligent Autonomous System (IAS) verification has focused on two 
areas: Testing (primarily) and Formal Verification (Model Checking).  Simmons, et. al. [73] 
discuss using model checking for one subset of IAS - application-specific programs written in a 
specialized, highly-abstracted language, such as used by Remote Agent.  The application 
programs are verified for internal correctness only, which includes checks for liveness, safety, 
etc.   

Testing issues with Remote Agent are discussed in 11.8.3.2.  An additional testing strategy is 
described by Reinholtz and Patel [74].  They propose a four-pronged strategy, starting with 
formal specifications of correct system behavior.  The software is tested against this 
specification, to verify correct operations.  Transition zones (areas of change and interaction 
among the subsystems) are identified and explored to locate incorrect behavior.  The fourth 
element of the strategy is to manage risk over the whole lifecycle. 

11.8.3 Case Study – Remote Agent on Deep Space 1 
Remote Agent is an experiment in Intelligent Autonomous Systems.  It was part of the NASA 
Deep Space 1 (DS-1) mission.  The experiment was designed to answer the question “Can a 
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spacecraft function on its own nearly 120 million kilometers from Earth, without detailed 
instructions from the ground?” 

Remote Agent was originally planned to have control of DS-1 for 6 hours (a confidence building 
experiment) and for 6 days.  Due to various problems, the experiment was replanned for a 2 day 
period in May, 1999.  During the experiment run, Remote Agent controlled the spacecraft and 
responded to various simulated problems, such as a malfunctioning spacecraft thruster.  Remote 
Agent functioned very well, though not flawlessly, during it’s two day experiment. 

11.8.3.1 Remote Agent Description 
“Remote Agent (RA) is a model-based, reusable, artificial intelligence (AI) software system that 
enables goal-based spacecraft commanding and robust fault recovery.”[75] To break that 
statement down into its component parts: 

 Model based.  A model is a general description of the behavior and structure of the 
component being controlled, such as a spacecraft, robot, or automobile.  Each element of 
Remote Agent (RA) solves a problem by accepting goals, then using reasoning 
algorithms on the model to assemble a solution that meets the goals.  

 Reusable.  Parts of the Remote Agent were designed to be system independent and can 
be used in other systems without modification.  Other aspects are system dependent, and 
would need modification before being used in a different system. 

 Artificial Intelligence.  Remote Agent thinks about the goals and how to reach them. 

 Goal-based commanding.  Instead of sending Remote Agent a sequence of commands 
(slew to this orientation, turn on camera at this time, begin taking pictures at this time, 
etc.), RA accepts goals such as “For the next week, take pictures of the following 
asteroids, keeping the amount of fuel used under X.”  Goals may not be completely 
achievable (parts may conflict) and Remote Agent has to sort that out. 

 Robust fault recovery.  Remote Agent can plan around failures.  For example, if one 
thruster has failed, it can compensate with other thrusters to achieve the same maneuver. 

The Remote Agent software system consists of  3 components: the Planner/Scheduler, the 
Executive, and the MIR (Mode Identification and Reconfiguration, also called Livingstone). 

The Planner/Scheduler (PS) generates the plans that Remote Agent uses to control the spacecraft.  
It uses the initial spacecraft state and a set of goals to create a set of high-level tasks to achieve 
those goals.  PS uses its model of the spacecraft, including constraints on operations or sequence 
of operations, to generate the plan. 

The Executive requests plans from PS and executes them.  It also requests and executes failure 
recoveries from MIR, executes goals and commands from human operators, manages system 
resources, configures system devices, provides system-level fault protection, and moves into 
safe-modes as necessary.  It’s a busy little program! 

The Mode Identification and Reconfiguration (MIR) element diagnoses problems and provides a 
recovery mechanism.  MIR needs to know what is happening to all components of the spacecraft, 
so it eavesdrops on commands sent to the hardware by the Executive.  Using the commands and 
sensor information, MIR determines the current state of the system, which is reported to the 
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Executive.  If failures occur, MIR provides a repair or workaround scenario that would allow the 
plan to continue execution. 

11.8.3.2 Testing and Verification of Remote Agent 
The main problem in testing Remote Agent was that the number of possible execution paths 
through the software was on the order of millions.  Unlike traditional spacecraft flight software, 
where a sequence of operations was uplinked after ground verification, Remote Agent had to 
think for itself, identifying problems and taking corrective action, in order to achieve the goals.  
It is impossible to test all these execution paths within the software, at least within the lifetime of 
the tester, if not the universe!  

For the Remote Agent experiment, a scenario-based verification strategy was augmented with 
model-based verification and validation [Smith et. al. 76].  The universe of possible inputs 
(goals, spacecraft state, device responses, timing, etc.) is partitioned into a manageable number 
of scenarios.  Remote Agent is exercised on each scenario and its behavior is verified against the 
specifications. 

Going from millions or billions of possible tests down to a manageable number (200 to 300) 
entails adding risk.  If you test everything, you know how the system will respond in any 
possible scenario.  When you test a small subset, there is the risk that you missed something 
important – some scenario where the interactions among the subsystem are not what you 
expected.  You must be able to have confidence that the tested scenarios imply success among 
the untested scenarios. 

The effectiveness of scenario-based testing depends largely on how well the scenarios cover the 
requirements.  This means that not only is the requirement tested, but that the selected inputs for 
the tests give confidence that the requirement works for all other inputs.  The Remote Agent 
experiment used a parameter-based approach to select the scenarios and inputs to use.  

Three methods were used to achieve good coverage while maintaining manageability:  

 Abstracting parameter space to focus on relevant parameters and values.  Parameters and 
parameter values were selected to focus on areas where the software was most sensitive.  
Equivalence classes were used to generalize from these inputs to a collection of 
comparable tests that would not be performed. 

 Identifying independent regions of the parameter space.  Areas where there is low or no 
interactions mean that fewer combinations of parameters and values must be tested.  
When there is strong interaction among parameters, more combinations must be tested. 

 Using orthogonal arrays to generate minimal-sized test suites that cover the parameter 
combinations.  Every parameter value and every pair of values appears in at least one test 
case.  Every parameter value appears in about the same number of cases. 

One difficulty encountered during testing was that it was difficult to know what parameter value 
lead to failure.  To overcome this, a collection of test cases identical to the faulty one was 
generated, with each test identical except for one parameter.  This allowed the value leading to 
the error to be identified. 

Another difficulty in any form of spacecraft software testing is the lack of high-fidelity test beds.  
The closer the test bed is to flight fidelity, the less time you will get on it.  To deal with this 
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issue, the Remote Agent experiment performed tests on highly abstract software (software that 
did not care about the underlying hardware) on low-fidelity test beds, and reserved the high-
fidelity test beds for hardware-specific software and general system verification. 

Remote Agent automated the testing process, and in some cases “warped” the time, so that a 
multi-day test could be completed in hours.  Software was also written to help with 
understanding the test results.  These not only allowed more tests to be done in the limited period 
of time, but increased the chance of spotting errors.  Reviewing log files is very tedious, and 
errors can be missed.  

Remember: Software which tests safety-critical code must also be considered safety-critical. 

Additional information on the verification and testing of the Remote Agent experiment can be 
found in Smith et. al. [76].  Bernard et. al. [75] discusses the testing strategy, as well as the in-
flight validation of Remote Agent. 

11.8.3.3 In-flight Validation: How well did it work? 
Even before flight, problems with some aspects of the testing strategy were noted.  During the 
last four months before flight, after the formal testing phase had ended, a large number of new 
problems were discovered.  Most of the problems related to the planning system operating 
correctly, but unable to find a plan within the time constraints.  Several reasons were identified: 

o Range of some parameters differed from those assumed for testing.   

o Disappearance of slack time in going from the 6 day to 2 day scenario revealed 
brittleness in the Planner chronological backtracking search. 

o The test generator only considered pair-wise interactions.  Some problems depended on 
the specific values of 3 or more parameters. 

During the flight experiment, a problem developed with Remote Agent not terminating the Ion 
Propulsion System (IPS) thrusting as expected.  Plan execution appeared to be blocked, but the 
Remote Agent and the spacecraft were both healthy.  The cause was later identified as a missing 
critical section in the plan-execution code.  This created a race condition between two Executive 
threads.  If the wrong thread won, a deadlock condition would occur where each thread was 
waiting for an event from the other.  This occurred in flight, though not on the ground, despite 
thousands of previous races during the ground testing. 

The following is drawn from the Remote Agent Lessons Learned: 

• Basic system must be thoroughly validated with a comprehensive test plan as well as 
formal methods, where appropriate. 

• Automatic code generation of interface code, telemetry, model interfaces, and test cases 
was enormously helpful. 

• Better model validation tools are needed.  Automated test running capability helped 
increase the number of off-nominal tests that could be run.  However, manual evaluation 
of the test results was laborious. 

• Confidence in complex autonomous behaviors can be built up from confidence in each 
individual component behavior. 
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• Ground tools need to be created early and used to test and understand how to operate the 
complex flight system.  For Remote Agent, the ground tools were developed very late 
and many of them were not well integrated. 

• Ensuring sufficient visibility into the executing software requires adequate information in 
the telemetry.  Design the telemetry early and use it as the primary way of debugging and 
understanding the behavior of the system during integration, test, and operations.  

As the problems found in late ground operations and flight operations show, the testing strategy 
was not 100% successful.  In particular, a timing problem that rarely occurred was missed 
because it never happened on the ground.  

More work needs to be done on the verification and validation of Intelligent Autonomous 
Systems, especially if they are to have control over safety-critical functions and equipment.  
Remote Agent had “backup” from the flight software and hardware hazard controls.  It was a 
successful experiment that shows promise for the future.  But it is not quite ready for complete 
control of safety-critical systems. 

11.9 Human Factors in Software Safety 
Humans are an integral, vital part of a safe system.  Humans design the systems, build the 
hardware, write the software, and operate the resulting system.  Even when automated processes 
are used in the creation of a system, humans were involved in producing that automated process.   

Humans are fallible.  We “break” – are forgetful, miss things, make mistakes, and even 
sometimes deliberately act to bring harm.  Humans are also problem solvers.  We design systems 
to catch errors, find ways to bring a broken system back to operation, and can intervene before a 
problem becomes a catastrophe.  This mix of error-producer and error-solver creates both 
problems and potential benefits for the creation of safety-critical systems. 

When designing a software system, consider these questions: 

• What are the potential causes of human error in the system? Section 11.9.1.2 lists some 
errors to watch out for.  

• What tasks are suitable for humans and which for computers? What training and support 
will operators require to perform their tasks?  

• What policies and management will be required in order to develop a safe system? 

• What are the “impossible”, unthinkable events that can lead to a hazard?  

Once you have a list of human errors you consider possible, design the system and software to 
minimize them.  Consider the situation of a software system replacing a mostly-hardware 
system.  A completely new user interface will likely be confusing to the operators.  They may 
require training or at least on-the-job time to adjust.  If the system is safety-critical, the new 
interface could delay an operator’s response long enough for a hazard to occur. 

There are several “design” solutions to the above problem.  One is to emulate the older hardware 
interface within the software.  This increases familiarity with the new system, though there will 
still be some difference.  Another option is to get extensive user input as the new interface is 
developed.  This can be as simple as talking with them, or as complex as research studies that 
monitor how the operators actually use the system.  There are likely to be more options.  This 
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example is meant to get you thinking about human errors and how to design the software with 
them in mind. 

No matter how well you design your software to minimize human error, someone is still going to 
select the wrong command from a menu or type the wrong value into a data field.  How can your 
system recognize such errors and recover from them? Follow the principles of fault avoidance 
(don’t let the fault happen) and fault tolerance (keep going safely even if fault occurs).  Sections 
6.5.2 and 7.4.2 provide more information on these topics.  When all else fails, you want your 
system to operate in a safe mode.  Of course, this requires that the parts of the system required to 
place the rest of the system in safe mode still work! 

The “impossible”, unthinkable events that lead to a hazard should have been considered during 
hazard analysis (PHA section 2.3.1 and SSHA section 2.3.4).  However, it never hurts to think 
about them again.  Humans are likely to come up with additional events whenever we think 
about the system in-depth.  Consider these events from a human-error perspective.  Also, 
remember that outsiders can often see what insiders cannot.  Have someone else, from a different 
discipline or project, look at the system.  They may well discover ways for the “impossible” 
events to occur. 

A great deal of current software engineering is human-intensive, which increases the likelihood 
of errors.  Determining requirements, preparing specifications, designing, programming, testing, 
and analysis are still mostly performed by humans.  Good software engineering practice 
compensates for individual human error by providing processes to make error less likely (e.g. 
defined methods) and to locate errors when they occur (e.g. reviews, analysis, automated tools, 
etc.). 

Much of the information in this section comes from “Human Factors in Safety-Critical Systems” 
[96].  This book is an excellent introduction to human errors and how to minimize them. 

11.9.1 Human Error 
To create a safe system, it is important to understand the role human error plays in accidents and 
incidents.  It is also important to understand the role of humans in the development of safe 
software.  “Software errors” are almost always actually human errors, either in the requirements 
(wrong, missing, etc.), the design, the implementation, or incomplete and inadequate testing. 

A successful development project requires more than just a technical development team.  The 
lack of sound project management and a failure by senior management to identify strategic goals 
have caused numerous software development projects to founder.  In addition, management must 
work to create harmonious human relationships within the team.   

The competence of the technical and managerial team members has a direct effect on the success 
of the project.  Competence is both capabilities and skills, plus the applicability of those skills to 
the task at hand.  A well-qualified team member will have experience, training in the field of 
knowledge, knowledge of hazards and failures the system is capable of,  knowledge of practices 
used in the organization, and an appreciation of individual limitations and constraints.  Teams 
need to balance the competence factors.  Not everyone needs to be an expert in everything, but 
someone should be an expert in each area.  Communication provides a means to share the 
expertise among the team.  Task sharing or cross-training allows other team members to learn 
from the experts. 
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11.9.1.1 Accidents and Incidents 
Human error is a very common cause of accidents and incidents.  We misread signs when we are 
tired, select the wrong command from a menu list, press the wrong button, and fail to act 
appropriately when a hazard is imminent.   

When it comes to an accident (hazardous event), humans can act as: 

• An initiating event.  The operator presses the wrong button, types in the wrong command, 
or forgets to reactivate the alarm after maintenance. 

• Escalation or control of the accident.  We can perform actions that bring the situation 
back under control and mitigate the hazard.  We can also fail to act, or act 
inappropriately, and allow the situation to escalate from a minor accident into a major 
one. 

• Emergency evacuation, escape and rescue.  When it comes to critical and catastrophic 
hazards, our ability to “get out of the way” can prevent the loss of life.  Poor response to 
an accident can lead to further loss of life. 

• Latent failure.  Indirect human error is also a concern.  Programming errors, management 
that allows sloppiness in development or testing, or a management decision to hire barely 
qualified developers are all software-related examples of latent failure. 

Consider the human element in these high-profile accidents: 

• Three Mile Island (1979).  This nuclear accident was caused, in part, by incomplete and 
misleading feedback to the operators.  An indicator light showed that the command was 
sent to a valve to close it.  It did not indicate whether the valve had actually closed.  It 
was up to the human operator to remember that the indicator light might not show the 
actual state of the valve.  When the accident occurred, the relief valve had not closed, 
though the command was sent (and the indicator light was on).  The problem was not 
discovered for some time, and ultimately lead to the accident. 

• Kegworth M1 Air Crash (Jan. 1989).  This plane crash, which killed 47 and injured 
may others, was probably caused by the pilot misinterpreting the aircraft instruments and 
shutting down the wrong engine. 

• Mars Polar Lander (1999).  The most probable cause of the loss of the Mars Polar 
Lander  was the premature shutdown of the descent engines.  The software was intended 
to ignore shutdown indications prior to the enabling of touchdown sensing logic.  
However, the software was not properly implemented, and the spurious touchdown 
indication was retained (not ignored).  At 40 meters altitude the touchdown sensing logic 
is enabled, and the software would have issued a command to shut the engines down.  In 
addition to the probable direct cause, the investigating board found other human-related 
problems with the project: 

o The contractor used excessive overtime in order to complete the work on schedule 
and within the available workforce.  Records show that much of the development 
staff worked 60 hours per week, and a few worked 80 hours per week, for 
extended periods of time.  
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o Some aspects of the software were created by only one person.  Peers working 
together are the first and best line of defense against errors.  The investigating 
board recommended adequate engineering staffing to ensure that no one 
individual is “single string”. 

o System software testing was not as adequate as it should have been.  The board 
recommended that system testing should include stress testing and fault injection 
in a suitable simulation environment to determine the limits of capability and 
search for hidden flaws. 

11.9.1.2 Errors to Watch Out For 
When designing your software, consider the possibility of these types of errors.  Design the 
system to prevent them, correct them, or to recover from the errors.  This list is only a subset of 
possible errors.  Think of more possibilities and create a checklist of them.  Use the checklist 
during the design and coding of the software, to make sure these aspects are considered. 

• Confusing Information.  

• Conflicting Information.  

• Misleading Information (e.g. see Three Mile Island example above) 

• Invalid or old Information 

• Human memory limitations (unable to keep too many details at one time, unable to 
remember details when screen page is covered by another, etc.) 

• Intentional Actions  

• Tinkering (a form of Intentional Actions, user tries out the system usually in an 
unanticipated manner) 

• Difficulty accessing required information in time (e.g. during crisis) 

• Difficulty finding information on screen 

• Change in Operational Mode (user interface, way of accessing information, etc. changes 
from previous way of doing things) 

Humans make errors during the process of creating the software as well as when using it.  Good 
software development processes help prevent such errors from occurring.   

• Checklists, language restrictions and common defect lists help prevent the insertion of 
defects into the software.   

• Editors and Integrated Development environments with language and style highlighting 
reduce the occurrence of some errors.  

• Inspections and reviews (including software checking programs) find errors before the 
software is completed.  Domain experts should be included on inspection teams.  If a user 
interface is safety-critical, a human factors expert should also be included.  

• Testing finds other errors, especially those that result from integration or operation. 
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11.9.1.3 Process Problems 
Sometimes problems come from the environment the software was created in, or the 
environment the software is operated in.  Many of these problems are outside the control of those 
creating and assuring the software.  These issues are managerial, and may come from all levels 
of management. 

Managers can create the context for accidents, within which operators merely provide the final 
triggering actions.  Managers can also create (or perpetuate) a development environment that is 
detrimental to safety.  There is a need to train managers to avoid these problems.  There is also a 
need to provide independent assessment of policies and decisions as well as processes and 
products. 

Types of problems that can be attributed (in whole or in part) to management and organizational 
environment include: 

 Design failures. May be due to lack of oversight, lack of training or inadequate resources 
provided. 

 Poor operating procedures. 

 Error-enforcing conditions (e.g. “Get it done on time, any way you can.”, “That 
requirement isn’t important, focus on the functionality.”, or simply working the 
developers 60 hours a week for more than a short time). 

 System goals incompatible with safety. 

 Organizational failures (e.g. undocumented processes, pressure to cut corners, pressure 
to break or bend rules, unrealistic schedules or workloads). 

 Communications failures.  Management may not provide good channels of 
communication, keep team members isolated, or “shoot the messenger” of bad news. 

 Inadequate training.  At any level (developers, operators, project managers, etc.) 

 Lack of safety culture.  Safety is not given priority. 

11.9.2 The Human-Computer Interface 
The Human computer Interface (HCI) is the connection between the computer (embedded, 
desktop, etc.) and the person using it (operator, user, etc.).  The HCI consists of all aspects of this 
interaction, including display screens (hardware), the information displayed on them (user 
interface) and input devices  (keyboard, keypad, mouse, touch screen, etc.). 

Why should you care about the HCI?  Improved design of the HCI leads to reduced errors, which 
lead to reduced accidents and incidents.  For safety-critical systems, this is especially important. 

The user interface (UI) is not just a skin on the surface but goes very deeply into the system.  The 
user interface is any part of the system that affects any user or through which any user can affect 
the system.  The user interface  is not just the form of display and method of information entry, 
but includes the information content,  and the temporal and semantic structuring of that 
information.  The UI includes such things as sensor accuracy, data processing, and database 
design.  You want the right kinds of information available for diagnosis or decision making at 
any given time. 
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Users present the biggest problem for interface designers, mostly because of unpredictability.  It 
is commonly known among developers that you cannot make a system foolproof, because fools 
are so ingenious.  Most problems stem from the inherent variability between people.  We also 
don’t understand people at the level necessary to make this a science. 

How the system will be used (the tasks) is also significant.  The developer needs to know what 
the end-users of a proposed system will be doing, and why they will be doing it.  This process 
(gathering information and understanding) is usually absent in software development.  The 
designer makes guesses (or goes on what the client said, which may not be what the end-users 
will really be doing). 

The finest detail of a user interface (such as placement of a command within a menu) can affect 
the error rate, search times, and learning curve for a piece of software.  The naming of 
commands or buttons, size of icons, etc. can affect usability.  The goal of good HCI design is to 
prevent confusion and enhance comprehensibility. 

It is important that the user perspective on the system is taken into account throughout analysis 
and is reflected back to the user when he or she is required to make any judgment about its 
adequacy or completeness.  Don’t wait until the acceptance test to get user feedback.  When user 
interface elements deal with safety-critical information or procedures, design the system for the 
operators, rather than assuming the operators will adapt to whatever you design. 

11.9.3 Interface Design  
Prototyping is one of the most useful techniques to create and verify good user interfaces.  For 
prototyping to work, it needs to present to the end user how the system looks and acts.  A 
prototype doesn’t need the “guts” (i.e. results from computations), unless they affect how the 
user interacts with the system.   

Once the user interface prototype is created, it needs to be tested extensively with the actual 
users.  Part of the testing should include observation (watch them use it) and feedback from those 
using the system.  Observation can be especially useful.  In designing a new air traffic control 
system, observation of those using the system indicated a problem not reported by the users.  
During some situations the controllers were writing information on a sticky note before 
switching screens.  The need to do this indicated a weakness in the user interface that would be 
trivial in a normal operating situation, but potentially deadly in a crisis situation (when the time 
to write the information on the note could be critical). 

Good user interfaces reflect the user’s model (how the user perceives the system).  How can you 
determine who the user will actually use the system? Asking the user is the first step, of course, 
but the user does not always understand exactly what he wants to do.  And even if the 
understanding is present, communicating that viewpoint may be difficult.  Besides prototyping, 
consider these types of analyses: 

• Functional analysis looks at the allocation of functions between people, hardware, and 
software.  It identifies required system functionality (both normal and emergency or off-
nominal operations). 

• Task analysis identifies tasks performed by all personnel who will operate the system 
(both normal and emergency or off-nominal). 
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Information analysis identifies information requirements of the operators for each task 
scenario.  It also identifies information to be displayed on monitor, including the content 
of the displays (in broad terms), how the same information may be used in different tasks, 
and what different items of information will be required to complete a single task. 

• 

During a crisis situation, appropriate information must be provided to the operator.  At the same 
time, the operator must not be overwhelmed with all possible information.  It is also important to 
make sure that the  information presents the true state of system (see the Three Mile Island 
example in 11.9.1.1).  Inconsistencies are confusing, especially when under stress.  A well-
designed interface that keeps the user informed, that displays information in manageable ways, 
that indicates the amount of uncertainty in the information in ways that can be understood, and 
which allows control actions to be taken in a forgiving environment, can help reduce fear-
induced stress during a problem. 

User interfaces must be designed defensively.  Humans sometimes do unorthodox things.  
Sometimes accidentally, sometimes with a “what does this do” attempt to understand the system, 
and sometimes deliberately.  The software should be designed to prevent such behavior from 
creating a hazard. 

Sometimes the user needs too independent sources of information to verify that a hazard control 
is working.  These pieces of information should be easy to compare.  For example, display them 
in the same units and to the same precision.  Also remember that redundancy (independence) is 
not achieved by a single sensor displayed in two locations using separate algorithms.  Separate 
sensor and separate algorithms must be used to make the data truly independent. 

What should be considered when creating a user interface?  The list below provides a starting 
point, but is not complete.  What is important will vary between projects.  Look at your own 
system and decide what information and operations are safety-critical, and design accordingly. 

Consider the following: 

 Display formats.  What range of formats will be used? Consider color, coding techniques, 
font size, position, etc.  

 How will the information be  structured into “pages”? What is the allocation of 
information to various formats or pages?  Is the information allocated to different formats 
based on task requirements?  

 Is all required information on one page? How will the user navigate between pages and is 
the consistent? Is the display format consistent across pages? 

 Maintain consistency throughout the display system (same colors, window layout, type 
sizes, etc.). 

 Do not overload working memory (human memory – what they need to remember 
between pages). 

 Make sure mapping between displays and controls matches what the user expects. 

 Provide appropriate, timely feedback.  If the operation is complete, indicate that.  If 
further options or actions will occur, also specify that. 

 Enable efficient information assimilation (help users understand the information 
quickly). 
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 Allow reversal and recovery.  Actions should be able to be reversed.  Errors should be 
recovered from. 

 Anticipate and engineer for errors.  

 Remember that the operator needs to feel that she has control of the system and that it 
will respond to her actions. 
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Chapter 12 Software Acquisition 
Acquiring software, whether off-the-shelf, previously created, or custom made, carries with it a 
set of risks and rewards that differ from those related to software development.  When the 
software will serve a safety-critical function, or be integrated with in-house developed safety-
critical code, it becomes very important to select carefully.  This section provides guidance on 
both purchased off-the-shelf and reused software as well as software acquired from a contractor. 

Software safety is a concern with off-the-shelf (OTS), reused, and contract-developed software, 
and NASA safety standards apply to all types.  NASA-STD-8719.13A, the Software Safety 
NASA Technical Standard, section 1.3, states (emphasis added): 

“This standard is appropriate for application to software acquired or developed by NASA that 
is used as a part of a system that possesses the potential of directly or indirectly causing harm to 
humans or damage to property external to the system.  When software is acquired by NASA, this 
standard applies to the level specified in contract clauses or memoranda of understanding.  When 
software is developed by NASA, this standard applies to the level specified in the program plan, 
software management plan, or other controlling document.” 

Definitions 
 
Off-the-shelf (OTS) Software not developed in-house or by a contractor for the project. 

The software is general purpose, or developed for a different purpose 
from the current project. 

COTS Commercial-off-the-shelf software.  Operating systems, libraries, 
applications, and other software purchased from a commercial 
vendor.  Not customized for your project.  Source code and 
documentation are often limited. 

GOTS Government-off-the-shelf software.  This was developed in-house, 
but for a different project.  Source code is usually available.  
Documentation varies.  Analyses and test results, including hazard 
analyses, may be available. 

Reused software Software developed by the current team (or GOTS) for a different 
project, portions of which are reused in the current software.  While it 
is tempting to pull out a previously written function for the new 
project, be aware of how it will operate in the new system.  Just 
because it worked fine in System A does not mean it will work OK in 
System B.  A suitability analysis should be performed. 

Contracted software Software created for a project by a contractor or sub-contractor.  The 
project defines the requirements the software must meet. Process 
requirements and safety analyses may be included.  This is custom-
made software, but not in-house. 

Glueware Software created to connect the OTS/reused software with the rest of 
the system.  It may take the form of “adapters” that modify interfaces 
or add missing functionality,  “firewalls” that isolate the OTS software, 
or “wrappers” that check inputs and outputs to the OTS software and 
may modify either to prevent failures.  

NASA-GB-8719.13 268  



NASA Policy Directive NPD 2820.1, NASA Software Policies, includes consideration of 
COTS and GOTS software that is part of a NASA system.  Projects need to evaluate 
whether the use of COTS and GOTS would be more advantageous than developing the 
software.  It expects proof that software providers are capable of delivering products that 
meet the requirements. 

Off-the-shelf (OTS) software and reused software share many of the same benefits and concerns.  
They will be grouped together for convenience in section 12.1.  “OTS” or “off-the-shelf 
software” will refer to both off-the-shelf (usually commercial) software and reused software.  
When a comment refers only to one or the other, the appropriate form of the software will be 
clearly designated.  Software developed under contract will be discussed in section 12.2. 

For off-the-shelf software, this section discusses the following areas: 

• Pros and Cons of OTS software 

• What to look for when purchasing off-the-shelf software 

• Using OTS in your system 

• Recommended extra testing for OTS software 

• For contract-developed software

• What to put in the contract regar

• What to monitor of contractor pr

• What testing is recommended 
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operating system is given in section 11.4 Operating Systems.  Another example of common OTS 
software is language libraries, such as the C standard library.   

OTS software has acquired another name recently: SOUP (Software of Uncertain Pedigree).  In 
many ways, SOUP is a better name, because it emphasizes the potential problems and pitfalls 
upfront.  OTS software may be developed by a team that uses good software engineering 
practices, or by a few developers working late nights, living on pizza and soft drinks, and 
banging out some code.  Knowing the pedigree of the OTS software can save you headaches 
down the road. 

Carefully consider all aspects of the OTS software under consideration.  It not an easy decision, 
choosing between creating the software in-house (with its accompanying headaches) or 
purchasing OTS software/reusing software (which have a different set of headaches).  You must 
take a systems approach and consider how the OTS software will fit into your system.  You must 
also perform an adequate analysis of the impacts of the OTS software.  Don’t wait until you are 
deep into implementation to find out that one of the extra functions in the OTS software can 
cause a safety hazard!   

Consider the following questions: 

• Will you need glueware to connect the software to your system?   

• How extensive will the glueware need to be?   

• Will you have to add functionality via glueware because the OTS software doesn’t 
provide all of it? 

• Is there extra functionality in the OTS software that the rest of the system needs to be 
protected from? 

• What extra analyses will you need to perform to verify the OTS software? 

• What extra tests will you need to do? 

If the glueware is going to be a significant portion of the size of the OTS software, you may want 
to rethink the decision to use OTS.  You don’t save time or money if you have to created 
extensive wrappers, glueware, or other code to get the OTS software working in your system.  
Also, in a safety-critical system, the cost of extra analyses and tests may make the OTS software 
a costly endeavor. 

In safety-critical systems, OTS software can be a burden as well as a blessing.  The main 
problems with off-the-shelf software are: 

• Inadequate documentation.  Often only a user manual is provided, which describes 
functionality from a user point of view.  In order to integrate the software into the system, 
more information is needed.  In particular, information is required on how the software 
interacts within itself (between modules) and with the outside world (its application 
program interface (API)). 

• Lack of access to source code, which precludes some safety analyses.  It also precludes 
obtaining a better understanding of how the software actually works. 

• Lack of knowledge about the software development process used to create the software. 
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• Lack of knowledge about the testing process used to verify the software. 

• Concern that the OTS developers may not fully understand the interactions between 
elements of their system or may not communicate that information fully to the purchaser. 

• Inadequate detail on defects, including known bugs not provided to purchaser. 

• Inadequate or non-existent analyses performed on the software. 

• Missing functionality.  The OTS software may provide most but not all required 
functionality.  This is one area where glueware is necessary. 

• Extra functionality.  The OTS software may contain functions that are not required.  
Sometimes these functions can be “turn off”, but unless the OTS software is recompiled, 
the code for these functions will remain in the system.  Glueware (wrappers) may be 
needed to shield the rest of the system from this extra functionality. 

For further information on how OTS software is handled in other industries, check references 
[79] (FDA) and [80] (nuclear).  They provide some high-level guidance on using COTS software 
in medical and nuclear applications, both of which are highly safety-critical venues. 

The Avionics Division of the Engineering Directorate at the NASA Lyndon B. Johnson Space 
Center (JSC) baselined a work instruction, EA-WI-018, “Use of Off-the-Shelf Software in Flight 
Projects Work Instruction” that outlines a lifecycle process for OTS software projects, including 
safety considerations.  This work instruction is based partly on the FDA’s process detailed in 
“Guidance for Off-the-Shelf Software Use in Medical Devices.” [79]  

The lifecycle described in the JSC work instruction coordinates the selection and 
integration of OTS software with the development and implementation of custom 
software.  In comparing the lifecycle processes it is evident that the amount of time spent 
on each phase changes and the skills of the personnel need to be different.  For selecting 
OTS products, a great deal of time is spent evaluating the functional needs of the project 
and the available OTS products on the market.  Flexibility of requirements is needed with 
a clear idea of the overall system.  A poor OTS selection can severely complicate or 
cripple a project.  A series of questions are included in both the JSC work instruction and 
the FDA guidance document to give personnel enough information to determine whether 
or not to use a specific OTS software product.   

The work instruction specifies that an initial determination of the criticality of the function must 
be accomplished.  The amount of scrutiny the candidate OTS software faces is based on the 
criticality assessed.  Experienced personnel need to determine the criticality.  The JSC work 
instruction and the FDA guidance document list similar requirements for high criticality OTS 
software.  A project with life threatening hazards must do the first three items of the Checklist for 
Off-the-Shelf (OTS) Items (second checklist) in Appendix H. 

Some of this section, and those that follow, on Off-the-Shelf software issues, especially within 
NASA, comes from a whitepaper by Frances E. Simmons of JSC [81]. 

12.1.1 Purchasing or Reusing OTS Software: Recommendations 
While all OTS software should be considered carefully, using OTS software in a safety-critical 
system “ups the ante”.  OTS software that directly performs a safety-critical function is not the 
only element that must be considered.  Any OTS software that resides on the same platform as 
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the safety-critical software must be analyzed, to verify that it cannot impact the safety-critical 
code.  Since there is no independent COTS certification authority to test the safety and reliability 
of the COTS software, all additional analyses and tests will have to be done by you. 

Using non-safety-critical OTS software on the same platform as safety-critical software is 
not recommended.  Certain commercial programs are known to crash regularly.  Do you 
really want to have Word on the same system that controls your air supply?  If the OTS 
software provides a necessary function, then it must be considered in conjunction with 
the safety-critical code.  The hazard analysis should be updated (or at least reviewed) 
before you purchase the software.   

This guidebook gives an introduction to the good software development processes that go into 
safety-critical software development.  As much as possible, verify that the OTS software was 
created using good development processes.  When purchasing OTS software, or deciding to 
reuse existing code, the following areas should also be considered: 

• Does the OTS software fill the need in this system?  Is its operational context compatible 
with the system under development?  Consider not only the similarities between the 
system(s) the OTS was designed for and the current system, but also the differences.  
Look carefully at how those differences affect operation of the OTS software.   

• How stable is the OTS product?  Are bug-fixes or upgrades released so often that the 
product is in a constant state of flux?   

• How responsive is the vendor to bug-fixes?  Does the vendor inform you when a bug-fix 
patch or new version is available? 

• How compatible are upgrades to the software?  Has the API changed significantly 
between upgrades in the past?  Will your interface to the OTS software still work, even 
after an upgrade?  Will you have to update your glueware with each iteration? 

• How mature is the software technology?  OTS software is often market driven, and may 
be released with bugs (known and unknown) in order to meet an imposed deadline or to 
beat the competition to market. 

• Conversely, is the software so well known that it is assumed to be error free and correct?  
Think about operating systems and language libraries.  In a safety-critical system, you do 
not want to assume there are no errors in the software.  

• What is the user base of the software?  If it is a general use library, with thousands of 
users, you can expect that most bugs and errors will be found and reported to the vendor.  
Make sure the vendor keeps this information, and provides it to the users!  Small software 
programs will have less of a “shake down” and may have more errors remaining. 

• What level of documentation is provided with the software? Is there more information 
than just a user’s manual?  Can more information be obtained from the vendor (free or for 
a reasonable price)? 

• Is source code included, or available for purchase at a reasonable price?  Will support still 
be provided if the source code is purchased or if the software is slightly modified?  
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• Can you communicate with those who developed the software, if serious questions arise?  
Is the technical support available, adequate, and reachable?  Will the vendor talk with you 
if you modify the product?   

• Will the vendor support older versions of the software, if you choose not to upgrade?  
Many vendors will only support the newest version, or perhaps one or two previous 
versions. 

• Is there a well-defined API (Application Program Interface), ICD (interface control 
document), or similar documentation that details how the user interacts with the 
software?  Are there “undocumented” API functions?  

• What are the error codes returned by the software?  How can it fail (return error code, 
throw an exception, etc.)?  Do the functions check input variables for proper range, or is 
it the responsibility of the user to implement? 

• Can you obtain information on the internals of the software, such as the complexity of the 
various software modules or the interfaces between the modules?  This information may 
be needed, depending on what analyses need to be performed on the OTS software. 

• Can you get information about the software development process used to create the 
software?  Was it developed using an accepted standard (IEEE 12207, for example)?  
What was the size of the developer team?   

• What types of testing was the software subjected to?  How thorough was the testing?  
Can you get copies of any test reports? 

• Are there any known defects in the software?  Are there any unresolved problems with 
the software, especially if the problems were in systems similar to yours?  Look at 
product support groups, newsgroups, and web sites for problems unreported by the 
vendor.  However, also keep in mind the source of the information found on the web – 
some is excellent and documented, other information is spurious and incorrect. 

• Were there any analyses performed on the software, in particular any of the analyses 
described in chapters 5 through 10?  Formal inspections or reviews of the code?   

• How compatible is the software with your system (other software, both custom and 
OTS)?  Will you have to write extensive glueware to interface it with your code?  Are 
there any issues with integrating the software, such as linker incompatibility, protocol 
inconsistencies, or timing issues? 

• Does the software provide all the functionality required?  How easy is it to add any new 
functionality to the system, when the OTS software is integrated?  Will the OTS software 
provide enough functionality to make it cost-effective? 

• Does the OTS-to-system interface require any modification?  For example, does the OTS 
produce output in the protocol used by the system, or will glueware need to be written to 
convert from the OTS to the system protocol? 

• Does the software provide extra functionality? Can you “turn off” any of the 
functionality?  If you have the source code, can you recompile with defined switches or 
stubs to remove the extra functionality?  How much code space (disk, memory, etc.) does 
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the extra software take up?  What happens to the system if an unneeded function is 
accidentally invoked? 

• Will the OTS software be stand-alone or integrated into your system?  The level of 
understanding required varies with the two approaches.  If stand-alone (such as an 
Operating System), you need to be concerned with the API/ICD primarily, and 
interactions with your independent software are usually minimal.  If the software is to be 
integrated (e.g. a library), then the interaction between your code and the OTS software is 
more complicated.  More testing and/or analyses may be needed to assure the software 
system. 

• Does the OTS software have any “back doors” that can be exploited by others and create 
a security problem? 

• Is the software version 1.0?  If so, there is a higher risk of errors and problems.  Consider 
waiting for at least the first bug-fix update, if not choosing another product. 

If the OTS product’s interface is supposed to conform to an industry standard, verify that 
it does so. 

• 

Appendix H provides the above information as a checklist, and also contains another checklist of 
items to consider when using OTS software in your system. 

IEEE 1228, the standard for Software Safety Plans, states that previously developed (reused) 
software and purchased software must be 

• Adequately tested. 

• Have an acceptable risk. 

• Remains safe in the context of its planned use. 

• Any software that does not meet these criteria, or for which the level of risk or 
consequences of failure cannot be determined, should not be used in a safety-critical 
system.  In addition, IEEE 1228 provides a standard for a minimal approval process for 
reused or purchased software: 

• Determine the interfaces to and functionality of the previously developed or purchased 
software that will be used in safety-critical systems. 

• Identify relevant documents (e.g. product specifications, design documents, usage 
documents) that are available to the obtaining organization and determine their status. 

• Determine the conformance of the previously developed or purchased software to 
published specifications. 

• Identify the capabilities and limitations of the previously developed or purchased 
software with respect to the project’s requirements. 

• Following an approved test plan, test the safety-critical features of the previously 
developed or purchased software independent of the project’s software. 

• Following an approved test plan, test the safety-critical features of the previously 
developed or purchased software with the project’s software. 
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• Perform a risk assessment to determine if the use of the previously developed or 
purchased software will result in undertaking an unacceptable level of risk. 

12.1.2 Integrating OTS Software into your System 
Okay, you’ve weighed all the factors (in-house development costs/time vs. OTS costs/time 
including glueware and extra tests/analyses), and decided to go ahead with using OTS software.  
Remember, OTS includes software reused from a different project as well.  Now that software 
must be integrated into the software system, which consists of in-house developed code and/or 
other OTS/reused code modules.  Keeping the OTS code as isolated as possible from the rest of 
the system is a good idea, and several approaches to doing this are presented below.  Reference 
[82] discusses these approaches, and more. 

Making sure the software system is safe also requires some additional tests and analyses, which 
are discussed in section 12.1.4.   

12.1.2.1 Sticky stuff:  Glueware and Wrapper Functions 
It would be great if the OTS software (including reused libraries and functions from other 
projects) could just be plunked down into the new system with no additional work.  It doesn’t 
work that way, of course.  You have to connect the OTS software to the rest of the code.  The 
software that provides the connection is called glueware. 

Glueware is a general term for any software that sits between the OTS software and the rest of 
the software system.  Usually it is the software required to connect the two pieces (OTS and in-
house) and make them work and play well together.  Two specific versions of glueware are 
wrappers, which are described below, and adapters, which are discussed in section 12.1.2.3. 

Wrappers are an encapsulation mechanism, where the OTS code is isolated from the rest of the 
system.  Wrappers can prevent certain inputs from reaching the OTS component and/or check 
and validate outputs from the component.  Restricting inputs should be done if certain values 
could cause the OTS/reused software to behave badly or execute dormant code.  Finding those 
inputs can be difficult, especially when the source code is unavailable and the documentation is 
barely adequate.  Reference [83] discusses using software fault injection with an OTS 
component, to determine what undesirable outputs the component can produce, and what inputs 
lead to those outputs.  An experiment in using fault injection with wrapper functions to test the 
interface robustness of the system is described in reference [84]. 

Wrappers have several problems when they are applied to OTS software.  First, the OTS 
component’s interface must be well understood, which requires more-than-adequate 
documentation.  Outputs that are outside the documented understanding may slip through the 
wrapper.  Second, wrappers may be quite complex, and can approach or exceed the size of the 
OTS component. 

Reference [85] discusses “generic software wrappers”, including the development of a “wrapper 
description language”, for wrapping COTS software in a Unix environment.  The primary focus 
of the article is on security issues, but is of interest to anyone considering creating OTS 
wrappers. 

Wrappers have a use outside of the operational software.  During debug/testing phase, or while 
evaluating the OTS software, wrappers can be used to instrument the software system.  
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Essentially, the wrapper allows information about what is happening (inputs to the OTS, outputs 
from the OTS) to be recorded or displayed.  This provides insight into what the OTS software is 
doing in the operational or test situations. 

12.1.2.2 Redundant Architecture 
The influence of the COTS component can be restricted by using a redundant architecture.  
Replication and multi-voting approaches, including N-Version programming, can be used if the 
software produces consistent faults.  That is, for a specific input, the same fault is always 
produced.  However, this approach (especially N-Version programming) has debatable 
reliability, and is not recommended. 

Partitioning the system into a high-performance portion and a high-assurance kernel (or safety 
kernel) is another option.  The high-performance portion is just that – the best, fastest, leanest, 
etc. code.  This part of the software can contain OTS software, as well as custom-developed 
software.  If this part fails, however, the system defaults to the high-assurance kernel.  This 
portion maintains the system in a safe state while providing the required functionality (with 
reduced performance). 

The Carnegie Mellon Software Engineering Institute (SEI) developed a framework of safety 
techniques they named Simplex Architecture.  These techniques include high-assurance 
application-kernel technology, address-space protection mechanisms, real-time scheduling 
algorithms, and methods for dynamic communication among components.  This process requires 
using analytic redundancy to separate major functions into high-assurance kernels and high-
performance subsystems.  Off-The-Shelf (OTS) products can be used in the high-performance 
subsystem and even replaced without bringing down the system.  Reference [46] describes the 
Simplex Architecture. 

Redundant architecture is no silver bullet for OTS.  It suffers from the same problems as wrapper 
functions: complexity, and the inability to deal effectively with unknown and unexpected 
functionality. 

12.1.2.3 Adding or Adapting Functionality  
Sometimes the OTS software is almost what you want, but is missing some small piece of 
required functionality.  Or the OTS software contains what is needed, but the interfaces don’t 
match up.  In either case, a specialized form of glueware called an adapter can be written. 

If extra functionality is required, an adapter will intercept the input (command, function call) for 
that functionality, execute the new function which it contains, and return the result – all without 
invoking the OTS software!  Or, the adapter may provide some pre- or post-processing for an 
OTS function.  For example, the OTS software has a function to control 16-bit output ports.  The 
function takes two parameters – port address and value to write to the port.  The primary 
software needs to access a specialize output port.  This one requires writing to two consecutive 
8-bit ports instead of one 16-bit port.  The adapter software intercepts the function call (by 
matching the port address to the special one).  It breaks the 16 bit value passed into 2 8-bit 
values, then performs two calls to the OTS function to write the values, incrementing the output 
port address by one between the calls.   

When the interfaces between the OTS software and the rest of the code don’t match up, an 
adapter can be written to “translate” between the two.  For example, the OTS software produces 
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messages in one format (header, message, checksum), but the standard protocol used by the rest 
of the system has a different header and uses a CRC instead of a checksum.  The adapter would 
intercept messages coming from the OTS software, modify the header, and calculate the CRC 
before passing the message on.. 

12.1.2.4 Dealing with Extra Functionality 
Because OTS software was originally written for another application, or written as a general set 
of functions, it will often contain “extra” functionality not needed by the current project.  This 
extra code is referred to as “dormant” code, because it should sit there in the software, 
undisturbed and not executing.  The trick is to make sure that’s what it really does! 

The first step is to identify if the OTS/reused software has any dormant code within it.  To 
adequately determine this, access to the source code is necessary.  If source code is unavailable, 
the software provider may be able to provide information, if you supply a list of the functions 
you will be using.  Product user groups, newsgroups, and web pages may also contain useful 
information, though always consider the source of the information.  If nothing else is available, 
look through the documentation for defined functions that you will not be using.  The higher the 
ratio of used functionality to total functionality in the OTS software, the less dormant code there 
is. 

Once the presence of dormant code is determined, look for the stimuli that activate it (cause it to 
execute).  That will include command invocation, function calls to specific routines, and possible 
invocation from required functions based on the software state or parameters passed.  If the 
source code is available, it can be examined for undefined (i.e. not specified in the 
documentation) ways of entering the dormant code.   

Also look at the resources the dormant code uses.  How much memory space does it take up?  
How much disk/storage space?  Will the presence of this extra code push the software system 
close to any prescribed limits? 

In an ideal system, you will be able to identify any dormant code and verify that it cannot ever be 
executed.  Since we never have an ideal system, contingency planning  (risk mitigation) is 
required.  Look at what happens when the dormant code is executed.  What functions does it 
perform?  Does it affect the system performance or capacity?  Examine the behavior of the 
system if any of the dormant code is executed – can it go into an unsafe state?  Will system 
performance be degraded, leading to a possible mission or safety issue?  Can the dormant 
software lead to a hazard, or interfere with a hazard control or mitigation?   

 
WARNING:  Glueware Needed!  Extra Work Ahead!  

 

You have to protect your system (in particular your safety-critical functions) from 
malfunctioning OTS software.  This requires wrapping the OTS software (glueware) or 
providing some sort of firewall.  The more dormant code there is in the OTS software, the 
more likely it is to “trigger” accidentally.   

Depending on the issue and the product, you may be able to work with the vendor to disable the 
dormant code, or provide some safeguards against its unintentional execution.  Procedural 
methods to avoid accidentally invoking the dormant code can be considered, but only as a last 
resort.  They open up many possibilities for human error to cause problems with the system. 
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How much extra testing will need to be done on the software system is determined by the 
amount of dormant code, the level of insight into the code (what can it do), and any safety 
problems with the code.  OTS software that could interfere with a safety control, with no source 
code availability, and with little or no details on its development and testing, will require extra 
testing!  Software with good documentation, well encapsulated (not integrated with the system), 
and with no ability to affect safety (such as no I/O capability) may not need much extra testing.  
The determination of the level of testing effort should be made by the software engineers and the 
safety engineers, with input from project management, based on the risk to the system and to 
safety that the OTS software imparts. 

12.1.3 Special Problems with Reused Software 
The greatest problem with reusing software created for a different project is psychological.  You 
know what the software does, how well it was tested in the previous system, and it just fits so 
perfectly into the new system.  You don’t need any extra analysis or testing – it’s already been 
done.   WRONG!  That’s what the Ariane 5 team thought when they reused Ariane 4 software! 
(See reference [86] for details.) 

No two systems are alike.  You cannot assume that the software you wrote for System A is going 
to function as expected in System B.  The new system may be on a faster processor, and timing 
problems that weren’t apparent in slower System A now become critical.  Or the new system 
may have a critical task that must be executed regularly.  The reused code may tie the system up 
long enough that the critical task is delayed.  Or the input data may be different enough that 
problems missed by the first system are triggered in the new one. 

It is very important to analyze the reused code in light of the capacity, capability, and 
requirements of the new system.  Look for issues with timing, hogging the system, 
overwriting variables,  using the same system resources for different purposes, and ….  
As well as other issues.  Carefully consider the differences between the new and old 
systems, and how those differences can affect the functioning of the reused software. 

It is a goal in modern software engineering to create reusable software.  After all, why should the 
wheel have to be constantly reinvented?  We recycle many things in our society – why not code?  
While a laudable goal, software reuse is still in its infancy, and all the problems and pitfalls 
haven’t been found yet.  Applying reused software to a new system requires a lot of thought up 
front. 

 

 

12.1.4 Who Tests the OTS? (Us vs. Them) 
Hopefully, the OTS software you are about to use has been thoroughly tested, either by the 
vendor or by the previous project.  If you’re lucky, you have copies of the test reports.  If you’re 
even luckier, you have a copy of a hazard analysis for the software.  You can stop now, right? 

Think before you reuse!

Wrong.  Even the most thoroughly tested and analyzed OTS software must still be analyzed and 
tested for how it operates in the new system!  Think about OTS software as a child in a 
playground.  It may play well with the children in the sandbox and on the slide.  It gets dizzy on 
the merry-go-round, but still keeps playing.  But put it on the swing and the rope breaks, 
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dumping itself on the ground and creating a hazard for other children in the area.  No two 
systems are identical.  Old software must be looked at in the new context. 

 

Safety-critical Off-The-Shelf (COTS, GOTS, or reused) software should be analyzed (up 
front) and tested by the user.  Software that resides on the same platform as safety-
critical software (and is not partitioned from that software), and any “high risk” OTS 
software, are included as safety-critical.  These analyses and tests should be performed 
whether the software is modified or not.  Remember, this is YOUR system.  The OTS 
software may have been tested, even thoroughly tested, but not in your system 
environment.  Ariane 5 [86] demonstrated that well tested software can cause significant 
problems when applied to a new system (domain). 

 

Your first step is to find out what testing has already been done.  Ideally, the software will be 
delivered with documentation that includes the tests performed and the results of those tests.  If 
not, ask the vendor for any test or analysis documentation they have.  (It never hurts to ask.) If 
the software is government supplied or contractor developed for a government program, hazard 
analyses may be available.  Hazard analyses may be available for other software as well, though 
it is less likely for commercial software unless developed for other safety regimes (FAA, 
medical, automobile, etc.). 

Existing hazards analyses and test results of unmodified software previously used in safety-
critical systems may be used as the basis for certification in a new system.  The existing analyses 
and test reports should be reviewed for their relevance to the reuse in the new environment.  
This means that you need to look at the differences in the environment between the “old” system 
and the system you wish to use this software in.    

If the OTS software causes or affects hazards, you need to address mitigation.  If source code is 
available, correct the software to eliminate or reduce to an acceptable level of risk any safety 
hazards discovered during analysis or test.  The corrected software must be retested under 
identical conditions to ensure that these hazards have been eliminated, and that other hazards do 
not occur.  If source code is not available, the hazards must be mitigated in another way – 
wrapping the OTS software, providing extra functionality in the in-house software, removing 
software control of a hazard cause/control, or even deciding not to use the OTS software.  
Thoroughly test the system to verify that the hazards have been properly mitigated. 

OTS software has taken software and system development by storm, spurred on by 
decreasing funds and shortened schedules.  Safety engineering is trying to catch up, but 
the techniques and tests are still under  development.  Providing confidence in the safety 
of OTS software is still something of a black art.  

Don’t assume that if the software works properly, with no hazard 
potentials or problems, in the old environment it will work properly in 
the new system.  
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12.1.5 Recommended Analyses and Tests 
The hazard analysis (mentioned above) must be updated to include the OTS software.  Any new 
hazards that the OTS software adds to the system must be documented, as well as any ability to 
control a hazard.  As much as possible, consider the interactions of the OTS software with the 
safety-critical code.  Look for ways that the OTS software can influence the safety-critical code.   

For example,  

• overwriting a memory location where a safety-critical variable is stored 

• getting into a failure mode where the OTS software uses all the available resources and 
prevents the safety-critical code from executing 

• clogging the message queue so that safety-critical messages do not get through in a 
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eally, OTS software should be thoroughly tested in a “stand alone” environment, before being 
tegrated with the rest of the software system.  This may have been already done, and the 

endor may have provided the documentation.  The level of software testing should be 

etermined by the criticality or risk index of the software.  High-risk safety-critical software 
ould be analyzed and tested until it is completely understood. 

If the OTS software is safety-critical, subject it to as many tests as your budget and 
schedule allow.  The more you know about the software, the less likely it is to cause 
problems down the road.  Since source code is often not available, the primary testing 
will be black box.  Test the range of inputs to the OTS software, and verify that the 
outputs are as expected.  Test the error handling abilities of the OTS software by giving it 
invalid inputs.  Bad inputs should be rejected or set to documented values, and the 
software should not crash or otherwise display unacceptable behavior.  See if the 
software throws any exceptions, gets into infinite loops, or reaches modes where it 
excessively uses system resources. 

oftware fault injection (SFI) is a technique used to determine the robustness of the software, 
nd can be used to understand the behavior of OTS software.  It injects faults into the software 
nd looks at the results (Did the fault propagate? Was the end result an undesirable outcome?).  
asically, the intent is to determine if the software responds gracefully to the injected faults.  
raditional software fault inject used modifications of the source code to create the faults.  SFI is 
ow being used on the interfaces between components, and can be used even when the source 
ode is unavailable.  [83] and [84] discuss software fault injection with COTS software. 

he following analyses, if done for the system, should be updated to include the OTS software: 

• Timing, sizing and throughput – especially if the system is close to capacity/capability 
limits. 

• Software fault tree, to include faults and dormant code in the OTS software 

• Interdependence and Independence Analyses, if sufficient information available 

• Design Constraint Analysis 

• Code Interface Analysis 

• Code Data Analysis 
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• Interrupt Analysis 

• Test coverage Analysis 

12.2 Contractor-developed Software 
With government downsizing and budget cutting, a large portion of the software previously 
developed in-house at NASA centers is now being contracted out.  Usually, whole systems are 
developed under the contract, including the software that runs the system.   

The NASA Safety Manual (NPG 8715.3), chapter 2, discusses safety and risk management 
requirements for NASA contracts.  Responsibilities of the Project/Program manager, Contracting 
Officer, and Safety and Mission Assurance personnel are described. 

With a contract, especially a performance-based contract, it is usually difficult to specify how the 
contractor develops the software.  The end-result is the primary criteria for successful 
completions.  However, with safety-critical software and systems, the how is very important.  
The customer needs to have insight into the contractor development processes.  This serves two 
purposes: to identify major problems early, so that they can be corrected; and to give confidence 
in the final system. 

12.2.1 Selecting a Contractor 
When a contractor will develop safety-critical software or systems, it is very important that the 
contract be awarded to a team capable of creating that safe system.  Technical expertise is 
obviously important.  The software development process used by the organization and past 
performance should also be factors in the selection. 

Capability frameworks (see Section 4.3.8) are one way of evaluating the software development 
process of an organization.  Such frameworks include the Software Capability Maturity Model 
(SW-CMM) and ISO-9000.  The idea behind these frameworks is that a good process will lead to 
a good quality product.  In general, this is true.  However, factors beyond the process are also 
important, such as the expertise of team members, how well the team functions, and how well 
the process is actually followed.   

If a specific process maturity level is required of the contractor (such as SW-CMM Level 3), 
consider how that level will be verified.  Will the contractor be allowed to perform an internal 
assessment, or will an outside assessment be required?  When the company was assessed in the 
past, was it for the particular sub-section of the organization that will develop your software?  
How will you verify throughout the contract period that the contractor’s processes are being 
followed?  These are questions to consider when you impose a capability level on a contractor.  

The experience, stability, and successful past performance with similar efforts of the potential 
contractor are prerequisites to developing dependable safety-critical software.  Past projects 
should be evaluated as part of the contractor selection process.  This evaluation can confirm a 
capability determination or provide evidence to the contrary.  The actual past performance, for 
the team that will create the software, should be rated higher than capability levels determined 
for a different sub-section of the company.  
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12.2.2 Contract Inclusions 

Once the contract is awarded, both sides are usually stuck with it.  Making sure that the delivered 
software is what you want starts with writing a good contract.  According to NPG 8715.3, the 
following items should be considered for inclusion in any contract: 

 Safety requirements 

 Mission success requirements 

 Risk management requirements 

 Submission and evaluation of safety and risk management documentation from the 
contractor, such as corporate safety policies, project safety plans, and risk management 
plans. 

 Reporting of mishaps, close calls, and lessons learned 

 Surveillance by NASA.  Performance-based contracts still have a requirement for 
surveillance! 

 Sub-contracting  – require that the safety requirements are passed on to sub-contractors! 

Clear, concise and unambiguous requirements prevent misunderstandings between the 
customer and the contractor.  Safety requirements should be clearly stated in the 
specifications.  Remember that changing requirements usually involves giving the contractor 
more money.  Do as much thinking about the system safety up front, and write the results into 
the system specification.  

12.2.2.1 Safety Process  

NASA has a particular process for safety verification of flight projects (both Shuttle and ISS 
payloads, changes to the Shuttles, Expendable Launch Vehicles, and ISS Elements).  This 
involves creating a Safety Compliance Data Package and going through three levels of reviews at 
Johnson Space Center.  The reviews are by phase.  Phase 0/1 is the preliminary review, where 
the Payload Safety Review Panel (for Shuttle and ISS payloads) or the Safety Review Panel (for 
ISS Elements) learns about the project, reviews the safety aspects of the preliminary design, and 
has a chance to input any safety concerns to the project.  Phase II (2) usually occurs around the 
Critical Design Review or during the actual implementation of the design.  It is a more in-depth 
look at the system, hazards, and controls, as well as at the verification process to assure the 
hazards are mitigated.  Phase III (3) must be completed 30 days prior to the delivery to the 
launch site.  The verification of safety features must be complete, or tracked on a Verification 
Tracking Log (VTL) if they are still outstanding.  All VTL inputs must be completed before the 
Flight Readiness Review, prior to launch. 

It is important to specify in the contract who has responsibility for preparing and 
presenting the Safety Compliance Data Package to the Payload Safety Review Panel or 
the Safety Review Panel.  Software safety will need to be addressed as part of the 
process.   



12.2.2.2 Analysis and Test 
The contract should also clearly state what analyses or special tests need to be done for safety 
and mission assurance, who will do them, and who will see the results.  In a performance-based 
contract, usually the contractor performs all functions, including analyses.  In other cases, some 
of the analyses may be handled from the NASA side.  Regardless, the tests and analyses should 
be spelled out, as well as the responsible party.  

Before writing the contract, review sections 5 through 10 to determine what development 
processes, analyses, and tests need to be included in the system specification or contract.  Use the 
guidance on tailoring when imposing processes, analyses and tests. 

12.2.2.3 Software Assurance and Development Process 
Software Assurance (SA) (also referred to as Software Quality Assurance or Software 
Product Assurance) is a vital part of successful software development.  For a 
performance-based contract, the SA role is usually handled by a managerially 
independent group within the contracting company.  For other contracts, SA may be 
performed by NASA SA personnel, if stated in the requirements.  Regardless of who 
performs the SA function, the requirement for a Software Assurance function should be 
included in the contract.  Rather than call out specific roles and responsibilities for SA, 
requiring use of an accepted standard (IEEE 12207 or CMM level 3, for example), or 
specifying that the SA responsibilities will be called out in an SA plan that is approved by 
the NASA project manager, is sufficient. 

The contract can also state process requirements that the contractor must meet.  For example, 
software development according to IEEE 12207 may be required.  The contractor can be 
required to have or obtain a certain level of the Capability Maturity Model (CMM).  Local ISO 
requirements (local to the NASA center) may also be imposed.  A special method of problem 
reporting may be required, or the contractor may use their own, established method.  It is 
important that a mechanism exist for NASA to be aware of problems and their corrections, once 
the software and system reaches a certain level of maturity.  A formal Problem 
Reporting/Corrective Action process usually begins when the software has reached the first 
baseline version.   

If there is question concerning the capability of the organization to perform the work, then an 
assessment of the organization may be necessary.  The Software Assurance or IV&V engineer 
can provide more information.  Even if the organizational makeup cannot change, some risks 
may be identified regarding how the software will be developed.  This may lead to some form of 
mitigation such as requiring the use of Formal Inspections of requirements and detailed design. 

12.2.2.4 Contractor Surveillance 
It is important when imposing requirements on the contractor that a method of monitoring their 
compliance is also included.  Metrics might be selected that will give insight into the software 
status.  The submittal of corroborating data might be required (such as certification to ISO 9000 
or CMM level 3).  Surveillance of the contractor also needs to be included, and is discussed in 
section 12.2.3. 
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12.2.2.5 Software Deliverables 
Making sure you get the software you need is important, but figuring it out what you need at the 
beginning of a project can be difficult.  Some of the software deliverables are obvious.  Others 
are often forgotten or overlooked.  You also need to consider what happens after the system is 
delivered and the contractor is no longer part of the project.  You, the customer, will have to 
maintain the system.  Make sure you have enough information to do that! 

This list encompasses many commonly required or desired software deliverables.  It does not 
include every conceivable software deliverable, but gives a good starting point.   

• Operational software – the software that is part of/runs the system.  This includes flight 
software, ground support software, and analysis software. 

• Standard project documentation for software, including Software Management Plan, 
Software Development Plan, Software Assurance Plan, Software Requirements 
Specification (if not NASA-provided), Verification and Validation Plan, Software Test 
Plan, and Software Configuration Management Plan.  The Risk Management Plan, Safety 
Plan and Reliability/Maintainability Plan should address software, or point where the risk 
management, safety, reliability, and maintainability of the software is discussed. 

• Design documentation.   

• Source code. 

• Any development tools used, especially if they are obscure, expensive, or difficult to 
obtain later. 

• Any configuration files, setup files, or other information required to configure the 
development tools for use with the project. 

• Simulators or models developed for use with the operational software.  These may be 
needed to reproduce a test, for updates to the software after delivery, or to understand 
aspects of the software when errors are found during operation. 

• Test software used to verify portions of the software.  This includes stubs and drivers 
from unit and integration tests.  Software that generates data for use in testing also falls 
under this category. 

• Software Assurance reports, including process audit results and discrepancy reports. 

• Formal Inspection reports. 

• Test procedures and reports. 

• User/operator manual. 
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12.2.2.6 Independent Verification and Validation (IV&V) 
All NASA projects must complete an evaluation on the need for IV&V or Independent 
Assessment (IA).  NPD 8730.4 gives the criteria and process for this evaluation.  It is important 
that this evaluation be completed, and agreed to, before the contract is awarded.  Extra contractor 
resources may be needed to aid the IV&V or IA activities.  Contractor cooperation with IV&V or 
IA personnel is expected.  At a minimum, management, software development, and software 
assurance will need to work with the IV&V or IA personnel, providing information, answers, 
and understanding of the software system and the development process. 

Depending on the level of IV&V levied on the project, some independent tests may be 
performed.  These may require some contractor resources to implement. 

12.2.2.7 Software Change Process 
The requirement to implement a formal software change process should be included in the 
contract.  The process should include a change control board to consider each request.  The board 
should have representatives from various disciplines, including software development, software 
assurance, systems, safety, and management.  Depending on the level of software/hardware 
integration, someone with an electronics or mechanical understanding may be included, 
permanently or as the need for such expertise arises. 

A NASA/customer representative should be part of the change board, or at least review the board 
decisions.  Some of the changes may impact the ability of the system to meet the requirements, 
may add or remove functionality, or may impact the safety and reliability of the system.   

12.2.2.8 Requirements Specification 

Formal inspection of the requirements specification by the NASA customer 
should be used to ensure that the specification is complete and unambiguous.

Problems found now, before the contract is written, will save money in the long run! 
Most software problems are actually specification problems, and the fixes become 
progressively more expensive as the software develops.   

You should also have a mechanism in place to facilitate communication between the contractor 
and the customer.  The requirements are rarely completely unambiguous, and some interpretation 
often occurs.  Exchanges between contractors (and subcontractors) and the NASA customer will 
help to assure that misunderstanding are caught early, ambiguous requirements are clarified, and 
everyone is on the same page.   

12.2.3 Monitoring Contractor Processes 
NASA contract monitoring for Safety and Mission Assurance (S&MA) takes one of two 
approaches.  Oversight is an in-line approach, where NASA personnel work with the contractor 
as a team member.  For the software portion, NASA personnel may act as Software Assurance, 
perform audits, witness tests, and perform safety analyses.  They may advise the project on “best 
practices” or make suggestions of new techniques or tools. 

Insight is a more “hands off” approach and is often used with performance-based contracts.  The 
assumption is that the contractor knows what they are doing, and NASA only needs enough 
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insight into their processes to make sure things are functioning properly and that no major 
problems are brewing.  In this mode, the contractor performs all SA functions.  NASA software 
surveillance consists of reviewing the SA records, “spot auditing” the software development 
process and the SA process, and participating in major reviews.  Other activities may be 
performed if requested by the contractor and NASA project management.   

Which approach is used, and the specifics of how to apply the approach, is called out in a 
surveillance plan.  The NASA project management produces this plan once the contract 
is awarded.  The who and what details are included in this plan.  Who is the responsible 
party.  For example, the contract may state that NASA will perform the Preliminary 
Hazard Analysis, but that the contractor will perform all subsequent analyses.  What 
would be the list of analyses and special tests that must be performed.  What is also the 
list of audits, records and documentation reviews, and other surveillance processes that 
the NASA S&MA engineer will need to perform, to verify contractor compliance with 
the process and SA requirements of the contract. 

12.2.4 Recommended Software Testing 
In addition to tests performed by the contractor, you may wish to do additional tests after 
software delivery.  If the environment under which the software safety verification tests were 
performed has changed (from engineering model to flight system, for example), or if the safety 
verification tests were not witnessed by NASA personnel, those tests should be rerun (depending 
on the criticality of the hazards).  

Hopefully, all desired tests will have been included in the contract, and the software will be 
delivered with test reports.  If not, then the software should be subjected to additional tests upon 
delivery.   

The software acceptance test should be thorough.  It should include more than just functional 
testing.  All “must work” and “must not work” functions should be exercised and verified.  The 
error handling and fault tolerance of the software must be verified.  You don’t want to “break the 
system”, but you also want to make sure that the software can safely handle the “real world” 
inputs and unanticipated events. 
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Chapter 13 Looking Ahead 
Software engineering is an evolving enterprise in a fast-changing world.  Innovation in languages 
and methodologies for software creation, along with new technologies, solve old software 
development problems, while often creating new ones.  Keeping up with the “state of the art” is 
difficult for the software engineer.  For Software Safety, the task is more difficult, as new 
analyses or techniques must be developed in parallel to the new software engineering techniques. 

This guidebook does not have access to a working crystal ball.  True innovations in software 
engineering or software safety will always take the prognosticators by surprise.  However, much 
of the progress in software engineering and safety comes from building on the past.  In that light, 
some areas of interest for the future are outlined below. 

Object-oriented (OO) development is fairly well established in software engineering.  However, 
the “best practices” of OO are still being determined.  What is the best way to manage an OO 
project?  How does object-orientation fit in with various lifecycles, such as the spiral or 
evolutionary?  What are the best ways to test object-oriented software?  What metrics are really 
the best for understanding the software and its changes? These questions, and more, will 
hopefully be answered in the next few years. 

Some evolving technologies (distributed systems, autonomous systems, reconfigurable 
computing, web-based systems) were discussed in this guidebook on a superficial level.  The 
problems associated with these technologies, and other new areas of software development, need 
to be understood and solved.  What is the best way to develop these systems?  How can you 
verify (through test or other means) systems that “think” or can change their programming?  
How can you test a distributed system with a thousand nodes?  What level of security is required 
for web-based applications, and how can that level be achieved? How do these new technologies 
impact requirements management activities – how can you track the requirements and changes in 
highly complex systems?  How can the impact of changes be accurately determined in complex 
systems? 

New software development methodologies are being created on a regular basis.  The latest 
methodologies include the “agile processes”, which focus on short development times.  Should 
they be used in safety-critical systems?  Can they be adapted such that they would meet the 
requirements for such systems?  With any new methodology, the problem is determining when it 
is safe to use, and when it should not be used. 

“Software Engineering for Safety: A Roadmap” [105] lists some areas software safety may wish 
to focus on in the near future: 

• Integration of informal and formal methods. 

o Automatic translation of informal notations (such as UML and fault trees) into 
formal models. 

o Lightweight formal methods that involve rapid, low-cost use of formal methods 
tailored to the immediate needs of a project. 

o Integration of previously distinct formal methods, such as theorem provers and 
model checkers or high-level languages and automatic verification. 
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• Constraints on safe product families and safe reuse. 

o Safety analyses of product families so that large aspects that are in common 
between systems within the same family can be analyzed only once.  How can the 
minor variations, and especially the interaction of the variations, be characterized? 

o Safe reuse of COTS software requires a way to assess a COTS product for fitness 
for a particular application.  It also requires ways to verify that the COTS 
software does not have additional, unexpected behavior. 

• Testing and evaluation of safety-critical systems 

o Requirements-based testing would tightly integrate safety requirements with test 
cases. 

o Evaluation from multiple sources of safety evidence begs the question of how to 
integrate that information into a coherent whole. 

o Model consistency.  How can the model of the system more accurately represent 
the real system? 

o Virtual environments.  Using virtual environments to help design, test and certify 
safety-critical systems is on the horizon. 

• Runtime monitoring can detect and recover from hazardous states.  How can it detect 
unexpected hazardous states?  How can it be used to identify system conditions that may 
threaten safety? 

• Education.  Current new software engineers lack exposure to the safety aspects of 
software creation.  

• Collaboration with related fields.  Software safety needs to work with others involved in 
software security, survivability, software architecture, theoretical computer science, 
human factors engineering, and other areas to exploit their advances. 
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A.2 Information 
Standards and Guidebooks 

NASA Standards and Guidebooks 
• NPG 8715.3  NASA Safety Manual  
• NASA-CM-GDBK NASA Software Configuration Management Guidebook 
• NASA-GB-001-94 NASA Software Measurement Guidebook 
• NASA-GB-001-95 NASA Software Process Improvement Guidebook 
• NASA-GB-001-96 NASA Software Management Guidebook 
• NASA-GB-002-95 Formal Methods Specification And verification Guidebook For Software And 

Computer Systems,  Volume I: Planning And Technology Insertion 
• NASA-GB-001-97 Formal Methods Specification And Analysis Guidebook For The verification Of 

software And  computer Systems, volume II: A Practitioner's  companion 
• NASA-GB-A201  Software Assurance Guidebook 
• NASA-GB-A301  Software Quality Assurance Audits guidebook 
• NASA-GB-A302  Software Formal Inspections Guidebook 
• NASA-STD-2100-91 NASA Software Documentation  Standard  
• NASA-STD-2201-93 NASA Software Assurance Standard 
• NASA-STD-2202-93 Software Formal Inspection Process  Standard 

• KHB-1700.7  Space Shuttle Payload Ground Safety Handbook 
• NSTS-08126  Problem Reporting and Corrective Action (PRACA) System Requirements 
• NSTS-1700-7B  Safety Policy and Requirements for Payloads Using  the International Space 

Station, Addendum 
• NSTS-1700-7B  Safety Policy and Requirements for Payloads Using the Space Transportation 

System Change No. 6 
• NSTS-22206  Requirements for Preparation and Approval of Failure Modes and Effects 

Analysis (FMEA) and Critical Items List (CIL) 
• NSTS-22254  Methodology for Conduct of Space Shuttle Program Hazard Analyses 
• NSTS-5300-4(1D-2) Safety, Reliability, Maintainability and Quality Provisions for the Space Shuttle 

Program Change No. 2 

• 

• NSTS-5300.4  Safety, Reliability, Maintainability and Quality Provisions for Space Shuttle 
Program 

• NSTS-ISS-18798  Interpretations of NSTS/ISS Payload Safety Requirements 
• NSTS 13830  Payload Safety Review and Data Submittal Requirements 
• NSTS 14046  Payload Verification Requirements 
• NSTS 16979  Shuttle Orbiter Failure Modes & Fault Tolerances for Interface Services 
• NSTS 18798  Interpretations of NSTS Payload Safety Requirements 

• NASA-STD-8719.13A NASA Software Safety Standard 

• NSTS 22648  Flammability Configuration Analysis for Spacecraft Application 
• SSP-50021  Safety Requirements Document, International Space Station Program 
• SSP-50038  Computer-Based Control System Safety Requirements, International Space 

Station Program   
JSC 26943  Guidelines for the Preparation of Payload Flight Safety Data Packages and 
Hazard Report 
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IEEE Standards 
• ISO/IEC 12207  Information Technology - Software Life Cycle Processes 
• EIA 12207.0, .1, .2  Industry Implementation of International Standard ISO/IEC 12207 : 1995  
• IEEE 610.12         IEEE Standard Glossary of Software Engineering Terminology 

• IEEE 982.1  IEEE Standard Dictionary Of Measures To Produce Reliable Software 
• IEEE 1016-1998   IEEE Recommended Practice for Software Design Descriptions 
• IEEE 1228-1994  IEEE Standard for Software Safety Plans 

US Military Standards 

• IEEE 830-1998  IEEE Recommended Practice for Software Requirements Specifications 

DoD-STD-498     Software Development and Documentation, cancelled in 1998.  Replaced by 
IEEE 12207. 

• 

• 
• 

• 

• 
• 
• 

• 

• 

MIL-STD-882D    Standard Practice for System Safety, February 10, 200.   
MIL-STD-882C (1993)  and MIL-STD-882B (1987) are both deprecated, but include useful processes and 
procedures for system and software safety that are not included in 882D. 

 
Other Standards 
 

DO-178B   Software Considerations in Airborne Systems and Equipment Certification 
(Federal Aviation Administration). 
AIAA G-010  Reusable Software: Assessment Criteria for Aerospace Applications 
ANSI/AIAA R-013 Recommended Practice: Software Reliability   R-013-1992 
ISO 9000-3  Quality Management And Quality Assurance Standards - Part 3: Guidelines For 
The Application Of ISO 9001: 1994 To The Development, Supply, Installation And Maintenance Of 
Computer Software       Second Edition 
"Review Guidelines for Software Languages for Use in Nuclear Power Plant Safety Systems", U.S. Nuclear 
Regulatory Commission Contractor Report, NUREG/CR-6463, June, 1996 
UK Defence Standard 00-55 Requirements for Safety Related Software in Defence Equipment 

 
To access NASA standards and other standards used by NASA, go to the NASA Standardization Program website at 

. http://standards.nasa.gov/sitemap.htm

ISS documents can be found at the PALS site (
). 

http://iss-
www.jsc.nasa.gov:1532/palsagnt/plsql/palshome?db_id=ORAP

Books 

“Software Safety and Reliability : Techniques, Approaches, and Standards of Key Industrial Sectors”, Debra S. 
Herrmann, et al., March 2000 

“Safeware : System Safety and Computers”, Nancy Leveson, April 1995 

“Safety-Critical Computer Systems”, Neil Storey, August 1996 

“Software Assessment: Reliability, Safety, Testability”, Michael A. Friedman and Jeffrey M. Voas (Contributor), 
August 16, 1995 

“Semsplc Guidelines : Safety-Related Application Software for Programmable Logic Controllers”, February 1999 

“The Capability Maturity Model: Guidelines for Improving the Software Process”, Software Engineering Institute  , 
ISBN 0-201-54664-7, Addison-Wesley Publishing Company, Reading, MA, 1995. 
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Websites 
NASA Websites 
NASA Lessons Learned   http://llis.nasa.gov/llis/llis/main.html 
NASA Technical Standards  http://standards.nasa.gov/sitemap.htm 
NASA Online Directives Information System (NODIS) Library
 http://nodis.gsfc.nasa.gov/library/main_lib.html 
NASA Documents Online (HQ)  http://www.hq.nasa.gov/office/hqlibrary/books/nasadoc.htm 
ISS Documentation (PALS)  http://iss-www.jsc.nasa.gov:1532/palsagnt/plsql/palshome 
NASA Formal Methods   http://eis.jpl.nasa.gov/quality/Formal_Methods/home.html 
NASA Langley Formal Methods group: http://atb-www.larc.nasa.gov/fm/index.html 
GSFC Software Engineering Laboratory http://sel.gsfc.nasa.gov/ 
NASA Software Assurance Technology Center http://satc.gsfc.nasa.gov/homepage.html 
NASA IV&V Center   http://www.ivv.nasa.gov/ 
NASA Software Working Group  http://swg.jpl.nasa.gov/index.html 

Reference Websites 
Guide to the Software  Engineering Body of Knowledge (SWEBOK) http://www.swebok.org/ 
Standards (and 36 Cross References) http://www.cmpcmm.com/cc/standards.html 

Software Safety 
Software System Safety Working Group http://sunnyday.mit.edu/safety-club/ 
Safety-critical systems links:  http://archive.comlab.ox.ac.uk/safety.html 
A Framework for the Development and Assurance of  
High Integrity Software   http://hissa.ncsl.nist.gov/publications/sp223/ 

Software QA and Testing 
Society for Software Quality:  http://www.ssq.org/welcome_main.html 
Software Testing hotlist:     http://www.io.com/~wazmo/qa/ 
Guidance for Industry, General Principles of Software Validation, Draft Guidance  
Version 1.1  (FDA)   http://www.fda.gov/cdrh/comp/guidance/938.html 
Software Testing Stuff:   http://www.testingstuff.com/testing2.html 
Software QA/Test Resource Center http://www.softwareqatest.com/ 
TestingCraft – tester knowledge exchange http://www.testingcraft.com/index.html 

Miscellaneous 
Software Project Survival Guide  http://www.construx.com/survivalguide/chapter.htm 
Software Documents, military,  http://www.pogner.demon.co.uk/mil_498/6.htm 
Annals of Software Engineering  http://manta.cs.vt.edu/ase/ 
Software Engineering Readings  http://www.qucis.queensu.ca/Software-Engineering/reading.html 
Introduction to Software Engineering http://www.caip.rutgers.edu/~marsic/Teaching/ISE-online.html 
Best Manufacturing Practices guidelines  http://www.bmpcoe.org/guideline/books/index.html 
Embedded systems programming http://www.embedded.com 
Embedded systems articles  http://www.ganssle.com/ 
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Appendix B     Glossary and Acronyms 

B.1 Glossary of Terms 
 
Various definitions contained in this Glossary are reproduced from IEEE Standard 610.12-1990, IEEE Standard 
Glossary of Software Engineering Terminology, copyright 81990 by the Institute of Electrical and Electronic 
Engineers, Inc. The IEEE takes no responsibility for and will assume no liability for damages resulting from the 
reader's misinterpretation of said information resulting from the placement and context in this publication. 
 
Terminology    Definition 

Access type A value of an access type is either a null value or a value that 
designates an object created by an allocator.  The designated object can 
be read and updated via the access value.  The definition of an access 
type specifies the type of objects designated by values of the access 
type. 

Accident    See Mishap. 

Accreditation Certification A formal declaration by the Accreditation Authority that a system is 
approved to operate in a particular  manner using a prescribed set of 
safeguards. 

Annotations Annotations are written as Ada comments (i.e. preceded with “—“ so 
the compiler ignores it) beginning with a special character, “#”, that 
signals to the Static code analysis tool that special information is to be 
conveyed to the tool. 

Anomalous Behavior Behavior which is not in accordance with the documented 
requirements. 

Anomaly A state or condition which is not expected.  It may or may not be 
hazardous, but it is the result of a transient hardware or coding error. 

Architecture The organizational structure of a system or CSCI, identifying its 
components, their interfaces and a concept of execution between them. 

Assertions A logical expression specifying a program state that must exist or a set 
of conditions that program variables must satisfy at a particular point 
during a program execution.  Types include input assertion, loop 
assertion, and output assertion.  (IEEE Standard 610.12-1990) 

Associate Developer An organization that is neither prime contractor nor subcontractor to 
the developer, but who has a development role on the same or related 
project. 

Assurance To provide confidence and evidence that a product or process satisfies 
given requirements of the integrity level and applicable national and 
international law(s) 

Audit An independent examination of the life cycle processes and their 
products for compliance, accuracy, completeness and traceability. 

 

Audit Trail The creation of a chronological record of system activities (audit trail) 
that is sufficient to enable the reconstruction, review and examination 
of the sequence of environments and activities surrounding or leading 
to an operation, procedure or an event in a transaction from its 
inception to its final results. 
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Authenticate To verify the identity of a user, device or other entity in a system, often 
as a prerequisite to allowing access to resources in the system. 

Authorization    The granting of access rights to a user, program or process. 

Automata A machine or controlling mechanism designed to follow automatically 
a predetermined sequence of operations or correct errors or deviations 
occurring during operation. 

Baseline The approved, documented configuration of a software or hardware 
configuration item, that thereafter serves as the basis for further 
development and that can be changed only through change control 
procedures. 

Build (1) A version of software that meets a specific subset  of the 
requirements that the completed software will meet. 

(2) The period of time during which a version is developed. 

NOTE: The relationship of the terms "build" and "version" is up to the 
developer; for example, it may take several versions to reach a build, a 
build may be released in several parallel versions (such as to different 
sites), or the terms may be used as synonyms. 

Built-In Test (BIT) A design feature of an item which provides information on the ability 
of the item to perform its intended functions.  BIT is implemented in 
software or firmware and may use or control built- in test equipment. 

Built-In Test Equipment (BITE)  Hardware items that support BIT. 

Catastrophic Hazard A hazard which can result in a disabling or fatal personnel injury,  loss 
of high-value equipment or facility, or severe environmental damage. 

Caution and Warning (C&W)  Function for detection, annunciation and control of impending or 
imminent threats to personnel or mission success. 

Certification Legal recognition by the certification authority that a product, service, 
organization or person complies with the applicable requirements.  
Such certification comprises the activity of checking the product, 
service, organization or person and the formal recognition of 
compliance with the applicable requirements by issue of a certificate, 
license, approval or other document as required by national law or 
procedures.  In particular, certification of a product involves: (a) the 
process of assuring the design of a product to ensure that it complies 
with a set of standards applicable to that type of product so as to 
demonstrate an acceptable level of safety; (b) the process of assessing 
an individual product to ensure that it conforms with the certified type 
design; (c) the issue of any certificate required by national laws to 
declare that compliance or conformity has been found with applicable 
standards in accordance with items (a) or (b) above. 

 

Code Safety Analysis (CSA) An analysis of program code and system interfaces for events, faults, 
and conditions that could cause or contribute to undesirable events 
affecting safety. 

Cohesion (1) DeMarco:  Cohesion is a measure of strength of association of the 
elements of a module. 

(2) IEEE:  The manner and degree to which the tasks performed by a 
single software module are related to one another.  Types include 
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coincidental, communication, functional, logical, procedural, sequential 
and temporal. 

Command Any message that causes the receiving party to perform an action. 

Computer Hardware Devices capable of accepting and storing computer data, executing a 
systematic sequence of operations on computer data, or producing 
control outputs.  Such devices can perform substantial interpretation, 
computation, communication, control or other logical functions. 

Computer Program A combination of computer instructions and data definitions that enable 
computer hardware to perform computational or control functions. 

Computer Software Configuration Item An aggregate of software that is designated for configuration 
management and is treated as a single entity in the configuration 
management process.  (IEEE Standard 610.12-1990) 

Concept/Conceptual The period of time in the software development cycle during which the 
user needs are described and evaluated through documentation (for 
example, statement of needs, advance planning report, project initiation 
memo, feasibility studies, system definition, documentation, 
regulations, procedures, or policies relevant to the project). 

Configuration The requirements, design and implementation that define a particular 
version of a system or system component. 

Configuration Control The process of evaluating, approving or disapproving, and coordinating 
changes to configuration items after formal establishment of their 
configuration identification. 

Configuration Item   (1) An item that is designated for configuration management. 

(2) A collection of hardware or software elements treated as a unit for 
the purpose of configuration management. 

(3) An aggregation of hardware, software or both that satisfies an end 
user function and is designated for separate configuration management 
by the acquirer. 

Configuration Management The process of identifying and defining the configuration items in a 
system, controlling the release and change of these items throughout 
the system life cycle, recording and reporting the status of 
configuration items and change requests, and verifying the 
completeness and correctness of configuration items. 

Control Path The logical sequence of flow of a control or command message from 
the source to the implementing effector or function.  A control path 
may cross boundaries of two or more computers. 

Controlling Application The lower level application software that controls the particular 
function and its sensors and detectors. 

Controlling Executive The upper level software executive that serves as the overseer of the 
entire system including the lower level software. 

COTS Commercial-off-the-shelf.  This refers primarily to commercial 
software purchased for use in a system.  COTS can include operating 
systems, libraries, development tools, as well as complete applications.  
The level of documentation varies with the product.  Analyses and test 
results are rarely available.  These products are market driven, and 
usually contain known bugs. 

Coupling DeMarco: Coupling is a measure of the interdependence of modules  
The manner and degree of interdependence between software modules.  
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Types include common-environment coupling, content coupling, 
control coupling, data coupling, hybrid coupling, and pathological 
coupling. 

Coverage A measure of achieving a complete assessment.  100% coverage is 
every one of the type specified, e.g. in the situation of test coverage, an 
assessment of 100% decision coverage is achieved when every one of 
the decisions in the software has been exercised. 

Coverage Analysis   An analysis of the degree(s) of coverage assessed. 

Credible Failure A condition that has the potential of occurring based on actual failure 
modes in similar systems. 

Critical Design Review (CDR) A review conducted to verify that the detailed design of one or more 
configuration items satisfy specified requirements; to establish the 
compatibility among configuration items and other items of equipment, 
facilities, software, and personnel; to assess risk areas for each 
configuration item; and, as applicable, to assess the results of the 
producibility analyses, review preliminary hardware product 
specifications, evaluate preliminary test planning, and evaluate the 
adequacy of preliminary operation and support documents. (IEEE 
Standard 610.12-1990) 

For Computer Software Configuration Items (CSCIs), this review will 
focus on the determination of the acceptability of the detailed design, 
performance, and test characteristics of the design solution, and on the 
adequacy of the operation and support documents. 

Critical Hazard A hazard which could result in a severe injury or temporary disability, 
damage to high-value equipment, or environmental damage.  

Critical Software Command A command that either removes a safety inhibit or creates a hazardous 
condition or state. - See also Hazardous Command. 

Database A collection of related data stored in one or more computerized files in 
a manner that can be accessed by users or computer programs via a 
database management system. 

Data Flow Diagram   DFD and CFD diagrams are a graphical representation 
Control Flow Diagram   of a system under the Structured Analysis/Structured 
(DFD-CFD) Design methodology.  Control Flow Diagrams represent the flow of 

control signals in the system, while Data Flow Diagrams represent the 
flow of data. 

 

Deactivated Code (1) A software program or routine or set of routines, which were 
specified, developed and tested for one system configuration and are 
disabled for a new system configuration.  The disabled functions(s) is 
(are) fully tested in the new configuration to demonstrate that if 
inadvertently activated the function will result in a safe outcome within 
the new environment. 

(2) Executable code (or data) which by design is either (a) not intended 
to be executed (code) or used (data), or (b) which is only executed 
(code) or used (data) in certain configurations of the target system. 

Dead Code (1) Dead Code is code (1) unintentionally included in the baseline, (2) 
left in the system from an original software configuration, not erased or 
overwritten and left functional around it, or (3) deactivated code not 
tested for the current configuration and environment. 
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(2) Executable code (or data) which, as a result of design, maintenance, 
or installation error cannot be executed (code) or used (data) in any 
operational configuration of the target system and is not traceable to a 
requirement (e.g., embedded identifier is OK) 

Deadlock A situation in which computer processing is suspended because two or 
more devices or processes are each awaiting resources assigned to the 
other. (IEEE Standard 610.12-1990) 

Debug The process of locating and eliminating errors that have been shown, 
directly or by inference, to exist in software. 

Degree of Demonstration Extent to which evidence is produced to provide confidence that 
specified requirements are fulfilled (ISO 8402, 4.5).  Note the extent 
depends on criteria such as economics, complexity, innovation, safety 
and environmental considerations. 

Developer The organization required to carry out the requirements of this standard 
and the associated contract.  The developer may be a contractor or a 
Government agency. 

Development Configuration The requirements, design and implementation that define a particular 
version of a system or system component. 

Document/Documentation A collection of data, regardless of the medium on which it is recorded, 
that generally has permanence and can be read by  humans or 
machines. 

Dormant Code Similar to dead code, it is software instructions that are included in the 
executable but not meant to be used.  Dormant code is usually the result 
of COTS or reused software that include extra functionality over what 
is required.  

Dynamic allocation   Dynamic allocation is the process of requesting to the 
operating system memory storage for a data structure that is used when 
required by the application program's logic.  Successful allocation of 
memory (if memory space is available) may be from the task's heap 
space. 

Emulator A combination of computer program and hardware that mimic the 
instruction and execution of another computer or system. 

Environment (1) The aggregate of the external procedures, conditions and objects 
that affect the development, operation and maintenance of a system. 

(2) Everything external to a system which can affect or be affected by 
the system. 

Error (1) Mistake in engineering, requirement specification, or design. 

(2) Mistake in design, implementation or operation which could cause a 
failure. 

Error Handling An implementation mechanism or design technique by which software 
faults are detected, isolated and recovered to allow for correct runtime 
program execution. 

Exception Exception is an error situation that may arise during program execution.  
To raise an exception is to abandon normal program execution to signal 
that the error has taken place. 

Fail-Safe (1) Ability to sustain a failure and retain the capability to safely 
terminate or control the operation. 
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(2) A design feature that ensures that the system remains safe or will 
cause the system to revert to a state which will not cause a mishap. 

Failure The inability of a system or component to perform its required 
functions within specified performance requirements. (IEEE Standard 
610.12-1990) 

Failure Tolerance The ability of a system or subsystem to perform its function(s) or 
maintain control of a hazard in the presence of failures within its 
hardware, firmware, or software. 

Fault Any change in state of an item that is considered to be anomalous and 
may warrant some type of corrective action. Examples of faults 
included device errors reported by Built-In Test (BIT)/Built-In Test 
Equipment (BITE), out-of-limits conditions on sensor values, loss of 
communication with devices, loss of power to a device, communication 
error on bus transaction, software exceptions (e.g., divide by zero, file 
not found), rejected commands, measured performance values outside 
of commanded or expected values, an incorrect step, process, or data 
definition in a computer program, etc.  Faults are preliminary 
indications that a failure may have occurred. 

Fault Detection A process that discovers or is designed to discover faults; the process of 
determining that a fault has occurred. 

Fault Isolation    The process of determining the location or source of a fault. 

Fault Recovery A process of elimination of a fault without permanent reconfiguration. 

Fault Tree A schematic representation, resembling an inverted tree, of possible 
sequential events (failures) that may proceed from discrete credible 
failures to a single undesired final event (failure).  A fault tree is 
created retrogressively from the final event by deductive logic. 

Finite State Machine Also known as: Requirements State Machine, State of Finite 
Automation Transition Diagram. 

A model of a multi-state entity, depicting the different states of the 
entity, and showing how transitions between the states can occur.  A 
finite state machine consists of: 

1. A finite set of states 

2. A finite set of unique transitions. 

Firmware Computer programs and data loaded in a class of memory that cannot 
be dynamically modified by the computer during processing (e.g. 
ROM). 

Flight Hardware Hardware designed and fabricated for ultimate use in a vehicle intended 
to fly. 

Formal Methods (1) The use of formal logic, discrete mathematics, and  
System machine-readable languages to specify and verify software. 
 

(2) The use of mathematical techniques in design and analysis of the 
system. 

 

Formal Verification (For Software) The process of evaluating the products of a given phase 
using formal mathematical proofs to ensure correctness and consistency 
with respect to the products and standards provided as input to that 
phase. 
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GOTS Government-off-the-shelf.  This refers to government created software, 
usually from another project.  The software was not created by the 
current developers (see reused software).  Usually, source code is 
included and all available documentation, including test and analysis 
results. 

Graceful Degradation (1) A planned stepwise reduction of function(s) or performance as a 
result of failure, while maintaining essential function(s) and 
performance. 

(2) The capability of continuing to operate with lesser capabilities in 
the face of faults or failures or when the number or size of tasks to be 
done exceeds the capability to complete. 

Graph theory An abstract notation that can be used to represent a machine that 
transitions through one or more states. 

Ground Support Equipment (GSE) Ground-based equipment used to store, transport, handle, test, check 
out, service, and/or control aircraft, launch vehicles, spacecraft, or 
payloads. 

Hardware Configuration Item  An aggregation of a hardware device and computer  
(HWCI) instructions and/or computer data that reside as read-only software on a 

hardware device. 

Hazard     The presence of a potential risk 
situation caused by an unsafe act or condition.  A condition or changing 
set of circumstances that presents a potential for adverse or harmful 
consequences; or the inherent characteristics of any activity, condition 
or circumstance which can produce adverse or harmful consequences. 

Hazard Analysis The determination of potential sources of danger and recommended 
resolutions in a timely manner for those conditions found in either the 
hardware/software systems, the person/machine relationship, or both, 
which cause loss of personnel capability, loss of system, loss of life, or 
injury to the public. 

Hazard Cause A component level Fault or failure which can increase the risk of, or 
result in a hazard. 

Hazard Control Design or operational features used to reduce the likelihood of 
occurrence of a hazardous effect. 

Hazardous Command A command whose execution (including inadvertent, out-of-sequence, 
or incorrectly executed) could lead to an identified critical or 
catastrophic hazard, or a command whose execution can lead to a 
reduction in the control of a hazard (including reduction in failure 
tolerance against a hazard or the elimination of an inhibit against a 
hazard). 

Hazardous State    A state that may lead to an unsafe state. 

Hazard Report The output of a hazard analysis for a specific hazard which documents 
the hazard title, description, causes, control, verification, and status. 

Hazard Risk Index A combined measure of the severity and likelihood of a hazard. See 
Table in Section 2. 

Hazard Severity An assessment of the consequences of the worst credible mishap that 
could be caused by a specific hazard. 

Higher Order Logic A functional language for specifying requirements, used in Formal 
Methods. 
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Independent Assessment (IA) A formal process of assessing (auditing) the development, verification, 
and validation of the software.  An IA does not perform those functions 
(as in IV&V), but does evaluate how well the project did in carrying 
them out. 

Independent Inhibit Two inhibits are independent if no SINGLE failure, error, event, or 
environment can eliminate more than one inhibit.  Three inhibits are 
independent if no TWO failures, errors, events or environments (or any 
pair of one of each) can eliminate more than two inhibits. 

Independent Verification and Validation A process whereby the products of the software development 
(IV & V) life cycle phases are independently reviewed, verified, and validated by 

an organization that represents the acquirer of the software and is 
completely independent of the provider. 

Inhibit A design feature that provides a physical interruption between an 
energy source and a function (e.g., a relay or transistor between a 
battery and a pyrotechnic initiator, a latch valve between a propellant 
tank and a thruster, etc.). 

Interface  In software development, a relationship among two or more entities 
(such as CSCI-CSCI, CSCI-HWCI, CSCI-User or software 
unit-software unit) in which the entities share, provide or exchange 
data.  An interface is not a CSCI, software unit or other system 
component; it is a relationship among them. 

Interface Hazard Analysis Evaluation of hazards which cross the interfaces between a specified 
set of components, elements, or subsystems. 

Interlock Hardware or software function that prevents succeeding operations 
when specific conditions exist. 

Life Cycle The period of time that starts when a software product is conceived and 
ends when the software is no longer available for use.  The software 
life cycle traditionally has eight phases: Concept and Initiation; 
Requirements; Architectural Design; Detailed Design; Implementation; 
Integration and Test; Acceptance and Delivery; and Sustaining 
Engineering and Operations. 

Machine Code Low level language Computer software, usually in binary notation, 
unique to the processor object in which it is executed.  The same as 
object code. 

Maintainability The ability of an item to be retained in or restored to specified 
condition when maintenance is performed by personnel having 
specified skill levels, using  prescribed procedures, resources and 
equipment at each prescribed level of maintenance and repair. 

Moderate Hazard A hazard whose occurrence would result in minor occupational injury 
or illness or property damage. 

Memory Integrity The assurance that the computer program or data is not altered or 
destroyed inadvertently or deliberately. 

Mishap An unplanned event or series of events that results in death, injury, 
occupational illness, or damage to or loss of equipment, property, or 
damage to the environment; an accident. 

Must Work Function “Must work” functions are those aspects of the system that have to 
work in order to for it to function correctly.   
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Must Not Work Function “Must not work” functions are aspects of the system that should not 
occur, if the system is functioning correctly.  If they do occur, they 
could lead to a hazardous situation or other undesired outcome. 

N-Version Software Software developed in two or more versions using different 
specifications, programmers, languages, platforms, compilers, or 
combinations of some of these.  This is usually an attempt to achieve 
independence between redundant software items.  Research has shown 
that this method usually does not achieve the desired reliability, and it 
is no longer recommended. 

Negative Testing Software Safety Testing to ensure that the software will not go to a 
hazardous state or generate outputs that will create a hazard in the 
system in response to out of bound or illegal inputs. 

Negligible Hazard Probably would not affect personnel safety (no or minor injury) or 
damage high-value equipment.  Equipment may be stressed.  Such 
hazards are a violation of specific criteria, rather than a major safety 
concern..  

No-Go Testing Software Safety Testing to ensure that the software performs known 
processing and will go to a known safe state in response to specific 
hazardous situations. 

Object Code  Low level language Computer software, usually in binary notation, 
unique to the processor object in which it is executed.  The same as 
machine code. 

Objective Evidence  Information which can be proved true, based on facts obtained through 
observation, measurement, test or other means. 

Operator Error An inadvertent action by an operator that could eliminate, disable, or 
defeat an inhibit, redundant system, containment feature, or other 
design features that is provided to control a hazard. 

Override The forced bypassing of prerequisite checks on the operator-
commanded execution of a function.  Execution of any command 
(whether designated as a “hazardous command” or not) as an override 
is considered to be a hazardous operation requiring strict procedural 
controls and operator safing. (ISS) 

Patch (1) A modification to a computer sub-program that is separately 
compiled inserted into machine code of a host or parent program.  This 
avoids modifying the source code of the host/parent program.  
Consequently the parent/host source code no longer corresponds to the 
combined object code. 

(2) A change to machine code (object code) representation of a 
computer program and by-passing the compiler 

Path The logical sequential structure that the program must execute to obtain 
a specific output. 

Peer Review An overview of a computer program presented by the author to others 
working on similar programs in which the author must defend his 
implementation of the design. 

Note: A phase does not imply the use of any specific life-cycle model, 
nor does it imply a period of time in the development of a software 
product. 

Predicate Predicate is any expression representing a condition of the system. 
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Preliminary Design Review (PDR) A review conducted to evaluate the progress, technical adequacy, and 
risk resolution of the selected design approach for one or more 
configuration items; to determine each design's compatibility with the 
requirements for the configuration item; to evaluate the degree of 
definition and assess the technical risk associated with the selected 
manufacturing methods and processes; to establish the existence and 
compatibility of the physical and functional interfaces among the 
configuration items and other items of equipment, facilities, software, 
and personnel; and as appropriate, to evaluate the preliminary operation 
and support documents. (IEEE Standard 610.12-1990) 

For CSCIs, the review will focus on: 

(1) the evaluation of the progress, consistency, and technical adequacy 
of the selected architectural design and test approach,  

 

(2) compatibility between software requirements and architectural 
design, and  

(3) the preliminary version of the operation and support documents. 

Preliminary Hazard Analysis (PHA) Analysis performed at the system level to identify safety-critical areas, 
to provide an initial assessment of hazards, and to identify requisite 
hazard controls and follow-on actions. 

Program Description Language (PDL) PDL is used to describe a high level design that is an intermediate step 
before actual code is written. 

Redundancy Provision of additional functional capability (hardware and associated 
software) to provide at least two means of performing the same task. 

Regression Testing The testing of software to confirm that functions, that were previously 
performed correctly, continue to perform correctly after a change has 
been made. 

Reliability The probability of a given system performing its mission adequately for 
a specified period of time under the expected operating conditions. 

Rendezvous A rendezvous is the interaction that occurs between two parallel tasks 
when one task has called an entry of the other task, and a corresponding 
accept statement is being executed by the other task on behalf of the 
calling task. 

Requirement(s) (1) Condition or capability needed by a user to solve a problem or 
achieve an objective. 

(2) Statements describing essential, necessary or desired attributes. 

Requirements, Derived (1) Essential, necessary or desired attributes not explicitly documented, 
but logically implied by the documented requirements. 

(2) Condition or capability needed, e.g. due to a design or technology 
constraint, to fulfill the user's requirement(s). 

Requirements, Safety Those requirements which cover functionality or capability associated 
with the prevention or mitigation of a hazard. 

Requirement Specification Specification that sets forth the requirements for a system or system 
component. 

Requirements State Machine  See Finite State Machine 
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Reusable Software A software product developed for one use but having other uses, or one 
developed specifically to be usable on multiple project or in multiple 
roles on one project.  Examples include, but are not limited to, 
commercial-off-the-shelf software (COTS) products, acquirer-furnished 
software products, software products in reuse libraries, and pre-existing 
developer software products.  Each use may include all or part of the 
software product and may involve its modification.  This term can be 
applied to any software product (for example, requirements, 
architectures, etc.), not just to software itself. 

Reused Software This is software previously written by an in-house development team 
and used on a different project.  GOTS software would come under this 
category if it is supplied to another government project.  Because this 
software was verified and validated for a previous project, it is often 
assumed to work correctly in the new system.  Each piece of reused 
software should be thoroughly analyzed for its operation in the new 
system.  Remember the problems when the Ariane 4 software was used 
in Ariane 5! 

Risk (1) As it applies to safety, exposure to the chance of injury or loss.  It is 
a function of the possible frequency of occurrence of the undesired 
event, of the potential severity of resulting consequences, and of the 
uncertainties associated with the frequency and severity. 

(2) A measure of the severity and likelihood of an accident or mishap. 

(3) The probability that a specific threat will exploit a particular 
vulnerability of the system. 

Safe (Safe State) (1) The state of a system defined by having no identified hazards 
present and no active system processes which could lead to an 
identified hazard. 

 (2) A general term denoting an acceptable level of risk, relative 
freedom from and low probability of: personal injury; fatality; loss or 
damage to vehicles, equipment or facilities; or loss or excessive 
degradation of the function of critical equipment. 

Safety     Freedom from hazardous conditions. 

Safety Analysis A systematic and orderly process for the acquisition and evaluation of 
specific information pertaining to the safety of a system. 

Safety Architectural Design Analysis Analysis performed on the high-level design to verify the  

(SADA) correct incorporation of safety requirements and to analyze the Safety-
Critical Computer Software Components (SCCSCs). 

Safety-Critical Those software operations that, if not performed, performed out-of 
sequence, or performed incorrectly could result in improper control 
functions (or lack of control functions required for proper system 
operation) that could directly or indirectly cause or allow a hazardous 
condition to exist. 

Safety-Critical Computer Software Those computer software components (processes, modules,  
Component (SCCSC) functions, values or computer program states) whose errors (inadvertent 

or unauthorized occurrence, failure to occur when required, occurrence 
out of sequence, occurrence in combination with other functions, or 
erroneous value) can result in a potential hazard, or loss of 
predictability or control of a system. 

Safety-Critical Computing System A computing system containing at least one Safety-Critical Function. 
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Safety-Critical Computing  Those computer functions in which an error can result in a potential 
hazard to the user, friendly forces, materiel, third parties or the 
environment. 

Safety-Critical Software   Software that: 

(1) Exercises direct command and control over the condition or state of 
hardware components; and, if not performed, performed out-of-
sequence, or performed incorrectly could result in improper control 
functions (or lack of control functions required for proper system 
operation), which could cause a hazard or allow a hazardous condition 
to exist. 

(2) Monitors the state of hardware components; and, if not performed, 
performed out-of-sequence, or performed incorrectly could provide 
data that results in erroneous decisions by human operators or 
companion systems that could cause a hazard or allow a hazardous 
condition to exist.  

(3) Exercises direct command and control over the condition or state of 
hardware components; and, if performed inadvertently, out-of-
sequence, or if not performed, could, in conjunction with other human, 
hardware, or environmental failure, cause a hazard or allow a 
hazardous condition to exist. 

Safety Detailed Design Analysis (SDDA) Analysis performed on Safety-Critical Computer Software Components 
to verify the correct incorporation of safety requirements and to 
identify additional hazardous conditions. 

Safety Kernel An independent computer program that monitors the state of the system 
to determine when potentially unsafe system states may occur or when 
transitions to potentially unsafe system states may occur.  The Safety 
Kernel is designed to prevent the system from entering the unsafe state 
and return it to a known safe state. 

Safing The sequence of events necessary to place systems or portions thereof 
in predetermined safe conditions. 

Sensor     A transducer that delivers a signal for input processing.  

Separate Control Path A control path which provides functional independence to a command 
used to control an inhibit to an identified critical or catastrophic hazard. 

Software    (1) Computer programs and computer databases. 

Note: although some definitions of software include documentation, 
MIL-STD-498 limits the definition to programs and computer 
databases in accordance with Defense Federal Acquisition Regulation 
Supplement 227.401 (MIL-STD-498). 

(2) Organized set of information capable of controlling the operation of 
a device. 

Software Assurance (SA) The process of verifying that the software developed meets the quality, 
safety, reliability, security requirements as well as technical and 
performance requirements.  Assurance looks at both the process used to 
develop the software and the analyses and tests performed to verify the 
software.  Software Quality Assurance (SQA) and Software Product 
Assurance (SPA) are sometimes used interchangeably with Software 
Assurance. 

Software Controllable Inhibit A system-level hardware inhibit whose state is controllable by software 
commands. 
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Software Error The difference between a computed, observed or measured value or 
condition and the true, specified or theoretically correct value or 
condition. 

 

Software Fault An incorrect step, process or data definition in a computer system. 

Software Inhibit A software or firmware feature that prevents a specific event function 
from occurring or a specific function from being available.  The 
software may be resident in any medium.  (A software inhibit is not in 
itself an "inhibit" in the sense of providing a physical interrupt between 
an energy source and a function.) 

Software Partitioning Separation, physically and/or logically, of (safety-critical) functions 
from other functionality. 

Software Requirements Review (SRR) A review of the requirements specified for one or more software 
configuration items to evaluate their responsiveness to and 
interpretation of system requirements and to determine whether they 
form a satisfactory basis for proceeding into a preliminary 
(architectural) design of configuration items. (IEEE Standard 610.12-
1990) 

Same as Software Specification Review for MIL-STD-498. 

Software Requirements Specification Documentation of the essential requirements (functions, 
(SRS) performance, design constraints, and attributes) of the software and its 

external interfaces.  (IEEE Standard 610.12-1990) 

Software Safety Requirements Analysis Analysis performed to examine system and software 
(SSRA) requirements and the conceptual design in order to identify unsafe 

modes for resolution, such as out-of-sequence, wrong event, 
deadlocking, and failure-to-command modes. 

Software Specification Review (SSR) Same as Software Requirements Review. 

Software Safety The application of the disciplines of system safety engineering 
techniques throughout the software life cycle to ensure that the 
software takes positive measures to enhance system safety and that 
errors that could reduce system safety have been eliminated or 
controlled to an acceptable level of risk. 

Software Safety Engineering The application of System Safety Engineering techniques to software 
development in order to ensure and verify that software design takes 
positive measures to enhance the safety of the system and eliminate or 
control errors which could reduce the safety of the system. 

System Safety Application of engineering and management principles, criteria, and 
techniques to optimize safety and reduce risks within the constraints of 
operational effectiveness, time, and cost throughout all phases of the 
system life cycle. 

Software Specification Review (SSR) Same as Software Requirements Review 

State Transition Diagram (See also Finite State Machine).  Directed graph used in many Object 
Oriented methodologies, in which nodes represent system states and 
arcs represent transitions between states. 

System A set of components which interact to perform some function or set of 
functions. 

System Safety Application of engineering and management principles, criteria, and 
techniques to optimize safety and reduce risks within the constraints of 
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operational effectiveness, time, and cost throughout all phases of the 
system life cycle. 

 

System Safety Engineering An engineering discipline requiring specialized professional knowledge 
and skills in applying scientific and engineering principles, criteria, and 
techniques to identify and eliminate hazards, or reduce the associated 
risk. 

System Safety Management A management discipline that defines system safety program 
requirements and attempts to ensure the planning, implementation and 
accomplishment of system safety tasks and activities consistent with 
the overall program requirements. 

System Specification   Document stating requirements for the system. 

Test Case A set of test inputs, execution conditions and expected results used to 
determine whether the expected response is produced. 

Testing The process of executing a series of test cases and evaluating the 
results. 

Test Procedure    (1) Specified way to perform a test. 

(2) Detailed instructions for the set-up and execution of a given set of 
test cases and instructions for the evaluation of results executing the 
test cases. 

Test Readiness Review (TRR) A review conducted to evaluate preliminary test results for one or more 
configuration items; to verify that the test procedures for each 
configuration item are complete, comply with test plans and 
descriptions, and satisfy test requirements; and to verify that a project is 
prepared to proceed to formal test of the configuration items.  (IEEE 
Standard 610.12-1990) 

Test, Stress For software, this is testing by subjecting the software to extreme 
external conditions and anomalous situations in which the software is 
required to perform correctly. 

Test, System A set of tests on the complete system.  Includes load, stress, 
performance, functionality, and other tests. 

Time to Criticality The time between the occurrence of a failure, event or condition and 
the subsequent occurrence of a hazard or other undesired outcome. 

Traceability Traceability for software refers to documented mapping of 
requirements into the final product, through all development life cycles. 

Transition A transition is when an input causes a state machine to change state. 

Trap Software feature that monitors program execution and critical signals to 
provide additional checks over and above normal program logic.  Traps 
provide protection against undetected software errors, hardware faults, 
and unexpected hazardous conditions. 

Trigger Triggers are one or more conditions that when all are true enable a 
specific action to take place. 

Type (As used in software design).  A type characterizes both a set of values 
and a set of operations applicable to those values.  Typing of variables 
can be strong or weak.  Strong typing is when only defined values of a 
variable and defined operations are allowed.  Weak typing refers to 
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when the restrictions that are applied are very loose (i.e. a declaration 
of type integer with no range or operation definition). 

Undocumented Code Software code that is used by the system but is not documented in the 
software design.  Usually this pertains to Commercial Off-the-Shelf 
Software(COTS) because the documentation is not always available. 

Unified Modeling Language UML is the defacto standard for modeling object-oriented software.  It 
consists of a graphical notation for class definition and interaction. 

Unit Test Test performed on a software “unit” – usually a coherent, self-
contained set of modules, classes, or other components.  A Unit may 
correspond to a CSCI.  Unit testing is often performed by the 
developer. 

Unsafe State    A system state that may result in a mishap. 

Unused Code Software code that resides in the software that is not intended for use 
during nominal or contingency situation.  Examples are test code, 
no-oped coded (code that is bypassed), and code that is retained by not 
being used from one operational increment to the next. 

Validation (1) An evaluation technique to support or corroborate safety 
requirements to ensure necessary functions are complete and traceable. 

(2) The process of evaluating software at the end of the software 
development process to ensure compliance with software requirements. 

(3) Confirmation by examination and provision of objective evidence 
that the particular requirements for a specific use are fulfilled (for 
software).  The process of evaluating software to ensure compliance 
with specified. 

(4) The process of determining whether the system operates correctly 
and executes the correct functions. 

Verification (1) The process of determining whether the products of a given phase 
of the software development cycle fulfill the requirements established 
during the previous phase(s) (see also validation). 

(2) Formal proof of program correctness. 

(3) The act of reviewing, inspecting, testing, checking, auditing, or 
otherwise establishing and documenting whether items, processes, 
services, or documents conform to specified requirements. 

(4) Confirmation by examination and provision of objective evidence 
that specified requirements have been fulfilled (for software).  

(5) The process of evaluating the products of a given phase to 
determine the correctness and consistency of those products with 
respect to the products and standards provided as input to that phase. 

Waiver A variance that authorizes departure from a particular safety 
requirement where alternate methods are employed to mitigate risk or 
where an increased level of risk has been accepted by management. 

Watchdog Timer An independent, external timer that ensures the computer cannot enter 
an infinite loop.  Watchdog timers are normally reset by the computer 
program.  Expiration of the timer results in generation of an interrupt, 
program restart, or other function that terminates current program 
execution. 

 

NASA-GB-8719.13 311  



B.2 Acronyms 
 
Acronym Term 
 
BIT      Built-In Test 
BITE      Built-In Test Equipment 
C&W      Caution and Warning 
CASE      Computer Aided Software Engineering 
CDR      Critical Design Review 
CFD      Control Flow Diagram 
COTS      Commercial Off-the-Shelf 
CSA      Code Safety Analysis 
CSC      Computer Software Component 
CSCI      Computer Software Configuration Item 
CSU      Computer Software Unit 
DFD      Data Flow Diagram 
DID      Data Item Description 
DLA      Design Logic Analysis 
DoD      Department of Defense 
FDIR      Fault Detection, Isolation, and Recovery 
FI      Formal Inspection 
FMEA      Failure Modes and Effects Analysis 
FQR      Formal Qualifications Review 
FTA      Fault Tree Analysis 
GFE      Government Furnished Equipment 
GOTS      Government Off-the-Shelf 
GSE      Ground Support Equipment 
HCI      Human-Computer Interface 
HOL      Higher Order Logic 
HRI      Hazard Risk Index 
IA      Independent Assessment 
ICD      Interface Control Document 
IEEE      Institute of Electrical and Electronics Engineers 
IOS      International Organization for Standardization 
ISO      from the Greek root isos meaning equal or standard (not an acronym).  ISO 

standards are published by IOS 
ISS      International Space Station 
IV&V      Independent Verification and Validation 
JPL      Jet Propulsion Laboratory, Pasadena, California 
MIL-STD     Military Standard 
MNWF      Must Not Work Function 
MWF      Must Work Function 
NDI      Non-Developmental Item 
NHB      NASA Handbook 
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NDS      Non-Developmental Software 
NMI      NASA Management Instruction 
NPD      NASA Policy Directive 
NPG      NASA Procedures and Guidelines 
NSTS      National Space Transportation System 
OO      Object Oriented 
OOA      Object Oriented Analysis 
OOD      Object Oriented Development 
OTS      Off the Shelf 
QA      Quality Assurance 
PDL      Program Description Language 
PHA      Preliminary Hazard Analysis 
PLC      Programmable Logic Controller 
PLD      Programmable Logic Device 
POCC      Payload Operations Control Center 
POST      Power On Self Test 
ROM      Read Only Memory 
S&MA      Safety and Mission Assurance 
SA      Software Assurance 
SADA      Safety Architectural Design Analysis 
SCCSC     Safety-critical Computer Software Component 
SDDA      Safety Detailed Design Analysis 
SEE      Software Engineering Environment 
SIS      Software Interface Specification 
SFMEA     Software Failure Modes and Effects Analysis 
SFTA      Software Fault Tree Analysis 
SPA      Software Product Assurance  
SQA      Software Quality Assurance  
SRD      Software Requirements Document 
SRR      Software Requirements Review 
SRS      Software Requirements Specifications 
SSHA      Software Subsystem Hazard Analysis 
SSR      Software Specification Review 
SSRA      Software Safety Requirements Analysis 
TRR      Test Readiness Review 
UML      Unified Modeling Language 
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Appendix C Software Fault Tree Analysis (SFTA) 
This section is provided to assist systems safety engineers and software developers with an 
introductory explanation of the Software Fault Tree Analysis technique.  Most of the information 
presented in this entry is derived from Leveson et al. [41]. 

It is possible for a system to meet requirements for a correct state and be unsafe.  It is 
unlikely that developers will be able to identify, prior to the fielding of the system, all correct but 
unsafe states which could occur within a complex system.  In systems where the cost of failure is 
high, special techniques or tools such as Fault Tree Analysis (FTA) need to be used to ensure 
safe operation.  FTA can provide insight into identifying unsafe states when developing safety-
critical systems.  Fault trees have advantages over standard verification procedures.  Fault trees 
provide the focus needed to give priority to catastrophic events, and they assist in determining 
environmental conditions under which a correct or incorrect state becomes unsafe. 

FTA was originally developed in the 1960's for safety analysis of the Minuteman missile system. 
It has become one of the most widely used hazard analysis techniques.  In some cases FTA 
techniques may be mandated by civil or military authorities. 

C.1 Software Fault Tree Analysis Description 
A Fault Tree Analysis (FTA) is a top-down approach to failure analysis that starts with an 
undesirable event, such as a failure or mishap/accident or malfunction, and then determining all 
the ways it can happen.  Fault Trees are often used to look at the hardware aspects of the system 
for possible failure modes.  Traditionally, Fault Trees did not consider software or operations as 
possible causes of events. 

A Software Fault Tree Analysis (SFTA) uses the same techniques to look at the software failures 
that could cause a hazard.  It is a system for identifying causes of hazards, but not the hazards 
themselves.  That should have been done previously in the Preliminary Hazard Analysis (section 
2.3.1) or in the hardware FTA.  Like the standard FTA, the SFTA is a systematic top down 
deductive approach to risk analysis within which specific software failure modes are 
hypothesized.  The task is to identify all possible software events that can lead up to a failure 
mode.  Like the FTA, SFTAs use a deductive approach to identify critical paths and provide 
minimal sets of states or critical paths which will lead to the top event. 

A software FTA is a little trickier than strict hardware FTA.  Software operates in many modes 
or states.  It performs different functions at different times.  There may be a lot more of inhibits 
and conditioning events when mapping a Software Fault Tree. 

A sample fault tree is shown in Figure C- 2 “Example of High Level Fault Tree”.  Note that 
much of the diagram is hardware related.  Software Fault Trees will often include hardware 
elements.  The actual hazards are a result of a hardware failure of some sort.  Software can only 
cause the hazard through its interactions with the hardware.  When tracing through the tree of 
causes, hardware-only causes are “non-primal” and ignored. 

C.2 Goal of Software Fault Tree Analysis 
SFTA is a technique to analyze the safety of a software design.  The goal of SFTA is to show 
that the logic in a software design or in an implementation (actual code) will not produce a 
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hazard.  The design or code should be modified to compensate for those failure conditions 
deemed hazardous threats to the system.  In this manner, a system with safer operational 
characteristics is produced.  SFTAs are most practical to use when we know that the system has 
relatively few states that are hazardous 

Developers typically use forward inference to design a system.  That is, their analysis focuses on 
generating a next state from a previously safe state.  The software is developed with key 
assumptions about the state of the system prior to entering the next state.  In complex systems 
that rely on redundancy, parallelism, or fault tolerance, it may not be feasible to go exhaustively 
through the assumptions for all cases. 

The SFTA technique provides an alternative perspective that uses backward inference.  The 
experience from projects that have employed SFTA shows that this change of perspective is 
crucial to the issue of finding safety errors.  The analyst is forced to view the system from a 
different perspective, one that makes finding errors more apparent. 

SFTA is very useful for determining the conditions under which fault tolerance and fail safe 
procedures should be initiated.  The analysis can help guide safety engineers in the development 
of safety-critical test cases by identifying those areas most likely to cause a hazard.  On larger 
systems, this type of analysis can be used to identify safety-critical software components, if they 
have not already been identified. 

SFTA is language independent and can be applied to any programming language (high level or 
low level) as long as the semantics are well defined.  The SFTA is an axiomatic verification 
where the postconditions describe the hazard rather than the correctness condition.  This analysis 
shows that, if the weakest precondition is false, the hazard or postcondition can never occur and 
conversely, if the precondition is true, then the program is inherently unsafe and needs to be 
changed. 

Software fault trees should not be reviewed in isolation from the underlying hardware, because 
to do so would deny a whole class of interface and interaction problems.  Simulation of human 
failure such as operator mistakes can also be analyzed using the SFTA technique. 

The symbols used for the graphical representation of the SFTA have largely been borrowed from 
the hardware fault tree set (see Figure C-1 - SFTA Graphical Representation Symbols).  This 
facilitates the linking of hardware and software fault trees at their interfaces to allow the entire 
system to be analyzed. 

The SFTA makes no claim as to the reliability of the software.  When reusing older components, 
a new safety analysis is necessary because the fundamental safety assumptions used in the 
original design must be validated in the new environment.  The assertion that highly reliable 
software is safe is not necessarily true.  In fact, safety and reliability at times run counter to each 
other.  An example of this conflict can be found in the actual experience of air traffic controllers 
from the U.S. who attempted to port an air traffic control software application from the U.S. to 
Britain.  The U.S. software had proved to be very reliable but certain assumptions had been made 
about longitude (i.e., no provision for both east and west coordinates) that caused the map of 
Britain to fold in half at the Greenwich meridian). 

SFTA is not a substitute for the integration and test procedures that verify functional system 
requirements.  The traditional methods that certify that requirements are correct and complete 
will still need to be used.  The SFTA helps provide the extra assurance that is required of 
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systems that are either safety-critical or very costly by verifying that safety axioms have been 
implemented through a rigorous analysis of those software components that are responsible for 
the safety controls of the system. 

C.3 Use of Software Fault Tree Analysis 
Any SFTA must be preceded by a hazard analysis of the entire system.  The information in the 
hazard analysis identifies those undesired events in the system that can cause serious 
consequences.  It should be noted that in complex systems not all hazards can be predetermined.  
In this respect the technique does not claim to produce consistent results irrespective of the 
analyst.  It is dependent on the judgment of the individual as to when to stop the process and 
which hazards to analyze. 

The SFTA can be used at different stages of the software life cycle, beginning at the software 
requirements phase.  At that early stage, only the bare minimum of the software will be defined, 
though the system will usually have a preliminary design.  Only a very high-level SFTA will be 
able to be performed.  However, as the software design progresses, and the code is developed, 
the SFTA can be “fleshed out” with the new information.  High-level blocks can be broken down 
into specific components (modules, classes, methods, etc.).   

The basic procedure in an SFTA is to assume that the hazard has occurred and then to determine 
its set of possible causes.  The technique is useless if one starts with the overly generalized 
hazard "system fails".  A more specific failure, such as those identified from the earlier hazard 
analysis, has to be the starting point for the analysis.  The hazard is the root of the fault tree and 
its leaves are the necessary preconditions for the hazard to occur.  These preconditions are listed 
in the fault tree and connected to the root of the tree via a logical AND or logical OR of the 
preconditions (see Figure C- 3 - Example of High Level Fault Tree).  In turn, each one of the 
preconditions is expanded in the same fashion as the root fault (we identify the causes of each 
precondition).  The expansion continues until all leaves describe events of computable 
probability or the event cannot be analyzed further.  The analysis also stops when the 
precondition is a hardware malfunction that has no dependency on software. 

The fault tree is expanded from the specified system level failure to the software interface level 
where we have identified the software outputs or lack of them that can adversely affect system 
operation.  At this stage the analysis begins to take into account the behavior specific to the 
language.  The language constructs can be transformed into templates using preconditions, 
postconditions and logical connectives.  (For templates of Ada constructs, see Leveson et al. 
[41].) All the critical code must be traced until all conditions are identified as true or false or an 
input statement is reached. 

The technique will be illustrated with an example using a Pascal like language [40].  The code 
will be analyzed for the occurrence of the variable Z being output with a value greater than 100.  
We should assume B, X, Z are integers. 

 While B>Xdo 

begin B :=B- 1; 

Z := Z + 10;  

end  
if Z ~ 100 then output Z; 
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In this piece of code there are assignment statements, an "if" and a "while" construct.  The 
templates for these statements will be applied, starting from the occurrence of the event we are 
searching for "output Z with Z > 100".  Refer to Figure C- 3 – “Example Code Fault Tree” for 
the discussion that follows.  The templates for the constructs will be drawn showing all the 
considerations that are required for the analysis to be complete.  Some leaves of the tree are not 
expanded further because they are not relevant to the event or postcondition that we are 
analyzing.  The "if" template shows that the event is triggered by the "then" clause.  This follows 
from the condition in the "if" statement.  At this point we need to determine the preconditions 
necessary for Z > 100 prior to the entry into the while construct. 

In this example we have only two simple assignments within the "while" construct but they 
could be replaced by more complex expressions.  The analysis would still be similar to that 
shown here in the example.  The "while" construct would be analyzed as a unit and the 
expressions within the "while" would generate a more complex tree structure as previously 
described using the language templates to determine the preconditions.  By analysis of the 
transformations in the "while" loop, we arrive at the conclusion that for the Z > 100 to be output, 
the weakest precondition at the beginning of the code was that for B > X, Z + 1 OB - 10X > 100.  
At this point we have identified the weakest condition necessary for this code to output Z with Z 
> 100.  More detailed examples are provided in reference [40].  Anyone interested in applying 
the technique should study the examples in the reference or other articles where the technique is 
illustrated. 

The analysis that was shown in the section above determined the preconditions for the event to 
occur.  One way to preclude a hazard from happening is to place an assertion in the code that 
verifies that the precondition for the hazard, as determined in the analysis, does not occur.  
SFTAs point out where to place assertions and the precondition to assert.  If the preconditions do 
occur, some corrective action needs to take place to remedy the problem or, if a remedy is not 
possible, to mitigate the consequences. 

Typically a small percentage of the total software effort on projects will be spent on safety-
critical code.  The Canadian Nuclear Power Plant safety-critical shutdown software was 
reviewed via the SFTA technique in three work months.  The cost of this technique is 
insignificant considering the total amount spent on testing and verification.  Full functional 
verification of the same software took 30 work years [41].  In cases where no problems are 
found, the benefits can still justify the investment.  The resulting code is made more robust by 
the inclusion of the safety assertions and the analysis verifies that major hazardous states 
identified have been avoided. 

Due to complexity, the figures from the example cited above (3 work months for 6K lines of 
code) will probably not scale up.  The technique can be selectively applied to address only 
certain classes of faults in the case where a large body of safety-critical code requires a safety 
verification. 
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C.4 Benefits Of Software Fault Tree Analysis 
Overall, the benefits of carrying out an SFTA are well worth the small investment that is made at 
either the design or code stage, or at both stages.  SFTAs can provide the extra assurance 
required of safety-critical projects.  When used in conjunction with the traditional functional 
verification techniques, the end product is a system with safer operational characteristics than 
prior to the application of the SFTA technique. 

Figure C-1  SFTA Graphical Representation Symbols 
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Figure C-2  Example of High Level Fault Tree 
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Figure C-3  Example Code Fault Tree 
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Appendix D Software Failure Modes and Effects Analysis 
This section is provided to assist systems safety engineers and software developers with an 
introductory explanation of the Software Failure Modes and Effects Analysis technique.  The 
information presented here is part of the NASA Safety Critical Software Analysis course. 

Failure Modes and Effects Analysis (FMEA) is a bottom-up method used to find potential 
system problems while the project is still in the design phase.  Each component in the system is 
examined, and all the ways it can fail are listed.  Each possible failure is traced through the 
system to see what effects it will have, and whether it can result in a hazardous state.  The 
likelihood of the failure is considered, as well as the severity of the system failure.   

FMEA has been used by system safety and other engineering disciplines since the 1960’s.  The 
methodology has been extended to examine the software aspects of a system (SFMEA). 

D.1 Terminology 
A failure is the inability of a system or component to perform its required functions within 
specified performance requirements.  An event that makes the equipment deviate from the 
specified limits of usefulness or performance is also a failure.  Failures can be complete, gradual, 
or intermittent. 

A complete system failure is manifested as a system crash or lockup.  At this juncture, the 
system is usually unusable in part, or in whole, and may need to be restarted as a minimum. - 
What precautions are needed to guard against this, if it is inevitable, then what can be done to 
insure the system is safe and can recover safely. 

A gradual system failure may be manifested by decreasing system functionality.  Functions may 
start to disappear and others follow or, the system may start to degrade (as in the speed with 
which functions are executed may decrease).  Often resource management is a fault here, the 
CPU may be running out of memory or time slice availability.  

Intermittent failures are some of the most frustrating and difficult to solve.  Some of these may 
be cyclical or event driven or some condition periodically occurs which is unexpected and/or 
non-predictive.  Usually an unrealized path through the software takes place under unknown 
conditions. 

These types of failures should be kept in mind when considering failure modes (described 
below).  Unlike most hardware failures, software faults don’t usually manifest as “hard” 
(complete lockup of the system) type system failures.  Software doesn’t wear out and break.  It is 
either functional, or already broken (but no one knows it)! 

A Failure Mode is defined as the type of defect contributing to a failure (ASQC); the physical or 
functional manifestation of a failure (IEEE Std 610.12-1990).  The Failure Mode is generally the 
manner in which a failure occurs and the degree of the failure’s impact on normal required 
system operation.  Examples of failure modes are: fracture (hardware), value of data out of limits 
(software), and garbled data (software). 

The Failure Effect is the consequence(s) a failure mode has on the operation, function, or status 
of an item or system.  Failure effects are classified as local effects (at the component), next 
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higher level effects (portion of the system that the component resides in), and end effect (system 
level). 

D.2 Why do an SFMEA? 
SFMEA’s identify key software fault modes for data and software actions.  It analyzes the effects 
of abnormalities on other components in the system, and on the system as a whole.  This 
technique is used to uncover system failures from the perspective of the lowest level 
components.  It is a “bottom-up” (or “forward”) analysis, propagating problems from the lowest 
levels, up to a failure within the broader system. 

Software Fault Tree Analysis (SFTA, Appendix C) is a “top down” (or “backward”) approach.  
It identifies possible system failures and asks what could have caused them.  SFTA looks 
backwards from the failure to the component(s) whose defects could cause or contribute to the 
failure.   

The SFMEA asks “What is the effect if this component operates incorrectly?”  Failures for the 
component are postulated, and then traced through the system to see what the final result will be.  
Not all component failures will lead to system problems.  In a good defensive design, many 
errors will already be managed by the error-handling part of the design. 

A Software FMEA takes a systems approach, analyzing the software’s response to hardware 
failures and the effects on the hardware of anomalous software actions.  Doing an FMEA is done 
on software can identify: 

 Hidden failure modes, system interactions, and dependencies 

 Unanticipated failure modes 

 Unstated assumptions 

 Inconsistencies between the requirements and the design 

SFMEA’s are not a panacea.  They will not solve all of your problems!  You will probably not 
get all of the above results, but you should be a lot closer to a clean system than if you had not 
done the analysis. 

It’s important to interact with other members of the team as you perform an SFMEA.  No one 
person understands all components, software or hardware.  Have hardware and software 
designers/engineers review your analysis as you are performing it.  Their point of view will help 
uncover the hidden assumptions or clarify the thought process that led to a requirement or design 
element.  SFMEA is not a silver bullet, but a tool to hedge your bets (reduce your risk). 

D.3 Issues with SFMEA 
If SFMEA’s are so wonderful, why isn’t everyone doing them?  The problems are the technique 
are that it is: 

* Time consuming 

* Tedious 

* Manual method (for now) 

* Dependent on the knowledge of the analyst 
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* Dependent on the accuracy of the documentation 

* Questionable benefit of incomplete failure modes list 

* Only considers a single failure at one time (not multiple concurrent failures) 

The place to reap the greatest advantages of this technique is in requirements and design 
analysis.  This may take some time, but it is well worth the effort in terms of the different 
perspectives with which you’ll be able to view the project (hardware, software, operations, etc.). 

The technique is considered tedious by some.  However, the end result is greater and more 
detailed project and/or system knowledge.  This is most true when used earlier (requirements and 
design) in the life-cycle.  It is easier to use SFMEA later in the project, since components and 
their logical relationships are known, but at this point (i.e. detailed design and implementation) it 
is often too late (and expensive) to affect the requirements or design.  Early in the project, lower 
level components are conjecture and may be wrong, but this conjecture can be used to drive out 
issues early.  There  must be balance in the approach.  There is no value in trying to perform 
analysis on products that are not ready for examination. 

The technique is dependent on how much the analyst knows and understands about the system.  
However, as mentioned earlier, the technique should be helpful in bringing out more information 
as it is being used.  Include more reviewers who have diverse knowledge of the systems 
involved.  In addition to looking at the project from different angles, the diversity of background 
will result in a more keen awareness of the impact of changes to all organizations.  

Documentation is also very important to using this analysis technique.  So, when reviewing 
documents, use many and different types of resources (systems and software engineers, hardware 
engineers, system operations personnel, etc.),  so that differing perspectives have been utilized in 
the review process.  The obvious benefit is a better product as a result of critique from numerous 
angles. 

Again, don’t work in a vacuum!  Communication is paramount to success. 

Where should you use the SFMEA technique? In all of the following areas, though you should 
focus on the safety-critical aspects. 

 Single Failure Analysis 

 Multiple Failure Analysis 

 Hardware/Software Interfaces 

 Requirements 

 Design 

 Detailed Design 
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D.4 The SFMEA Process 

Figure D-1 

 
FMEA analysis begins at the bottom (the “end” items).  Figure D-1 shows a subsystem, 
indicating how each piece interacts with the others.  Logic (and’s and or’s) is not included on this 
introductory diagram.  The end items are the pressure sensor and temperature sensor.  The 
diagram shows how the failures propagate up through the system, leading to a hazardous event. 

Software FMEA’s follow the same procedure used for hardware FMEA’s, substituting software 
components for the hardware.  Alternately, software could be included in the system FMEA, if 
the systems/reliability engineer is familiar with software or if a software engineer is included in 
the FMEA team.  MIL-STD-1629 is a widely used FMEA procedure, and this appendix is based 
on it. 

To perform a Software Failure Modes and Effects Analysis (SFMEA), you identify: 

 Project/system components 

 Ground rules, guidelines, and assumptions 

 Potential functional and interface failure modes 

 Each failure mode in terms of potential consequences 

 Failure/fault detection methods and compensating provisions 

 Corrective design or actions to eliminate or mitigate failure/fault 

 Impacts of corrective changes 

D.4.1 Identify Project/system Components 
Engineers must know the project, system, and purpose and keep the “big picture” in mind as they 
perform the analysis.  A narrow perspective can prevent you from seeing interactions between 
components, particularly between software and hardware.  Communicate with those of differing 
backgrounds and expertise. 
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In performing a FMEA, defining whatever is being worked on is the first order of business.  The 
“whatever” can be a project, system, subsystem, “unit”, or some other piece of the puzzle.   
Depending on where the project is in the development life-cycle (requirements, design, 
implementation), you will hopefully have some documents to work with.  If the documentation is 
lacking, you will have to do some detective work.  Often there is a collection of semi-formal 
paperwork on the requirements or design produced by the software team but not written into a 
formal requirements or design document.  Look for a “Software Development Folder”, talk with 
the developers, and accumulate whatever information you can.  If little is on paper, you will have 
to interview the developers (and project management, hardware engineers, systems people, etc.) 
to create your own documentation. 

Once you know what the system is and what it is supposed to do, it’s time to start breaking down 
the system into bite size chunks.  Break a project down into its subsystems.  Break a subsystem 
down into its components.  This process begins with a high level project diagram which consists 
of blocks of systems, functions, or objects.  Each block in the system will then have its own 
diagram, showing the components that make up the block (subsystem).  This is a lot of work, but 
you don’t usually have to do the whole project!  Not every subsystem will need to be detailed to 
its lowest level.  Deciding what subsystems need further breakdown comes with experience.  If 
in doubt, speak with the project members most familiar with the subsystem or component.   

During the requirements phase, the lowest-level components may be functions or problem 
domains.  At the preliminary (architectural) design phase, functions, Computer Software 
Configuration Items (CSCIs), or objects/classes may be the components.  CSCIs, units, objects, 
instances, etc. may be used for the detailed design phase. 

Take the “blocks” you’ve created and put them together in a diagram, using logic symbols to 
show interactions and relationships between components.  You need to understand the system, 
how it works, and how the pieces relate to each other.  It’s important to lay out how one 
component may affect others, rippling up through the system to the highest level.  Producing this 
diagram helps you, the analyst, put the information together.  It also provides a “common 
ground” when you are discussing the system with other members of the team.  They can provide 
feedback on the validity of your understanding of the system. 

D.4.2 Ground Rules 
Before you begin the SFMEA, you need to decide what the ground rules are.  There are no right 
or wrong rules, but you need to know ahead of time what will be considered a failure, what kinds 
of failures will be included, levels of fault-tolerance, and other information.  Some sample 
ground rules are: 

1. All failure modes are to be identified at the appropriate level of detail: component, 
subsystem, and system. 

2. Each experiment mission shall be evaluated to determine the appropriate level of analysis 
required. 

3. The propagation of failure modes across interfaces will be considered to the extent 
possible based on available documentation. 

4. Failures or faults resulting from defective software (code) shall be analyzed to the 
function & object level during detailed design.  
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5. Failure modes induced by human error shall not be included in this FMEA. 

6. The criticality categorization of a hardware item failure mode shall be made on the basis 
of the worst case potential failure effect. 

7. Identical Items which perform the same function, in the same environment (where the 
only difference is location) will be documented on a worksheet only once provided that 
the failure mode effects are identical. 

8. Containment structures such as combustion chambers and gas cylinders will be analyzed. 

9. Release of the contents in a single containment gas bottle does not constitute a hazard of 
any kind provided that the gases released are pre-combustion gases.(e.g., flammability, 
toxicity, 02 depletion) 

10. Items exempt from failure modes and effects analysis are: tubing, mounting brackets, 
secondary structures, electrical wiring, and electronic enclosures. 

Besides the ground rules, you need to identify and document the assumptions you’ve made.  You 
may not have sufficient information in some areas, such as the speed at which data is expected at 
an interface port of the system.  If the assumption is incorrect, when it is examined it will be 
found to be false and the correct information will be supplied (sometimes loudly).  This 
examination will occur when you describe what you believe to be the normal operation of the 
system or how the system handles faults to the other project members. 

Don’t let assumptions go unwritten.  Each one is important.  In other words, “ASSUME 
NOTHING” unless you write it down.  Once written, it serves as a focus to be further explored.  

Try to think “outside the box” – beyond the obvious.  Look at the project as a whole, and then at 
the pieces/parts.  Look at the interactions between components, look for assumptions, limitations, 
and inconsistencies.   
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Figure D-2 

 
Figure D-2 shows the process of recognizing your assumptions, documenting them, finding out 
what the reality is, and clarifying them for future reference. 

D.4.3 Identify Failures 
Once you understand the system, have broken it into components, created ground rules, and 
documented your assumptions, it’s time to get to the fun part: identifying the possible failures.  
Failures can be functional (it doesn’t do what it was supposed to do), undesirable responses to 
bad data or failed hardware, or interface related. 

Functional failures will be derived from the Preliminary Hazard Analysis (PHA) and subsequent 
Hazard Analyses, including subsystem HA’s.  There will probably be hardware items on this list.  
This analysis looks at software’s relationship to hardware. 

It is important to identify functions that need protecting.  These functions are “must work 
functions”  and “must not work functions”.  A failure may be the compromise of one of these 
functions by a lower-level software unit. 

There are also interfaces to be dealt with.  There are more problems identified  with interfaces, 
according to some researchers, than any other aspect of software development.  Interfaces are 
software-to-software (function calls, interprocess communication, etc.), software-to-hardware 
(e.g. setting a Digital-to-Analog port to a specified voltage), hardware-to-software (e.g. software 
reads a temperature sensor), or hardware-to-hardware.  SFMEA’s deal with all of these except 
the hardware-to-hardware interfaced.  These are included in the system FMEA.  Interfaces also 
(loosely) include transitions between states or modes of operation.   

As you look at the system, you will find that you need to make more assumptions.  Write them 
down.  When all else fails, and there is no place to get useful information, sometimes a guess is 
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in order.  Again, write it down and go discuss it with others.  The “others” should include people 
outside of your area of expertise.  If you are a software person, go talk with safety and systems.  
If you are a safety specialist, talk with systems, software, and reliability experts.  

D.4.3.1  Examination of Normal Operations as Part of the System 
The normal operations of the system include it performing as designed, being able to handle 
known problem areas, and its fault tolerance and failure response (if designed into the system).  
Hopefully, the system was designed to correctly and safely handle all anticipated problems.  The 
SFMEA will find those areas where unanticipated problems create failures. 

This step identifies how the software responds to the failures.  This step validates the sufficiency, 
or lack thereof, of the product “to do what its supposed to do”.  This has the side affect of 
confirming the product developers’ understanding of the problem.  In order to understand the 
operation of a system it may be necessary to work and communicate with systems engineering if 
you are a software engineer.  Systems engineering must also communicate with software 
engineering, and both must talk with safety and Software Assurance (SA). 

The normal operation of the software as part of the system or function is described in this part of 
the SFMEA. 

D.4.3.2  Identify Possible Areas of Software Faults 
Areas to examine for possible software faults include: 

 Data Sampling Rate.  Data may be changing more quickly than the sampling rate allows 
for, or the sampling rate may be too high for the actual rate of change, clogging the 
system with unneeded data. 

 Data Collisions.  Examples of data collisions are: transmission by many processors at the 
same time across a LAN, modification of a record when it shouldn't be because of 
similarities, and modification of data in a table by multiple users in an unorganized 
manner. 

 Command Failure to Occur.  The command was not issued or not received. 

 Command out of sequence.  There may be an order to the way equipment is 
commanded on (to an operational state).  For instance, it is wise to open dampers to the 
duct work going to the floors, as well as the dampers to bring in outside air before turning 
on the air handling units of  a high rise office building. 

 Illegal Command.  Transmission problems or other causes may lead to the reception of 
an unrecognized command.  Also, a command may be received that is illegal for the 
current program state. 

 Timing.  Dampers take a long time to open (especially the big ones) so,  timing is 
critical.  A time delay would be necessary keep from imploding (sucking in) the outside 
air dampers or possibly exploding the supply air dampers, by turning on the air handler 
prematurely. 

 Safe Modes.  It is sometimes necessary to put a system which may or may not have 
software in a mode in where everything is safe (i.e. nothing melts down or blows up).  Or  
the software maintains itself and other systems in a hazard free mode. 

NASA-GB-8719.13 328  



 Multiple Events or Data.  What happens when you get the data for the same element 
twice, within a short period of time?  Do you use the first or second value? 

 The Improbable.  The engineers or software developers will tell you that something 
“can’t happen”.  Try to distinguish between truly impossible or highly improbable 
failures, and those that are unlikely but possible.  The improbable will happen if you 
don’t plan for it. 

These are all sorts of things that software can do to cause system or subsystem failures.  Not 
every software fault will lead to a system failure or shutdown, and even those failures that occur 
may not be safety-critical.  There are lots more types of faults than these, but these are good start 
when looking for things that can go wrong.   

D.4.3.3 Possible Failure Modes 
Identify the possible failure modes and effects in an Events Table and Data Table, included in 
Section D.4.8. 

Examples of failure modes are: 

Hardware Failures/Design Flaws 

 Broken sensors lead S/W down wrong path 

 No sensors or not enough sensors - don’t know what H/W is doing 

 Stuck valves or other actuators 

Software 
 Memory over written (insufficient buffer or processing times). 

 Missing input parameters, incorrect command, incorrect outputs, out of range values, etc. 

 Unexpected path taken under previously unthought of conditions. 

Operator 
 Accidental input of unknown command,  or proper command at wrong time. 

 Failure to issue a command at required time. 

 Failure to respond to error condition within a specified time period. 

Environment 
 Gamma Radiation 

 EMI 

 Cat hair in hard drive 

 Power fluctuations 
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D.4.3.4  Start at the Bottom 
Go back to the block diagrams you created earlier.  Starting at the lowest level, look at a 
component and determine the effect of that component failing,  in one of its failure modes, on the 
components in the level above it. 

You may need to consider the effect of this component and all the effected components at the 
next higher level as well.  This must be worked all of the way up the chain.   

This is a long process.  However, if the safety-critical portions are fairly isolated in a system, 
then the analyst will be looking at only those parts of the system that can lead to a critical failure.  
This is true for the detailed design and implementation phases/versions of this analysis.  For the 
requirements and preliminary design phases, the system is more abstract (and therefore smaller 
and more manageable). 

D.4.4 Identify Consequences of each Failure 
The next thing to look at is the effect (consequences) of the defined faults/failures.  It is also 
important to consider the criticality or severity of the failure/fault. 

So far in the FMEA process, we’ve concentrated on the safety perspective.  However, it’s time to 
look at reliability as well.  Like safety , reliability, looks at: 

 Severity may be catastrophic, critical, moderate, or negligible. 

 Likelihood of occurrence may be probable, occasional, remote or improbable. 

Risk indices are defined as 1 through 5, with 1 being prohibitive (i.e. not allowed, must make 
requirements or design change).  The critically categories include the added information of 
whether the component or function has redundancy or would be a single point of failure. 

For each project and Center there may be some variation in the ranking of severity level and risk 
index.  This is, after all, not an exact science so much as a professional best guess (best 
engineering judgment). 

The relationship between reliability’s criticality categories and the safety risk index is shown in 
the following table: 

Criticality Category Relative Safety Risk Index 

1 – A single failure point that could result in a 
hazardous condition, such as the loss of life or 
vehicle. 

Levels 1 to 2 

1R – Redundant components/items for which, if 
all fail, could result in a hazardous condition. 

Levels 1 to 2 

2 – A single failure point that could result in a 
degree of mission failure (the loss of experiment 
data) 

Levels 2 to 3 

2R – Redundant items, all of which if failed could 
result in a degree of mission failure (the loss of 
experiment data). 

Levels 2 to 3 

3 – All others. Levels 4 and 5 
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D.4.5 Detection and Compensation 
At this step, you need to identify the methods used by the system to detect a hazardous condition, 
and provisions in the system that can compensate for the condition.  

For each failure mode, a fault/failure detection method should be identified.  A failure detection 
mechanism is a method by which a failure can be discovered by an operator under normal system 
operation or by some diagnostic.  Failure detection in hardware is via sensing devices or 
instruments.  In software this could be done by error detection software on transmitted signals, 
data or messages, memory checks, initial conditions, etc. 

For each failure mode, a compensating provision should be identified, or the risk accepted if it is 
not a hazardous failure.  Compensating provisions are either design provisions or operator 
actions which circumvent or mitigate.  This step is required to record the true behavior of the 
item in the presence of an internal malfunction of failure.  A design provision could be a 
redundant item or a reduced function that allows continued safe operation.  An operator action 
could be the notification at an operator console to shut down the system in an orderly manner. 

An example: The failure is the loss of data because of a power loss (hardware  fault), or because 
other data overwrote it (a software fault) . 

Detection:  A critical source and CPU may be backed up by a UPS (uninterruptible power 
supply) or maybe not.  Detect that power was lost and the system is now on this backup source.  
Mark data at time x as not reliable.  This would be one detection scheme. 

Compensation for the occurrence of this failure: Is there another source for that data.? Can it be 
re-read? Or just marked as suspect or thrown out and wait for next normal data overwrite it? 
What of having a UPS, battery backup, redundant power supply? Of course these are all 
hardware answers.  Can software detect if the data is possibly suspect and tag it or toss it, wait 
for new input, request for new input, get data from alternate sources, calculate from previous 
data (trend) etc.? 

What if input data comes in faster than expected and was overwriting pervious data before it was 
processed.  How would this system know?   What could be done about it?  For example, a 
software system normally receives data input cyclically from 40 sources, then due to partial 
failures or maintenance mode, now only 20 sources are cycling and the token is passed 2 times 
faster.  Can buffers handle the increased data rate?  
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D.4.6 Design Changes 
Catastrophic hazards will usually have been eliminated or mitigated prior to a Software FMEA 
being performed.  If the SFMEA uncovers catastrophic or critical hazards that were previously 
unidentified, these need to be eliminated or mitigated.  This will usually involve more than just 
the software sub-system.  The hardware design may also be impacted, as well as future 
operations scenarios.  Such hazards should be immediately brought to the attention of the project 
manager.   

After a hazard has been identified it is usually eliminated or mitigated.  The result of either of 
these two actions is a corrective action.  This corrective action may be via documented new 
requirements, design, process, procedure, etc.  Once implemented, it must be analyzed and 
verified to correct the failure or hazard. 

After a critical hazard has been identified, the project needs to 

* Identify corrective actions 

* Identify changes to the design 

* Verify the changes 

* Track all changes to closure 

It is important to look at the new design, once the change is made, to verify that no new hazards 
have been created. 

D.4.7 Impacts of Corrective Changes 
A corrective action will have impact.  Impacts can be to the schedule, design, functionality, 
performances, process, etc.  If the corrective action results in a change to the design of the 
software, then some segment of that software will be impacted.  Even if the corrective action is 
to modify the way an operator uses the system there is impact. 

You need to go back and analyze the impact of the changes to the system or operating 
procedures to be sure that they (singularly or jointly) don’t have an adverse effect and do not 
create a new failure mode for a safety-critical function or component. 

Often fixes introduce more errors and there must be a set process to insure this does not occur in 
safety-critical systems.  Ensure that verification procedures cover the effected areas. 
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D.4.8 Example forms 
This worksheet is used to gather relevant information on the system.  It is also a great place to 
put the data developed during the analysis.  The ID number can be a drawing number, work 
break down structure number, CSCI identification, or other identification value. 

FMEA Worksheet 
ITEM 
Description 

ID # SUBSYSTEM 
COMPONENT 

LOCAL 
FAILURE 
MODE/EFFECT

SYSTEM EFFECT CRIT 
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Once elements of the system are identified, list them in this worksheet and identify their 
functions. 

COMPONENTS 
ITEM 
DESCRIPTION 

ITEM 
ID 

FUNCTION FAILURE 
MODE 

LOCAL 
EFFECT 

SYSTEM 
EFFECT 

DETECTABILITY CRIT 
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For a Software FMEA, the Data Table is used to list the effects of bad data on the performance 
of the system or process being analyzed.  A Data Item can be an input, output, or information 
stored, acted on, passed, received, or manipulated by the software.  The Data Fault Type is the 
manner in which a flaw is manifested (bad data), including data that is out of range, missing, out 
of sequence, overwritten, or wrong. 

SFMEA DATA TABLE 

Mode Data Item Data Fault Type Description Effect (local and 
system) 

Crit 
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The Events Table is used to list the effects of an event being performed.  The Event Item is the 
occurrence of some action, either within the software or performed on hardware or other 
software.  An event can be an expected and correct, expected but incorrect, unexpected and 
incorrect, or unexpected but correct action.  Event Fault Types can occur locally (with a 
component) or on the system as a whole.  Types can include halt (abnormal termination), 
omission (failure of the event to occur), incorrect logic/event, or timing/order (wrong time or out 
of sequence). 

SFMEA EVENTS TABLE 

Mode Event Item Event Fault Type Description Effect (local and 
system) 

Crit 
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APPENDIX E Requirements State Machines 

E.1 Characteristics of State Machines 
A formal description of state machines can be obtained from texts on Automata Theory.  This 
description will only touch on those properties that are necessary for a basic understanding of 
the notation and limitations.  State machines use graph theory notation for their 
representation.  A state machine consists of states and transitions.  The state represents the 
condition of the machine and the transition represent changes between states.  The transitions 
are directed (direction is indicated by an arrow), that is, they represent a directional flow from 
one state to another.  The transition from one state to another is induced by a trigger or input 
that is labeled on the transition.  Generally an output is produced by the state machine. 

The state machine models should be built to abstract different levels of hierarchy.  The 
models are partitioned in a manner that is based on considerations of size and logical 
cohesiveness.  An uppermost level model should contain at most 15 to 20 states; this limit is 
based on the practical consideration of comprehensibility.  In turn, each of the states from the 
original diagram can be exploded in a fashion similar to the bubbles in a data flow 
diagram/control flow diagram (DFD/CFD) (from a structured analysis/structured design 
methodology) to the level of detail required.  An RSM model of one of the lower levels 
contains a significant amount of detail about the system.   

The states in each diagram are numbered and classified as one of the following attributes: 
Passive, Startup, Safe, Unsafe, Shutdown, Stranded and Hazard (see Figure E-1 Example of 
State Transition Diagram).  For the state machine to represent a viable system, the diagram 
must obey certain properties that will be explained later in this work.  

The passive state represents an inert system, that is, nothing is being produced.  However, in 
the passive state, input sensors are considered to be operational.  Every diagram of a system 
contains at least one passive state.  A passive state may transition to an unsafe state. 

The startup state represents the initialization of the system.  Before any output is produced, 
the system must have transitioned into the startup state where all internal variables are set to 
known values.  A startup state must be proven to be safe before continuing work on the 
remaining states.  If the initialization fails, a time-out may be specified and a state transition 
to an unsafe or passive state may be defined. 

The shutdown state represents the final state of the system.  This state is the only path to the 
passive state once the state machine has begun operation.  Every system must have at least 
one shutdown state.  A time-out may be specified if the system fails to close down.  If a 
timeout occurs, a transition to an unsafe or stranded state would be the outcome.  Transition to 
the shutdown state does not guarantee the safety of the system.  Requirements that stipulate 
safety properties for the shutdown state are necessary to insure that hazards do not occur 
while the system is being shutdown. 
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Figure E-1 Example of State Transition Diagram 

 

PASSIVE 
0 

STARTUP 
1 

SAFE 
2 SAFE 

3 

SAFE
4 

SHUTDOWN
5 

STRANDED 
6 

SAFE 
7 

UNSAFE 
8 

UNSAFE 
9 

HAZARD
10 

UNSAFE
11 

 

A safe state represents the normal operation of the system.  A safe state may loop on itself for 
many cycles.  Transitions to other safe states is a common occurrence.  When the system is to 
be shutdown, it is expected to transition from a safe state to the shutdown state without 
passing through an unsafe state.  A system may have zero or more safe states by definition.  A 
safe state also has the property that the risk of an accident associated with that state is 
acceptable (i.e., very low). 

Unsafe states are the precursors to accidents.  As such, they represent either a malfunction of 
the system, as when a component has failed, or the system displays unexpected and undesired 
behavior.  An unsafe state has an unacceptable, quantified level of risk associated with it from 
a system viewpoint.  The system is still in a controllable state but the risk of transition to the 
hazard state has increased.  Recovery may be achieved through an appropriate control action 
that leads either to an unsafe state of lesser risk or, ideally, to a safe state.  A vital 
consideration when analyzing a path back to a safe state is the time required for the transitions 
to occur before an accident occurs.  A system may have zero or more unsafe states.  
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The hazard state signals that control of the system has been lost.  In this situation the loss of 
the system is highly probable and there is no path to recovery.  The hazard state should take 
action where possible to contain the extent of damage. 

The stranded state represents the situation, where during the course of a shutdown operation, 
the system has lost track of state information and cannot determine a course of action.  This 
state has a high potential to transition to an unsafe state after a specified time depending upon 
what system is modeled or possibly upon environmental conditions.  The only recovery from 
this state is a power-on restart. 

E.2 Properties of Safe State Machines 
There are certain properties that the state machine representation should exhibit in order to 
provide some degree of assurance that the design obeys certain safety rules.  The criteria for 
the safety assertions are based on logical considerations and take into account input/output 
variables, states, trigger predicates, output predicates, trigger to output relationship and 
transitions. 

E.3 Input/Output Variables 
All information from the sensors should be used somewhere in the RSM.  If not, either an 
input from a sensor is not required or, more importantly, an omission has been made from the 
software requirements specification.  For outputs it can be stated that, if there is a legal value 
for an output that is never produced, then a requirement for software behavior has been 
omitted. 

E.4 State Attributes 
The state attributes of the RSM are to be labeled according to the scheme in Figure E-2 
Example RSM and Signals. 

E.5 Trigger Predicates 
A necessary, but not a sufficient condition for a system to be called robust, is that there must 
always be a way for the RSM to leave every state of the system.  This leads us to define two 
statements about RSMs: 

1) Every state in the RSM has a defined behavior (transition) for every possible input. 

2) One or more input predicates, out of all possible input predicates, must be able to 
trigger a transition out of any state. 
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Figure E-2 Example RSM and Signals 

 

In case there is no input within a specified time, every state must have a defined transition, 
such as a time-out, that triggers an action.  The state machine may also express what actions 
are taken if the input data is out of range.  Low level functions, such as exception handling, 
may be  features that are required for an implementation. 

A relatively simple method that provides an elementary correctness check is for range 
verification of input data.  The computational cost in most cases will probably not be 
significant.  While range checking does not provide a guarantee of correctness, it is the first 
line of defense against processing bad data.  Obviously, if the input data is out of range, we 
have identified either a bad sensor or a bad data communication medium.12 

The RSM technique has limitations when analyzing fault tolerant systems that contain two or 
more independent lanes.  In redundant systems the use of threshold logic may generate 
another class of safety problems.  The area where problems may arise is threshold logic used 
to validate inputs coming from different sensors.  Typically the value read from the different 
sensors will differ by a certain percentage.  Sensors are calibrated to minimize this difference, 
                                                      
12 A third possibility may also exist:  the data may truly be valid, but the understanding of the system or 
environment state is incomplete and data having values outside of the expected range is regarded as invalid (e.g. 
data on ozone loss in the atmosphere above Antarctica was regarded as invalid until ground based observations 
confirmed the situation). 
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but a check must be made to verify that neither of the following situations occur:  1) a 
threshold may trigger one lane of the system and not the other if a value below the threshold 
is contrasted with a value above the threshold from the other lane; and 2) the input as 
processed by the control law will generate quantitatively and qualitatively different control 
actions.  This effect can be avoided if a vote is taken at the source of the data before 
transmitting potentially confusing data.  In the case of fully redundant, dual lane systems, 
each system may determine that the other is in error when in reality there is no hardware or 
software error.  A high level RSM will not show this explicitly but it is an issue that needs to 
be considered in the design before any prototyping, or worse yet, coding takes place. 

Timing problems are common causes of failures of real-time systems.  Timing problems 
usually happen because either timing is poorly specified or race conditions that were not 
thought possible occur and cause an unwanted event to interrupt a desired sequence.  All real-
time data should have upper and lower bounds in time.  Race conditions occur when the logic 
of a system has not taken into account the generation of an event ahead of the intended time.  
This type of error occurs when events that should be synchronized  or sequenced are allowed 
to proceed in parallel.  This discussion will not address the obvious case of an error in the 
sequence logic. 

The ability to handle inputs will be called capacity and the ability to handle diverse types of 
input will be called load.  A real-time system must have specifications of minimum and 
maximum capacity and load.  Robustness requires the ability of the system to detect a 
malfunction when the capacity limits have been violated.  Capacity limits are often tied to 
interrupts where hardware and software analyses are necessary to determine if the system can 
handle the workload (e.g., CPU execution time, memory availability, etc.).  Load involves 
multiple input types and is a more comprehensive measure than capacity.  Criteria for the 
system or process load limits must be specified.  For a system to be robust, a minimum load 
specification needs to be specified, as well as a maximum (assuming that a real-time process 
control system has inputs of a certain period).  The capacity and load constraints as developed 
for the RSM will help serve as a guide for designing the architecture of the system and 
subsequently in the final system implementation.  These performance requirements have 
safety implications.  The ability of the system to handle periodic capacity and load 
requirements is a fundamental safety property.  If a system cannot handle the work load then 
the safety of the system is at risk because process control is not performed in a timely fashion.   

E.6 Output Predicates 
The details of when an output is valid may not be known at the time the RSM is generated but 
these constraints should be documented somewhere in the RSM to serve as a guideline for the 
implementer.  In a similar fashion to inputs, outputs must have their value, and upper and 
lower timing bounds specified.  Output capacity is limited by the ability of the actuator to 
respond.  Compatibility must exist between the frequency of reaction to input and the capacity 
of the output mechanism to respond.  This requires that a timing analysis be performed to be 
certain that potential worst case input and output rate speeds can be adequately handled by 
both software and hardware.  For output data to be valid the input data must be from a valid 
time range.  Control decisions must be based on data from the current state of the system, not 
on stale data.  In the computation of the output, the delay in producing the output must not 
exceed the permissible latency.  An example of an incorrect output timing problem occurred 
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on the F-18 fighter plane.  A wing mounted missile failed to separate from the launcher after 
ignition because a computer program signaled the missile retaining mechanism to close before 
the rocket had built up enough thrust to clear the missile from the wing.  The aircraft went 
violently out of control, but the missile fuel was eventually expended and the pilot was able to 
bring the plane under control before a crash occurred. 

E.7 Degraded Mode Operation 
When a system cannot meet its work load requirements in the allotted time or unanticipated 
error processing has consumed processor resources and insufficient time is available for 
normal processing, the system must degrade in a graceful manner.  Responses to graceful 
degradation include: 

• Masking of nonessential interrupts • Reduction of accuracy and/or response time 

• Logging and generation of warning messages • Signals to external world to slow down inputs 

• Reduction of processing load (execute only 
core functionality) 

• Trace of machine state to facilitate post event 
analysis 

 • Error handling 
 

Which of the above measures get implemented depends on the application and its specific 
requirements. 

Where there is load shedding, a degraded mode RSM will exist that exhibits properties that in 
all likelihood are different from the original RSM.  The same analysis that is performed for 
the RSM of the fully operational system should be done on the degraded mode RSM. 

Special care must be taken in the implementation of performance degradation that reduces 
functionality and/or accuracy.  A situation can arise where, because of the transition to a state 
machine with different properties (and therefore, the control laws of the original RSM will be 
affected by a reduction in accuracy or frequency of the inputs), the outputs may not transition 
smoothly.  In systems where operator intervention is an integral part of operation, this jolt 
may confuse the operator and contribute to further degradation because of operator inability to 
predict behavior.  In principle, where response time limits can be met, predictability is 
preferable to abrupt change.   

In order to recover from degraded mode operation there needs to be a specification of the 
conditions required to return to normal operations.  These conditions must be specific enough 
to avoid having the system continuously oscillate back and forth between normal and 
degraded mode.  In practice, a minimum delay and a check of the cause of the anomaly can 
achieve this. 

E.8 Feedback Loop Analysis 
Process control models provide feedback to the controller to notify changes in state caused by 
manipulated variables or internal disturbances.  In this manner the system can adjust its 
behavior to the environment.  An RSM can be used to verify if feedback information is used 
and what signals are employed.  If feedback is absent then either the design is incorrect or the 
requirements are faulty.  The design of the system needs to incorporate a mechanism to detect 
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the situation where a change in the input should trigger a response from the system and the 
response is either too slow, too fast or unexpected.  For example, when a command is given to 
turn on a heater, a resulting temperature rise curve would be expected to follow a theoretical 
model within certain tolerances.  If the process does not respond within a certain period of 
time then it can be assumed that something is wrong and the software must take an 
appropriate action.  At a minimum, this action should be the logging of the abnormality for 
future analysis.  The simplest, most inexpensive check for a servo loop is to verify if the 
reference position is different from the actual position.  If the difference is non-negligible, 
some form of control action must be taken.  If the actual position does not vary in the 
presence of a command to act, then it can be concluded that there is a fault in the system.  
RSMs can be used to help design the control process and to verify that all feedback loops are 
closed and that they generate the appropriate control action. 

E.9 Transition Characteristics 
Requirements may also involve specifications regarding transitions between states.  A system 
may or may not possess certain properties, while some other properties are mandatory.  All 
safe states must be reachable from the initial state.  Violation of this principle leads to a 
contradiction of requirements or a superfluous state.  No safe state should ever transition, as a 
result of a computer control action, to an unsafe state.  In principle, an automated (i.e., 
computer controlled) system should never transition to a hazardous state unless a failure has 
occurred.  In general, if operator action is considered (such as the issuing of a command), the 
previously stated requirement may be impossible to accomplish given the requirements of 
certain systems.  In this latter situation, the transition into and out of the unsafe state should be 
done in a manner that takes the least amount of time and the system eventually reverts back to 
a safe state.   

Once the system is in an unsafe state, either because of error conditions or unexpected input, 
the system may transition to another unsafe state that represents a lower risk than the previous 
state.  If it is not possible to redesign the system so that all transitions from a hazardous state 
eventually end in a safe state, then the approach must be to design the transitions to the lowest 
possible risk, given the environment.  Not all RSM diagrams will be able to achieve an 
intrinsically safe machine, that is, one that does not have a hazardous state.  The modeling 
process's main virtue lies in the fact that, through analysis of the RSM, faults may be 
uncovered early in the life cycle.  The objective and challenge is to design a system that poses 
a tolerable level of risk. 

The design of a robust system requires that, for all unsafe states, all soft and hard failure 
modes be eliminated.  A soft failure mode occurs when an input is required in at least one 
state through a chain of states to produce an output and that the loss of the ability to receive 
that input could potentially inhibit the software.  A hard failure mode is analogous to a soft 
failure except that the input is required for all states in the chain and the loss of the input will 
inhibit the output. 

If a system allows for reversible commands, then it must check that, for every transition into a 
state caused by the command, it can transition back to the previous state via a reverse 
command.  While in that state, an input sequence must be able to trigger the deactivation of 
the command.  In a similar fashion, if an alarm indicates a warning and the trigger conditions 
are no longer true, then the alert should also cease (if appropriate operator acknowledgment 
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action was performed when required).  State transitions do not always have to be between 
different states.  Self loops are permissible, but eventually every real-time system must initiate 
a different function and exit from the self loop.  Watchdog timers may be used to catch 
timeouts for self loops.  The RSM technique helps a designer by graphically representing 
these constraints and assisting in specifying implementation level detail. 

E.10 Conclusions 
The RSM techniques described above can be used to provide analysis procedures to help find 
errors and omissions.  Incorporating the RSM analysis into the development cycle is an 
important step towards a design that meets or exceeds safety requirements.  Practically all the 
current safety oriented methodologies rely on the quality of the analyst(s) for results and the 
techniques mentioned above are a first attempt at formalizing a system's safety properties. 

The RSM technique does not claim to guarantee the design of a 100% safe system.  Inevitably 
some faults (primarily faults of omission) will not be caught, but the value of this 
methodology is in the fact that many faults can be made evident at an early stage, if the right 
mix of experienced people are involved in the analysis.  Complexity of current software and 
hardware has caused a nonlinear increase in design faults due to human error.  For this reason 
and because testing does not prove the absence of faults, it is recommended that the RSM 
modeling techniques be employed as early as possible in the system life cycle.  The RSM 
methodology, if applied with system safety considerations, is a valuable step towards a partial 
proof to show the effects and consequences of faults on the system.  If the RSM model is 
robust and the design can be shown to have followed the criteria in the previous sections, then 
a significant milestone will have been completed that demonstrates that the system is ready to 
proceed to the next phase in the life-cycle and developers will have a high level model that 
satisfies a core set of requirements. 

From an overall systems perspective, the RSM model is used to provide a high level view of 
the actual system, and further refinements of the states can give insight into implementation 
detail.  This model is then checked against the rules formulated in the previous sections.  
Deviation from the rules involves additional risk and, as such, this additional risk should be 
evaluated and documented.  This process of documentation is necessary for a post project 
analysis to confirm the success of the system or to analyze the cause of any failures.   

The technique of using RSMs to explore properties of safety-critical systems is a highly 
recommended practice that development teams should follow.  Verification of the safety 
properties of the RSM should be performed as a team effort between software developers, 
systems safety and software quality assurance.  If the RSM analysis or any equivalent 
technique has not been performed for the design of a complex system, then that project is 
running the risk that major design constraints will be put aside until late in the development 
cycle and will cause a significant cost impact. 
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Appendix F   Preliminary Hazard Analysis (PHA) 

F.1 PHA Approach 
The following is an excerpt from NPG 8715.3 Appendix-D: 

“In many ways the PHA is the most important of the safety analyses because it is the 
foundation on which the rest of the safety analyses and the system safety tasks are built.  It 
documents which generic hazards are associated with the design and operational concept.  
This provides the initial framework for a master listing (or hazard catalog) of hazards and 
associated risks that require tracking and resolution during the course of the program design 
and development.  The PHA also may be used to identify safety-critical systems that will 
require the application of failure modes and effects analysis and further hazard analysis during 
the design phases.” 

Hazards and their causes and controls are identified by using lessons learned, mishap data, 
PHA’s from similar systems, and engineering judgment.  Table F-1 Generic Hazards 
Checklist lists some generic hazards, which are also a good starting place.  The last column 
gives some examples of how software can function as a control for a hazard.  It is important to 
understand that this and other checklists are merely tools to encourage the thought process.  
Keep thinking and brainstorming for all the permutations of potential hazards, causes, and 
controls for a given system. 

Table F-1 Generic Hazards Checklist 

Generic Hazard Category Hazards Software Controls Example 
Contamination / Corrosion Chemical Disassociation 

Chemical Replacement / Combination 
Moisture 
Oxidation 
Organic (Fungus, Bacterial, Etc.) 
Particulate 
Inorganic (Includes Asbestos) 

Receive data input from hardware 
sensors (gas chromatograph, 
particle detector, etc.).  Activate 
caution and warning indicators if 
levels surpass programmed limits, 
and/or automatically shutdown 
sources or activate fans. 

Electrical Discharge / Shock External Shock 
Internal Shock 
Static Discharge 
Corona 
Short 

Prevent power from being turned 
on while access door is open. 
Disable High Voltage when not in 
vacuum. 

Environmental / Weather Fog 
Lightning 
Precipitation (Fog, Rain, Snow, Sleet, 
Hail) 
Sand / Dust 
Vacuum 
Wind 
Temperature Extremes 

Receive data input from sensor 
readings of hardware devices 
(particle detector, wind velocity 
probe, etc.).  Send commands to 
shut down hardware if programmed 
limits are surpassed. 
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Fire / Explosion Chemical Change (Exothermic, 
Endothermic) 
Fuel & Oxidizer in Presence of Pressure 
and Ignition Source 
Pressure Release / Implosion 
High Heat Source 

Monitor temperature; activate fire 
suppression system if temperature 
goes over set threshold. 

Impact / Collision Acceleration (Including Gravity) 
Detached Equipment 
Mechanical Shock / Vibration / 
Acoustical 
Meteoroids / Meteorites 
Moving / Rotating Equipment 

Monitor position of rotating 
equipment.  Keep position within 
defined limits, or shutdown motion 
if exceeding limits. 

Loss of Habitable 
Environment* 

Contamination 
High Pressure 
Low Oxygen Content 
Low Pressure 
Toxicity 
Low Temperature 
High Temperature 

Receive data input from sensor 
readings of hardware devices.  
Send commands to operate proper 
sequencing of valve operation. 

Pathological / Physiological/ 
Psychological 

Acceleration / Shock / Impact / Vibration 
Atmospheric Pressure (High, Low, 
Rapid Change) 
Humidity 
Illness  
Noise 
Sharp Edges 
Sleep, Lack of 
Visibility (Glare, Surface Fogging) 
Temperature 
Workload, Excessive 

Monitor pressure and rate of 
change.  Control pressure system to 
keep rate of change under set limit. 

Radiation EMI 
Ionizing Radiation (Includes Radon) 
Non-ionizing Radiation (Lasers, Etc.) 

Receive data input from sensor 
readings of hardware devices.  Shut 
down high gain antenna when 
operational time limit is reached. 

Temperature Extremes High 
Low 
Variations 

Monitor temperature.  Sound 
warning if temperature outside of 
limits 

*Health issues require coordination with Occupational Health personnel 

F.2 Identifying Hazards 
Preliminary hazard analysis of the entire system is performed from the top down to identify 
hazards and hazardous conditions.  Its goal is to identify all credible hazards up front.  
Initially the analysis is hardware driven, considering the hardware actuators, end effects and 
energy sources, and the hazards that can arise.  For each identified hazard, the PHA records 
the hazard causes and candidate control methods.  These hazards and hazard causes are 
mapped to system functions and their failure modes.  Most of the critical functions are 
associated with one or more system controls.  These control functions cover the operation, 
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monitoring and/or safing of that portion of the system safety assessment and must consider 
the system through all the various applicable subsystems including hardware, software, and 
operators. 

To assure full coverage of all aspects of functional safety, it can be helpful to categorize 
system functions as two types: 

1. “Must work” functions (MWF’s) 
2. “Must not work” functions (MNWF’s)  

“Must work” functions are those aspects of the system that have to work in order to for it to 
function correctly.  Of course, all elements of the system “must work” if the desired 
functionality is to be obtained.  From the safety perspective, only those functions that “must 
work” in order to prevent a hazard or other safety-related event from occurring are 
considered.  “Must not work” functions are aspects that should not occur, if the system is 
functioning correctly.  In fact, if they do occur, they could lead to a hazardous situation or 
other undesired outcome.  Examples of “must work” and “must not work” functions are given 
below. 

“Must work” and “must not work” functions often depend on the state of the system.  Some 
functions can even change from one to the other as the system state changes.  When 
designating an aspect of the system as “must work” or “must not work”, you also need to 
specify when these designations are valid.  “Open furnace door” is a “must work” when 
changing out a test sample.  but it is a “must not work” when the experiment is operating and 
the furnace is at full temperature. 

The system specification often initially defines the criticality (e.g., safety-critical) of some 
system functions, but may be incomplete.  This criticality is usually expressed only in terms 
of the Must-Work nature of the system function, and often omits the Must-Not-Work 
functional criticality.  The PHA defines all the hazardous MNWF’s as well as the MWF’s. 

Examples:  

1. A science experiment might have a system Criticality designation of 3 (Non-critical) 
in terms of its system function, because loss of the primary experiment science data 
does not represent a hazard.  However, the experiment might still be capable of 
generating hazards such as electric shock due to inadvertent activation of a power 
supply during maintenance.  Activation of power during maintenance is a MNWF. 

2. An experiment might release toxic gas if negative pressure (vacuum) is not 
maintained.  Maintaining a negative pressure is a MWF. 

3. An air traffic control system and aircraft flight control systems are designed to 
prevent collision of two aircraft flying in the same vicinity.  Collision avoidance is a 
MWF. 

4. A spacecraft rocket motor might inadvertently ignite while it is in the STS Cargo 
Bay.  Motor ignition is a MNWF, at that time.  It is apparent that the MNWF 
becomes a MWF when it is time for the motor to fire. 

If functions identified in the PHA were not included in the system specification, that 
document should be amended to address control of those functions. 
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F.3 Preliminary Hazard Analysis (PHA) Process 
Step 1: System and Safety experts examine the proposed system concepts and 

requirements and identify System Level Hazards.  Areas such as power sources, 
chemicals usage, mechanical structures, time constraints, etc. are considered (as per 
Section F.2 Identifying Hazards and Table F-1 Generic Hazards Checklist). 

Step 2: Hazard cause(s) are identified.  Common hazard cause categories include: 
collision, contamination, corrosion, electrical shock/damage, explosion, fire, 
temperature extremes, radiation, illness/injury and loss of capability.  Each hazard 
has at least one cause, such as a hardware component failure, operator error, or 
software fault.  The PHA should identify some or all of the hazard causes, based on 
the system definition at that point in the development effort.  Consideration of these 
categories as risks early in the development effort reduces the chance that any of 
these surface as a problem on a project. 

Step 3: Identify at least one hazard control for each hazard cause.  NASA safety 
standards often stipulate the methods of control required for particular hazard causes.  
This is not necessary for the PHA, but may become a requirement at later phases in 
the system development process.  Each control method must be a “real feature”, 
usually a design feature (hardware and/or software), or a procedural sequence and 
must be verifiable. 

Step 4: Identify at least one verification method for each hazard control.  Verification 
can be by analysis, test, demonstration or inspection.  In some cases, the verification 
method is defined by established NASA safety requirements  (e.g. Payload Safety 
Requirements NSTS 1700.1 (V1-B)). 

When performing the PHA, it is important not to get sidetracked into arguments about how a 
hazard might occur or whether it is impossible.  It is better to assume that a hazard can occur 
and examine the consequences.  Hazards can be removed later if they are determined to be 
improbable and their consequences are negligible.  This is the time to be creative paranoids – 
determine all the ways a system can create a hazard and assume that it will. 

Each system hazard is documented in a “Hazard Report”.  The NASA Shuttle / Station 
Payload Hazard Report is offered as a good example.  The form is included at the end of this 
appendix (Figure F-1). Detailed instructions for completing this form are given as an 
appendix when the form is downloaded from the NASA Payload Safety Homepage 
[http://wwwsrqa.jsc.nasa.gov/pce] and also in NPG 8715.3 NASA Safety Manual, Chapter-3, 
System Safety, and Appendix-D (Analysis Techniques) [1].   
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Typical elements in a hazard report are:   
• Hazard Description.  This describes a system hazard, such as an uncontrolled release of 

energy resulting in a mishap. 
• Safety Requirement.  This can be a hardware or software requirement and is usually a system 

level requirement.  It can result in further flow-down to software functionality by identifying 
software Hazard Controls as described below. 

• Hazard Cause.  This is usually a fault or defect in hardware or software.  Software causes 
include:  

o Failure to detect a problem 
o Failure to perform a function 
o Performing a function at the wrong time, out of sequence, or when the program is in 

the wrong state 
o Performing the wrong function 
o Performing a function incompletely 
o Failure to “pass along” information or messages 

• Hazard Control.  This is usually a design feature to control a hazard cause.  The hazard 
control should be related to the applicable safety requirements cited by the hazard report.  For 
example, where independence and fault tolerance are required, the hazard control block 
describes how the design meets these requirements. 

• Hazard Detection Method.  This is the means to detect imminent occurrence of a hazardous 
condition as indicated by recognizing unexpected values of measured parameters.    

• Safety Verification Method.  This identifies methods used to verify the validity of each 
Hazard Control.  These methods include analysis, test, demonstration or inspection. 

• Status of Verification.  This identifies scheduled or actual start and completion dates of each 
verification item, and if the item is open or closed. 

Another document that will usually be produced as part of a PHA is the Preliminary Hazard 
List.  This is a tabulated list of all the identified hazards.  Each hazard on the list will have a 
corresponding hazard report. 

F.4 Tools and Methods for PHA 
Tools and methods for performing a formal Preliminary Hazard Analysis are detailed in the 
following documents.  In addition, many system safety books describe the process of 
conducting a Preliminary Hazard Analysis. 

NSTS 22254, Methodology for Conduct of Space Shuttle Program Hazard Analysis (available 
at http://jsc-web-pub.jsc.nasa.gov/psrp/) 

• 

SOFTWARE SYSTEM SAFETY HANDBOOK, A Technical & Managerial Team Approach, 
December 1999 (Joint Software System Safety Committee) (available at 
http://sunnyday.mit.edu/safety-club/) 

• 

• MIL-STD-882B, Task 201 (PHL) and Task 202 (PHA) (available at 
http://sunnyday.mit.edu/safety-club/) 

Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) are two types of 
analyses that supplement a Preliminary Hazard Analysis.  Descriptions of these analyses may 
be found in any system safety book.  Appendix C provides details on Software Fault Tree 
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Analysis (SFTA), and Appendix D describes Software Failure Modes and Effects Analysis 
(SFMEA). 

F.5 PHA is a Living Document 
A completed Preliminary Hazard Analysis is just the beginning of the safety process.  All 
required information is typically not available at the start of the development lifecycle.  
Details for the various items are filled in and expanded during the development lifecycle as 
the Hazard Analysis process continues.  Usually, hazard causes and controls are identified 
early in the development process and verifications are addressed in later lifecycle phases.  
Hazard reports are revisited and updated on subsequent Safety Analyses throughout the life 
cycle of the system.  As the design matures, hazards may be added or deleted, and additional 
hazard analysis performed. 

 The PHA provides an initial set of hazards early in the development cycle.  This allows 
safety engineering tasks to begin in a timely manner, avoiding costly design impacts later in 
the process.  The PHA is also required before software subsystem hazard analysis can begin.  
Those hazard causes residing in the software portion of a control system become the subject 
of the software subsystem hazard analysis.  It is important to reexamine software’s role 
and safety impact throughout the system development phases.  Software is often relied on 
to work around hardware problems encountered which result in additions and/or changes to 
functionality. 
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Figure F-1 Example Payload Hazard Report Form (from JSC) 

PAYLOAD HAZARD REPORT a.  NO:  

b.  PAYLOAD:  c.  PHASE:  
  

d.  SUBSYSTEM: e.  HAZARD GROUP: f.  DATE: 

   

g.  HAZARD TITLE: i.  HAZARD CATEGORY 
  

 
 

CATASTROPHIC 
 

CRITICAL 

h.  APPLICABLE SAFETY REQUIREMENTS: 
 
 

j.  DESCRIPTION OF HAZARD: 
 

k.  HAZARD CAUSES: 
 

l.  HAZARD CONTROLS: 
 

m.  SAFETY VERIFICATION METHODS: 
 

n.  STATUS OF VERIFICATION: 
  
  

o.  APPROVAL PAYLOAD ORGANIZATION SSP/ISS 

PHASE I   

PHASE II   

PHASE III   

JSC Form 542B (Rev November 22, 1999) (MS Word September 1997) 
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Appendix G Reliability Modeling 

G.1 Criteria for Selecting a Reliability Model 
Model validity.  How good is the model at accurately measuring the current failure 
rate?  At predicting the time to finish testing with associated date and cost?  At 
predicting the operational failure rate? 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Ease of measuring parameters.  What are the cost and schedule impacts for data 
(metrics) collection? How physically significant are the parameters to the software 
development process? 

Quality of assumptions.  How close are the model assumptions to the real world? Is 
the model adaptable to a special environment? 

Applicability.  Can the model handle program evolution and change in test and 
operational environments? 

Simplicity.  Is the model simple in concept, data collection, program implementation, 
and validation? 

Insensitivity to noise.  Is the model insensitive to insignificant changes in input data 
and parameters, without losing responsiveness to significant differences? 

Usefulness.  Does the model estimate quantities that are useful to project personnel? 

G.2 Issues and Concerns 
Ideally, one simple reliability model would be available, with great tool support, that would 
easily and accurately predict or estimate the reliability of the software under development.  
The current situation, however is that 

 Over 40 models have been published in the literature. 

 The accuracy of the models is variable. 

 You can’t know ahead of time which model is best for your situation. 

Some aspects of the models that are a cause for concern are: 

How accurate is the data collected during testing?  How easy is it to collect that data? 

Models are primarily used during the testing phase, which is late in the development 
cycle. 

Estimation of parameters is not always possible, and sometimes it is mathematically 
intractable. 

Reliable models for multiple systems have not been developed. 

There is no well-established criteria for model selection.  
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G.3 Tools 
In the last decade, tools have become available to aid in software reliability modeling.  Most 
of the established models have tools that support them.  Resources for information on 
available tools are: 

1.  “Applying Software Reliability Engineering in the 1990s”, W. Everett, S. Keene,  and 
A. Nikora,  IEEE Transaction on Reliability, Vol. 47, No. 3-SP, September 1998 

2. 

3. 

“Software Reliability Engineering Study of a Large-Scale Telecommunications 
Software System”, Carman et. al., Proc. 1995 International Symposium on Software 
Reliability Engineering, Toulouse, France, Oct. 1995, pp. 350-. 

MEADEP tool. http://www.meadep.com/ 

4. Reliability Modeling, Developed by C. Chay and W. Leyu, 
http://www.icaen.uiowa.edu/~ankusiak/reli.html 

G.4 Dissenting Views 
Not everyone agrees that software reliability modeling is a useful technique.  Some are 
concerned about the applicability of the models to real-world situations.  Most models assume 
random failures, but is that true?  The models do not usually address the fact that fixing a 
failure may add other errors to the software.  The fact that software is often “unique” (one-of-
a-kind) makes statistics about the error rates difficult to apply across a broad spectrum of 
programs.  Unlike hardware, you are dealing with one part, not one of many identical units. 

A critique of software reliability modeling is found in [53].  The authors assert that current 
models do not adequately deal with these factors: 

Difficulties in estimating Operational Profiles, such as the input distribution (what 
is input, when, in what order).  New software may have no history or customer base to 
use to determine typical operations.  It is non-trivial to determine how the system will 
be used, but such an operational profile is a key element for most reliability models. 

• 

• 

• 

• 

Problems with reliability estimation.  Inadequate test sets, failure to exercise each 
feature in testing, and skewed operational profile (critical functions may not be part of 
the “typical” profile) make reliability difficult to estimate accurately. 

Reliability estimation occurs near the end of development.  Individual component 
reliability is not known, just for the full system.  There is no information to feed back 
that may lead to process improvement and better reliability in future projects. 

Saturation effects lead to reliability overestimation.  Most testing techniques reach 
a saturation point past which they are unable to find defects.  These limits can lead to 
an overestimate of the software reliability. 
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G.5 Resources 
The following papers and websites provide useful information on software reliability 
modeling: 

“Software Reliability Assurance Handbook”, http://www.cs.colostate.edu/~cs630/rh/  

“Software Reliability Modeling Techniques and Tools”, Michael R. Lyu and Allen P. 
Nikora, ISSRE’93 Tutorial, November, 1993  http://techreports.jpl.nasa.gov/1993/93-
1886.pdf  

 

 “Software Reliability: To Use or Not To Use?”, a panel discussion chaired by Michael 
Lyu, http://www.stsc.hill.af.mil/crosstalk/1995/02/index.html 

 “Applying Software Reliability Engineering in the 1990s”, W. Everett, S. Keene,  and 
A. Nikora, IEEE Transaction on Reliability, Vol. 47, No. 3-SP, September 1998 

 “Software Reliability: Assumptions, Realities and Data”, Michel Defamie, Patrick 
Jacobs, and Jacques Thollembeck, Proceedings of the IEEE International Conference 
on Software Maintenance, 1998 

 “Software Reliability Engineering Study of a Large-Scale Telecommunications 
Software System”, Carman et. al., Proc. 1995 International Symposium on Software 
Reliability Engineering, Toulouse, France, Oct. 1995, pp. 350-. 

“Predicting Software Reliability”, Alan Wood, IEEE Computer, Vol. 29, No. 11, 
November 1996 

 

 “Software Metrics and Reliability”, Dr. Linda Rosenberg, Ted Hammer, and Jack 
Shaw, 
http://satc.gsfc.nasa.gov/support/ISSRE_NOV98/software_metrics_and_reliability.ht
ml 

“Reliability Modeling for Safety-Critical Software”, Norman F. Schneidewind, IEEE 
Transactions on Reliability, Vol. 46, No.1, March 1997, pp. 88-98 

 

 “Handbook of Software Reliability Engineering” (Book), Edited by Michael R. Lyu, 
Published by IEEE Computer Society Press and McGraw-Hill Book Company, 
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/ 
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Appendix H Checklists 

H.1 Checklist 1  for Off-the-Shelf (OTS) Items 

Item to consider Answer or Comment 

Does the OTS software fill the need in 
this system? Is its operational context 
compatible with the system under 
development?  Consider not only the 
similarities between the system(s) the OTS 
was designed for and the current system, 
but also the differences.  Look carefully at 
how those differences affect operation of 
the OTS software.   

 

How stable is the OTS product?  Are bug-
fixes or upgrades released so often that the 
product is in a constant state of flux?   

 

How responsive is the vendor to bug-
fixes?  Does the vendor inform you when a 
bug-fix patch or new version is available? 

 

How compatible are upgrades to the 
software?  Has the API changed 
significantly between upgrades in the past?  
Will your interface to the OTS software still 
work, even after an upgrade? 

 

How mature is the software technology?  
OTS software is often market driven, and 
may be released with bugs (known and 
unknown) in order to meet an imposed 
deadline or to beat the competition to 
market. 

 

Conversely, is the software so well known 
that it is assumed to be error free and 
correct?  Think about operating systems 
and language libraries.  In a safety-critical 
system, you do not want to assume there are 
no errors in the software.  
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Item to consider Answer or Comment 

What is the user base of the software?  If 
it is a general use library, with thousands of 
users, you can expect that most bugs and 
errors will be found and reported to the 
vendor.  Make sure the vendor keeps this 
information, and provides it to the users!  
Small software programs will have less of a 
“shake down” and may have more errors 
remaining. 

 

What level of documentation is provided 
with the software? Is there more 
information than just a user’s manual?  Can 
more information be obtained from the 
vendor (free or for a reasonable price)? 

 

Is source code included, or available for 
purchase at a reasonable price?  Will 
support still be provided if the source code 
is purchased or if the software is slightly 
modified? 

 

Can you communicate with those who 
developed the software, if serious 
questions arise?  Is the technical support 
available, adequate, and reachable?  Will 
the vendor talk with you if you modify the 
product? 

 

Will the vendor support older versions of 
the software, if you choose not to upgrade?  
Many vendors will only support the newest 
version, or perhaps one or two previous 
versions. 

 

Is there a well-defined API (Application 
Program Interface), ICD (interface control 
document), or similar documentation that 
details how the user interacts with the 
software?  Are there “undocumented” API 
functions? 

 

What are the error codes returned by the 
software?  How can it fail (return error 
code, throw an exception, etc.)?  Do the 
functions check input variables for proper 
range, or it is the responsibility of the user 
to implement? 
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Item to consider Answer or Comment 

Can you obtain information on the 
internals of the software, such as the 
complexity of the various software 
components or the interfaces between the 
components?  This information may be 
needed, depending on what analyses need to 
be performed on the OTS software. 

 

Can you get information about the 
software development process used to 
create the software?  Was it developed 
using an accepted standard (IEEE 12207, 
for example)?  What was the size of the 
developer team? 

 

What types of testing was the software 
subjected to?  How thorough was the 
testing?  Can you get copies of any test 
reports? 

 

Are there any known defects in the 
software?  Are there any unresolved 
problems with the software, especially if the 
problems were in systems similar to yours?  
Look at product support groups, 
newsgroups, and web sites for problems 
unreported by the vendor.  However, also 
keep in mind the source of the information 
found on the web – some is excellent and 
documented, other information is spurious 
and incorrect. 

 

Were there any analyses performed on 
the software, in particular any of the 
analyses described in Chapters 5 through 
10?  Formal inspections or reviews of the 
code?   

 

How compatible is the software with your 
system?  Will you have to write extensive 
glueware to interface it with your code?  
Are there any issues with integrating the 
software, such as linker incompatibility, 
protocol inconsistencies, or timing issues? 
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Item to consider Answer or Comment 

Does the software provide all the 
functionality required?  How easy is it to 
add any new functionality to the system, 
when the OTS software is integrated?  Will 
the OTS software provide enough 
functionality to make it cost-effective? 

 

Does the OTS-to-system interface require 
any modification?  For example, does the 
OTS produce output in the protocol used by 
the system, or will glueware need to be 
written to convert from the OTS to the 
system protocol? 

 

Does the software provide extra 
functionality? Can you “turn off” any of 
the functionality?  If you have the source 
code, can you recompile with defined 
switches or stubs to remove the extra 
functionality?  How much code space (disk, 
memory, etc.) does the extra software take 
up?  What happens to the system if an 
unneeded function is accidentally invoked? 
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H.2 Checklist 2  for Off-the-Shelf (OTS) Items  
Lessons learned from earlier projects using OTS software are useful.  The following checklist 
can be used to reduce the risk of using OTS software: 
 
No. Items To Be Considered Does It 

Apply? 
(yes/no) 

Planned Action 

1* Has the vendor’s facilities and processes been audited? 
Allow an audit of their facility and processes.  If for any reason 
an audit cannot be conducted then the OTS software is 
considered an unmitigated significant hazard, and as such, the 
OTS software may be inappropriate for the intended device. 

  

2* Are the verification and validation activities for the OTS 
appropriate? 
Demonstrate that the verification and validation activities 
performed for the OTS software are appropriate and sufficient to 
fulfill the safety and effectiveness requirements for the device. 

  

3* Can the project maintain the OTS independent of vendor 
support? 
Ensure that the project can maintain the OTS software even if the 
original developer ceases support. 

  

4 Does software contain interfaces, firewalls, wrappers, etc.? 
Consider interfaces, firewalls, wrappers and glue early in the 
process.  When creating wrappers avoid dependency on internal 
product interfaces and functionality or isolate the dependencies. 

  

4 Does software provide diagnostics? 
Look for built-in diagnostics and error handling. 

  

5 Any key products influencing choices? 
Identify key products (or strategies or standards) that can 
influence other choices before product evaluation. 

  

6 Has the software vendor been used before? 
Employ any past experience with vendor/product.  Ask for 
information from other projects.  Use databases of information, 
keeping in mind that the behavior of a product can change 
depending on how it is used. 

  

7 Is this the initial version? 
Do not buy a version 1.0. 

  

8 Have competitors been researched? 
Ask competitors of the products about the other products. 

  

9 Is the source code available? 
Consider buying the source code so you can perform your own 
testing.  Note that this is expensive and will usually require 
waiving technical support and/or the warranty. 

  

10 Are industry standard interfaces available? 
Ensure the product uses industry standard interfaces. 

  

11 Has product research been thorough? 
Base product selection on analysis of the facts. 
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No. Items To Be Considered Does It Planned Action 
Apply? 
(yes/no) 

12 Is the validation for the OTS driver software package 
available? 
Include the validation process for the OTS driver software 
package as part of the system interface validation process.  This 
includes the verification of the data values in both directions for 
the data signals; various mode settings for control signals in both 
directions (if applicable); and the input/output interrupt and 
timing functions of the driver with the CPU and operating 
system. 

  

13 Are there features that will not be used? 
Determine how to handle unused features. 

  

14 Have tools for automatic code generation been independently 
validated? 
Determine whether tools for automatic code generation have 
been independently validated.  OTS tool selection should follow 
the same process as component selection. 

  

15 Can previous configurations be recovered? 
Reevaluate each version and ensure that the previous 
configuration can be restored. 

  

16 Will a processor require a recompile? 
Perform a complete and comprehensive retest of the system 
replacing a processor that requires a recompile. 

  

17 Has a safety impact assessment been performed? 
Perform a safety impact assessment when new or modified OTS 
components are placed in a baselined system.  Document hazards 
in a Failure Modes and Effects Analysis (FMEA) table.  Ensure 
there is traceability between the hazard reports, the design 
requirements, and the test reports.  Analysis should include the 
review of known problem reports, user manuals, specifications, 
patches, literature and internet searches for other user’s 
experience with this OTS Software. 

  

18 Will the OTS tools affect safety? 
Keep in mind the tool’s purpose when selecting OTS tools.  
Determine whether the results are easy to verify and whether the 
results of the tool’s use will influence decisions that affect safety. 

  

19 Is the OTS being used for the proper application? 
Use OTS products for the purpose for which they were created. 

  

20 Is there compatibility between the OTS hardware and 
software? 
Realize that not all OTS hardware can run all OTS software. 

  

21 Does the vendor have ISO certification? 
Determine whether the vendor is ISO certified or has been 
awarded a SEI rating of 3 or higher.  This provides confidence 
that their development process is adequate. 

  

22 Does the vendor receive quality products from their 
suppliers? 
Ensure that vendors are aware that they are responsible for the 
product quality from their contractors and subcontractors. 

  

* A PROJECT WITH LIFE THREATENING HAZARDS MUST DO THESE ITEMS 
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H.3 Generic Software Safety Requirements From MSFC 
 

REQUIREMENT TO BE MET APPLICABILITY 

Yes/No/Partial 
ACTION 

Accept/Work 

The failure of safety-critical software functions shall be detected, isolated, 
and recovered from such that catastrophic and critical hazardous events are 
prevented from occurring. 

  

Software shall perform automatic Failure Detection, Isolation, and Recovery 
(FDIR) for identified safety-critical functions with a time to criticality under 
24 hours. 

  

  

The FDIR switch over software shall be resident on an available, non-failed 
control platform which is different from the one with the function being 
monitored. 

  

Override commands shall require multiple operator actions.   

Software shall process the necessary commands within the time to criticality 
of a hazardous event. 

  

Hazardous commands shall only be issued by the controlling application, or 
by the crew, ground, or controlling executive. 

  

Software that executes hazardous commands shall notify the initiating crew, 
ground operator, or controlling executive upon execution or provide the 
reason for failure to execute a hazardous command. 

  

Prerequisite conditions (e.g., correct mode, correct configuration, component 
availability, proper sequence, and parameters in range) for the safe execution 
of an identified hazardous command shall be met before execution. 

  

In the event that prerequisite conditions have not been met, the software shall 
reject the command and alert the crew, ground operators, or the controlling 
executive. 

  

Software shall make available status of all software controllable inhibits to 
the crew, ground operators, or the controlling executive. 

  

Software shall accept and process crew, ground operator, or controlling 
executive commands to activate/deactivate software controllable inhibits. 

  

Software shall provide an independent and unique command to control each 
software controllable inhibit. 

  

Software shall incorporate the capability to identify and status each software 
inhibit associated with hazardous commands. 

  

Software shall make available current status on software inhibits associated 
with hazardous commands to the crew, ground operators, or controlling 
executive. 

  

All software inhibits associated with a hazardous command shall have a 
unique identifier. 

  

Automatic recovery actions taken shall be reported to the crew, ground, or 
controlling executive.  There shall be no necessary response from crew or 
ground operators to proceed with the recovery action. 
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REQUIREMENT TO BE MET APPLICABILITY 

Yes/No/Partial 
ACTION 

Accept/Work 

Each software inhibit command associated with a hazardous command shall 
be consistently identified using the rules and legal values. 

  

If an automated sequence is already running when a software inhibit 
associated with a hazardous command is activated, the sequence shall 
complete before the software inhibit is executed. 

  

Software shall have the ability to resume control of an inhibited operation 
after deactivation of a software inhibit associated with a hazardous command. 

  

The state of software inhibits shall remain unchanged after the execution of 
an override. 

  

Software shall provide error handling to support safety-critical functions.   

Software shall provide caution and warning status to the crew, ground 
operators, or the controlling executive. 

  

Software shall provide for crew/ground forced execution of any automatic 
safing, isolation, or switch over functions. 

  

Software shall provide for crew/ground forced termination of any automatic 
safing, isolation, or switch over functions. 

  

Software shall provide procession for crew/ground commands in return to the 
previous mode or configuration of any automatic safing, isolation, or switch 
over function. 

  

Software shall provide for crew/ground forced override of any automatic 
safing, isolation, or switch over functions. 

  

Software shall provide fault containment mechanisms to prevent error 
propagation across replaceable unit interfaces. 

  

Hazardous payloads shall provide failure status and data to core software 
systems.  Core software systems shall process hazardous payload status and 
data to provide status monitoring and failure annunciation. 

  

Software (including firmware) Power On Self Test (POST) utilized within 
any replaceable unit or component shall be confined to that single system 
process controlled by the replaceable unit or component. 

  

Software (including firmware) POST utilized within any replaceable unit or 
component shall terminate in a safe state. 

  

Software shall initialize, start, and restart replaceable units to a safe state.   

For systems solely using software for hazard risk mitigation, software shall 
require two independent command messages for a commanded system action 
that could result in a critical or catastrophic hazard. 

  

Software shall require two independent operator actions to initiate or 
terminate a system function that could result in a critical hazard. 

  

Software shall require three independent operator actions to initiate or 
terminate a system function that could result in a catastrophic hazard. 

  

Operational software functions shall allow only authorized access.   

Software shall provide proper sequencing (including timing) of safety-critical   
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REQUIREMENT TO BE MET APPLICABILITY 

Yes/No/Partial 
ACTION 

Accept/Work 

commands. 

Software termination shall result in a safe system state.   

In the event of hardware failure, software faults that lead to system failures, 
or when the software detects a configuration inconsistent with the current 
mode of operation, the software shall have the capability to place the system 
into a safe state. 

  

When the software is notified of or detects hardware failures, software faults 
that lead to system failures, or a configuration inconsistent with the current 
mode of operation, the software shall notify the crew, ground operators, or the 
controlling executive. 

  

Hazardous processes and safing processes with a time to criticality such that 
timely human intervention may not be available, shall be automated (i.e., not 
require crew intervention to begin or complete). 

  

The software shall notify crew, ground, or the controlling executive during or 
immediately after execution of an automated hazardous or safing process. 

  

Unused or undocumented codes shall be incapable of producing a critical or 
catastrophic hazard. 

  

All safety-critical elements (requirements, design elements, code components, 
and interfaces) shall be identified as "safety-critical." 

  

An application software set shall ensure proper configuration of inhibits, 
interlocks, and safing logic, and exception limits at initialization. 
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H.4 Design for Safety Checklist 
 
From a  paper given at a talk to the Forth Interest Group (UK) in London during May 1992.  
Paul E. Bennett. 

• Keep the design simple and highly modular.  Modularity aids in the isolation of 
systematic failure modes. 

• Minimize common failure modes.  The calculation time for failure probabilities can be 
extended as by the cube of common mode entries in a fault tree. [GB: This means that  
the more common failure modes there are, the longer it takes to calculate the failure 
probabilities.] 

• Identify safe states early in the design.  Have these fully checked and verified for 
completeness and correctness. 

• Ensure that failures of dynamic system activities result in the system achieving a 
known and clearly identified safe state within a specified time limit. 

• Specify system interfaces clearly and thoroughly.  Include, as part of the 
documentation, the required action or actions should the interface fail. 

• Diagrams convey the most meaning.  They can often achieve more than words alone 
and should be used when presenting design ideas to the customer. 

• Design all systems using the same methodologies framework wherever possible.  A 
well practiced craft helps minimize errors. 

 
© Paul E. Bennett. 1992, 1999 
® All rights reserved Paul E. Bennett 1992. 
Paul E. Bennett can be reached at PEB@amleth.demon.co.uk, website http://www.amleth.demon.co.uk/ 
No liability whatsoever is accepted by Paul E. Bennett for any errors or omission in the 
presented material as published.  
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H.5 Checklist of generic (language independent) programming practices 
Derived from NUREG/CR-6463, appendix B, "Review Guidelines on Software languages for 
Use in Nuclear Power Plant Safety Systems" Final Report. 

• Minimize use of dynamic memory.  Using dynamic memory can lead to memory 
leaks.  To mitigate the problem, release allocated memory as soon as possible.  Also 
track the allocations and deallocations closely. 

• Minimize memory paging and swapping.  In a real-time system, this can cause 
significant delays in response time. 

• Avoid goto’s.  Goto’s make execution time behavior difficult to fully predict as well 
as introducing uncertainty into the control flow.  When used, clearly document the 
control flow, the justification for using goto’s, and thoroughly test them. 

• Minimize control flow complexity.  Excessive complexity makes it difficult to predict 
the program flow and impedes review and maintenance.  Project guidelines or coding 
standards should set specific limits on nesting levels. 

• Initialize variables before use!  Using uninitialized variables can cause anomalous 
behavior.  Using uninitialized pointers can lead to exceptions or core dumps.   

• In larger routines, use single entry and exit points in subprograms.  Multiple entry or 
exit points introduce control flow uncertainties.  In small subprograms, multiple exit 
points may actually make the routine more readable, and should be allowed.  
Document any secondary entry and exit points. 

• Minimize interface ambiguities.  Interface errors account for many design and coding 
errors.  Look at the interfaces to hardware, other software, and to human operators. 

• Use data typing.  If the language does not enforce it, include it in the coding standards 
and look for it during formal inspections. 

• Provide adequate precision and accuracy in calculations, especially within safety-
critical components. 

• Use parentheses to specify precedence order, rather than relying on the order inherent 
in the language.  Assumptions about precedence often lead to errors, and the source 
code can be misinterpreted when reviewing it. 

• Avoid functions or procedures with side effects.  Side effects can lead to unplanned 
dependencies, and ultimately to bugs. 

• Separate assignments from evaluation statements.  Mixing them can cause 
unanticipated side effects.  An example of a mixed assignment/evaluation statement is:  

• y = toupper(x=getchar()); // x=getchar() should be on separate line 

• Instrumentation (debugging statements, etc) should be highly visible.  If left in the 
run-time system, it should be minimized to avoid timing perturbations.  Visibility 
allows the “real code” to be obvious when the source code is reviewed, and it makes it 
easier to be sure all instrumentation is removed for the run-time system. 
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• Minimize dynamic binding.  Dynamic binding is a necessary part of polymorphism.  
When used, it should be justified.  Keep in mind that it causes unpredictability in 
name/class association and reduces run-time predictability. 

• Be careful when using operator overloading.  While it can help achieve uniformity 
across different data types (which is good), it can also confuse the reader (and 
programmers) if used in a non-intuitive way.   

• Use tasking with care.  While it adds many good features to programs (e.g. splitting 
the work into logical units, each of which can be tested independently),  it can also 
lead to timing uncertainties, sequence of execution uncertainties, vulnerability to race 
conditions, and deadlocks.   

• Minimize the use of interrupt driven processing.  Interrupts lead to non-deterministic 
response times, which is very important in real-time systems.  The best way to handle 
this is to have the interrupt processing do the bare minimum, and return to primary 
program control as soon as possible.  Check how the operating system does time 
slicing (usually using clock interrupts), and what overhead or problems may be 
inherent in their implementation. 

• Handle exceptions locally, when possible.  Local exception handling helps isolate 
problems more easily and more accurately.  If it is not possible to do this, then 
thorough testing and analysis to verify the software’s behavior during exception 
testing is recommended. 

• Check input data validity.  Checking reduces the probability of incorrect results, which 
could lead to further errors or even system crashes.  If the input can be “trusted”, then 
checking is not necessary. 

• Check the output data validity, if downstream input checking is not performed.  This 
reduces incorrect results, which can have mild to major effects on the software. 

• Control the use of built-in functions through project specific guidelines.  Built-in 
functions (usually in the language library) have unknown internal structure, 
limitations, precision, and exception handling.  Thoroughly test the functions that will 
be used, use a certified compiler, or review formal testing done on the compiler. 

• Create coding standards for naming, indentation, commenting, subprogram size, etc.  
These factors affect the readability of the source code, and influence how well reviews 
and inspections can find errors. 

• When doing mixed-language programming, separate out the “foreign” code, to 
enhance readability.  Also document it well, including the justification.  Mixed-
language programming should be used only when necessary (such as accessing 
hardware with C, from a Java program). 

• Use single purpose functions and procedures.  This facilitates review and maintenance 
of the code.   

• Use each variable for a single purpose only.  “Reusing” a variable (usually a local) 
makes the source code confusing to read and maintain.  If the variable is named 
properly for its original purpose, it will be misnamed for the new purpose. 
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• If the hardware configuration may change, for this project or in the future, isolate 
hardware-dependent code. 

• Check for dead code.  Unreachable code may indicate an error.  It also causes 
confusion when reading the code. 

• Use version control tools (configuration management). 

• Utilize a bug tracking tool or database.  Once a bug is found, it should be tracked until 
eliminated.  Bug databases are also good sources to use when creating checklists for 
code inspections. 

• Avoid large if-then-else and case statements.  Such statements are extremely difficult 
to debug, because code ends up having so many different paths.  The difference 
between best-case and worst-case execution time becomes significant.  Also, the 
difficulty of structured code coverage testing grows exponentially with the number of 
branches. 

• Avoid implementing delays as no-ops or empty loops.  If this code is used on a 
different processor, or even the same processor running at a different rate (for 
example, a 25MHz vs. 33MHz CPU), the code may stop working or work incorrectly 
on the faster processor. 
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H.6 Checklist of assembly programming practices for safety 
 

• Use the macro facility of the assembler, if it exists, to simplify the code and make it 
more readable.  Use if/else and loop control of the macro facility. 

• If using labels, make the names meaningful.  Label1 is not meaningful. 

• Be careful to check the base of numbers (decimal, octal, hexadecimal) 

• Use comments to describe WHAT the procedure or section is meant to do.  It is not 
always clear from the assembly code. 

• Update comments when the code changes, if the intent of the procedure or section 
changes as well. 

• Use named code segments if possible.  Consider separate segments for reset, non-
volatile memory initialization, timer interrupts, and other special-purpose code 
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H.7 Checklist of Ada programming practices for safety  
Guidelines for Ada programming can be found in the book “Ada 95, Quality and Style: 
Guidelines for Professional Programmers, Vol. 134”.  The checklist below lists some common 
errors to look for. 

• Reading Uninitialized variables.  Access values are always initialized to null, but 
other types are not specifically given an initial value and might have an arbitrary set of 
"garbage" bits set  

• Off-by-one boundary conditions (for loop conditions, array indexing, and 
comparisons).  This is the error of having almost the right boundary.  For example, did 
you use < when you meant <=?  

• Access type (pointer) and storage management errors (especially boundary conditions 
like null lists).  

• Incorrect return values handling.  For example, if a function returns a range, make 
sure every value in the range will be handled appropriately by your program.  

• Incorrect special condition handling.  Have you handled all cases? If you're reading 
from a sensor, do you deal with bogus sensor values? Do you handle all appropriate 
exceptions?  

• Incorrect array bound handling.  An array's lower bound is not always one, so use 
'First, 'Last, 'Length, and 'Range when you're passed an array.  

• Instantiated unconstrained arrays.  Arrays with large array indices (like Integer or 
Positive), or records containing them, must have their bounds set. 

• Missing "reverse" keyword in a backward "for" loop.  

• Tasks exposed to unexpected exceptions.  If a task does not catch exceptions the task 
will terminate on one.  

• Invalid fairness assumptions in tasking.  Some tasking operations are not guaranteed 
to be "fair".  For example, in a selective wait with several open alternatives, Ada is 
free to pick between any of them each time; it need not pick between them "fairly".  
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H.8 Checklist of C programming practices for safety 
Derived from NUREG/CR-6463, appendix B.  Refer to generic list (H.5) as well. 
 

• Limit the number and size of parameters passed to routines.  Too many parameters 
affect readability and testability of the routine.  Large structures or arrays, if passed by 
value, can overflow the stack, causing unpredictable results.  Always pass large 
elements via pointers. 

• Use recursive functions with great care.  Stack overflows are common.  Verify that 
there is a finite recursion! 

• Utilize functions for boundary checking.  Since C does not do this automatically, 
create routines that perform the same function.  Accessing arrays or strings out-of-
bounds is a common problem with unpredictable, and often major, results. 

• Do not use the gets function, or related functions.  These do not have adequate limit 
checks.  Writing your own routine allows better error handling to be included. 

• Use memmove, not memcpy.  Memcpy has problems if the memory overlaps. 

• Create wrappers for built-in functions to include error checking. 

• If “if…else if…else if…” gets beyond two levels, use a switch…case instead.  This 
increases readability. 

• When using switch…case, always explicitly define default.  If a break is omitted, to 
allow flow from one case to another, explicitly document it. 

• Initialize local (automatic) variable.  They contain garbage before explicit 
initialization.  Pay special attention to pointers, since they can have the most 
dangerous effects. 

• Initialize global variables in a separate routine.  This ensures that variables are 
properly set at warm reboot. 

• Check pointers to make sure they don’t reference variables outside of scope.  Once a 
variable goes out of scope, what it contains is undefined. 

• Only use setjmp and longjmp for exception handling.  These commands jump outside 
function boundaries and deviate from normal control flow. 

• Avoid pointers to functions.  These pointers cannot be initialized and may point to 
non-executable code.  If they must be used, document the justification. 

• Prototype all functions and procedures!  This allows the compiler to catch errors, 
rather than having to debug them at run-time.  Also, when possible, use a tool or other 
method to verify that the prototype matches the function. 

• Minimize interface ambiguities, such as using expressions as parameters to 
subroutines, or changing the order of arguments between similar functions.  Also 
justify (and document) any use of functions with an indefinite number of arguments.  
These functions cannot be checked by the compiler, and are difficult to verify. 
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• Do no use ++ or – operators on parameters being passed to subroutines or macros.  
These can create unexpected side effects. 

• Use bit masks instead of bit fields, which are implementation dependent. 

• Always explicitly cast variables.  This enforces stronger typing.  Casting pointers from 
one type to another should be justified and documented. 

• Avoid the use of typedef’s for unsized arrays.  This feature is badly supported and 
error-prone. 

• Avoid mixing signed and unsigned variables.  Use explicit casts when necessary. 

• Don’t compare floating point numbers to 0, or expect exact equality.  Allow some 
small differences due to the precision of floating point calculations. 

• Enable and read compiler warnings.  If an option, have warnings issued as errors.  
Warnings indicate deviation that may be fine, but may also indicate a subtle error. 

• Be cautious if using standard library functions in a multitasking environment.  Library 
functions may not be re-entrant, and could lead to unspecified results. 

• Do not call functions within interrupt service routines.  If it is necessary to do so, 
make sure the functions are small and re-entrant. 

• Avoid the use of the ?: operator.  The operator makes the code more difficult to read.  
Add comments explaining it, if it is used. 

• Place #include directives at the beginning of a file.  This makes it easier to know what 
files are actually included.  When tracing dependencies, this information is needed. 

• Use #define instead of numeric literals.  This allows the reader or maintainer to know 
what the number actually represents (RADIUS_OF_EARTH_IN_KM, instead of 
6356.91).  It also allows the number to be changed in one place, if a change is 
necessitated later. 

• Do not make assumptions about the sizes of dependent types, such as int.  The size is 
often platform and compiler dependent. 

• Avoid using reserved words or library function names as variable names.  This could 
lead to serious errors.  Also, avoid using names that are close to standard names, to 
improve the readability of the source code. 
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H.9 Checklist of C++ programming practices for safety 
Derived from NUREG/CR-6463, appendix B.  Refer to generic list (H.5) as well.  Also, as 
C++ is a superset of the C language, refer to that checklist (H.8) for C-type errors. 

• Always pass large parameters (structures, arrays, etc.) via reference.  If it will not be 
changed, pass it as const.   

• Group related parameters within a class, to minimize the number of parameters to be 
passed to a routine. 

• Avoid multiple inheritance, which can cause ambiguities and maintenance problems. 

• When overloading an operator, make sure that its usage is natural, not clever.  Obscure 
overloading can reduce readability and induce errors.  Using + to add two structures is 
natural.  Using + with structures to perform a square of each element is not natural. 

• Explicitly define class operators (assignment, etc.).  Declare them private if they are 
not to be used.   

• For all classes, define the following:  Default constructor, copy constructor, destructor, 
operator=.   

• Declare the destructor virtual.  This is necessary to avoid problems if the class is 
inherited. 

• Use throw and catch for exception handling, not C’s setjmp and longjmp, which are 
difficult to recover from. 

• Avoid pointers to members.  These unnecessarily complicate the code. 

Use const variables and functions whenever possible.  When something should not 
change, or a function should not change anything outside of itself, use const. 

• 

From the High Integrity Software Systems Assurance (HISSA) group of the National Institute 
of Standards and Technology (NIST) [http://hissa.ncsl.nist.gov/effProject/handbook/c++/]: 

Errors associated with Variables 

• Over estimation of predefined type's size.(In C++ there is no guarantee that a 
particular type has a particular number of bits)  

• Inadequate floating point precision or accuracy 

• No initialization of variable before use 

• Pointer initialization errors  

• Input data out of range 

• Incorrect use of global variables 

• Function's output data needs more processing before reuse  

• Inappropriate variable type conversion especially with use of pointers (e.g., pointer 
casting to a different type of pointer) 
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• Multiple declarations of one identifier with several types 

• Mixing signed and unsigned variables 

• Reuse of variables without reinitialization 

• Use of reserved words 

Errors associated with Memory 

• Violation of available memory restrictions 

• Allocating memory without subsequently freeing it 

• Attempting to access memory that has not been allocated 

• Utilizing memory that has already been freed 

• Insufficient memory to meet dynamic memory requirement 

• Errors due to improper attention to dynamic memory allocation functions’ different 
services that depend on the value of input parameter 

• Memory leaks due to non-use of class destructor or improper constructors or other 
functions that may cause leaks 

• Unauthorized use of memory blocks 

• Stack overflow due to passing of many parameters or large structures 

• Stack overflow due to unbounded recursive function calls 

• Overlapping source and destination memory areas used with memory related functions  

• Use of memory related functions without bounds checking 

• Out of bounds array index 

• System running on unreliable data 

Errors associated with Control Flow 

• Improper use of error associated instructions like goto, setjmp, longjmp 

• Use of complicated control flow (many if …else if …else if statements)  

• Mismatch between if and else 

• Forgotten default case in a switch statement 

• Forgotten break when using switch 

• Dead code inside the switch construct that does not belong to any of specified branch 

• Control flow uncertainty due to multiple entry and exit points in subprograms  

• Inappropriate use of throw and catch exception handling mechanism 

• Interface errors (e.g., inaccurately ordering or reversing the order of parameters passed 
to a function) 
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• Inappropriate use of functions that accept indefinite number of parameters 

• Parameters of incompatible type with the function prototype 

• Incorrect precedence assumptions 

• Inappropriate expression calculation in function or macro parameter  

• Uncertainties in execution, timing and resource utilization due to multitasking 

Errors associated with Functions 

• Unwanted side effects in a function 

• Improper use of the same function for assignment and evaluation 

• Improper use of built in functions and/or compiled libraries 

• Inappropriate evaluation of expressions in parameter list (e.g., in 
"CalcArea(length=2,width=length+2)" width's evaluation may lead to unintended 
error) 

• Unwanted implicit calls to the default constructor, copy constructor, destructor, or 
other compiler supplied function 

• Errors due to too many functional dependences 

Errors associated with Operators 

• Undefined expressions due to inappropriate use of increment (++) and decrement (- -) 
operators  

• Incorrect precedence assumption for operators 

• Inappropriate behavior of default class operators such as operators =, operator&, and 
operator, (i.e., operator-comma) 

• Errors due to inconsistency of pointer operators 
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H.10 Checklist of Fortran programming practices for safety 
Derived from NUREG/CR-6463, appendix B.  Refer to generic list (H.5) as well. 

• Unreachable code.  This reduces the readability and therefore maintainability. 

• Unreferenced labels.  Confuses readability. 

• The EQUIVALENCE statement except with the project manager's permission.  This 
statement is responsible for many questionable practices in Fortran giving both 
reliability and readability problems.  Permission should not be given lightly.  A really 
brave manager will unequivocally forbid its use.  Some programming standards do 
precisely this. 

• Implicit reliance on SAVE.  (This prejudices re-usability).  A particular nasty problem 
to debug.  Some compilers give you SAVE whether you specify it or not.  Moving to 
any machine which implements the ANSI definition from one which SAVE's by 
default may lead to particularly nasty run and environment sensitive problems.  This is 
an example of a statically detectable error which is almost impossible to find in a 
source debugger at run-time. 

• The computed GOTO except with the project manager's permission.  Often used for 
efficiency reasons when not justified.  Efficiency should never precede clarity as a 
programming goal.  The motto is "tune it when you can read it". 

• Any Hollerith.  This is non-ANSI, error-prone and difficult to manipulate. 

• Non-generic intrinsics.  Use generic intrinsics only on safety grounds.  For example, 
use REAL() instead of FLOAT(). 

• Use of the ENTRY statement.  This statement is responsible for unpredictable 
behavior in a number of compilers.  For example, the relationship between dummy 
arguments specified in the SUBROUTINE or FUNCTION statement and in the 
ENTRY statements leads to a number of dangerous practices which often defeat even 
symbolic debuggers. 

• BN and BZ descriptors in FORMAT statements.  These reduce the reliability of user 
input. 

• Mixing the number of array dimensions in calling sequences.  Although commonly 
done, it is poor practice to mix array dimensions and can easily lead to improper 
access of n-dimensional arrays.  It also inhibits any possibility of array-bound 
checking which may be part of the machine's environment.  Unfortunately this 
practice is very widespread in Fortran code. 

• Use of BLANK='ZERO' in I/O.  This degrades the reliability of user input.  

• Putting DO loop variables in COMMON.  Forbidden because they can be 
inadvertently changed or even lead to bugs in some optimizing compilers. 
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• Declarations like REAL R(1).  An old-fashioned practice which is frequently abused 
and leads almost immediately to array-bound violations whether planned or not.  
Array-bound violations are responsible for a significant number of bugs in Fortran. 

• Passing an actual argument more than once in a calling sequence.  Causes reliability 
problems in some compilers especially if one of the arguments is an output argument. 

• A main program without a PROGRAM statement.  Use of the program statement 
allows a programmer to give a module a name avoiding system defaults such as main 
and potential link clashes. 

• Undeclared variables.  Variables must be explicitly declared and their function 
described with suitable comment.  Not declaring variables is actually forbidden in C 
and C++. 

• The IMPLICIT statement.  Implicit declaration is too sweeping unless it is one of the 
non-standard versions such as IMPLICIT NONE or IMPLICIT UNDEFINED. 

• Labeling any other statement but FORMAT or CONTINUE.  Stylistically it is poor 
practice to label executable statements as inserting code may change the logic, for 
example, if the target of a DO loop is an executable statement.  This latter practice is 
also obsolescent in Fortran 90. 

• The DIMENSION statement.  It is redundant and on some machines improperly 
implemented.  Use REAL etc. instead. 

• READ or WRITE statements without an IOSTAT clause.  All READ and WRITE 
statements should have an error status requested and tested for error-occurrence. 

• SAVE in a main program.  It merely clutters and achieves nothing. 

• All referenced subroutines or functions must be declared as EXTERNAL.  All 
EXTERNALS must be used.  Unless EXTERNAL is used, names can collide 
surprisingly often with compiler supplied non-standard intrinsics with strange results 
which are difficult to detect.  Unused EXTERNALS cause link problems with some 
machines, leading to spurious unresolved external references. 

• Blank COMMON.  Use of blank COMMON can conflict with 3rd. party packages 
which also use it in many strange ways.  Also the rules are different for blank 
COMMON than for named COMMON. 

• Named COMMON except with the project manager's permission.  COMMON is a 
dangerous statement.  It is contrary to modern information hiding techniques and used 
freely, can rapidly destroy the maintainability of a package.  The author has bitter, 
personal experience of this ! Some company's safety-critical standards for Fortran 
explicitly forbid its use. 

• Use of BACKSPACE, ENDFILE, REWIND, OPEN, INQUIRE and CLOSE.  
Existing routines for each of these actions should be designed and must always be 
used.  Many portability problems arise from their explicit use, for example, the 
position of the file after an OPEN is not defined.  It could be at the beginning or the 
end of the file.  The OPEN should always therefore be followed by a REWIND, which 
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has no effect if the file is already positioned at the beginning.  OPEN and INQUIRE 
cause many portability problems, especially with sequential files. 

• DO loops using non-INTEGER variables.  The loop may execute a different number 
of times on some machines due to round-off differences.  This practice is obsolescent 
in Fortran 90. 

• Logical comparison of non-INTEGERS.  Existing routines for this should be designed 
which understand the granularity of the floating point arithmetic on each machine to 
which they are ported and must always be used.  Many portability problems arise from 
its explicit use.  The author has personal experience whereby a single comparison of 
two reals for inequality executed occasionally in a 70,000 line program caused a very 
expensive portability problem. 

• Any initialization of COMMON variables or dummy arguments is forbidden inside a 
FUNCTION, (possibility of side-effects).  Expression evaluation order is not defined 
for Fortran.  If an expression contains a function which affects other variables in the 
expression, the answer may be different on different machines.  Such problems are 
exceedingly difficult to debug.  

• Use of explicit unit numbers in I/O statements.  Existing routines to manipulate these 
should be designed and must always be used.  Many portability problems arise from 
their explicit use.  The ANSI standard only requires them to be non-negative.  What 
they are connected to differs wildly from machine to machine.  Don't be surprised if 
your output comes out on a FAX machine ! 

• CHARACTER*(N) where N>255.  A number of compilers do not support character 
elements longer than 255 characters.  

• FORMAT repeat counts > 255.  A number of compilers do not support FORMAT 
repeat counts of more than 255. 

• COMMON blocks called EXIT.  On one or two machines, this can cause a program to 
halt unexpectedly. 

• Comparison of strings by other than the LLE functions.  Only a restricted collating 
sequence is defined by the ANSI standard.  The above functions guarantee portability 
of comparison. 

• Using the same character variable on both sides of an assignment.  If character 
positions overlap, this is actually forbidden by the standard but some compilers allow 
it and others don't.  It should simply be avoided.  The restriction has been removed in 
Fortran 90. 

• Tab to a continuation line.  Tabs are not part of the ANSI Fortran definition.  They are 
however easily removable if used only to code lines and for indentation.  If they are 
also used for continuation (like the VAX for example), it means they become syntactic 
and if your compiler does not support them, removing them is non-trivial. 

• Use of PAUSE.  An obsolescent feature with essentially undefined behavior. 
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• Use of '/' or '!' in a string initialized by DATA.  Some compilers have actually 
complained at this ! 

• Using variables in PARAMETER, COMMON or array dimensions without typing 
them explicitly before such  use. e.g.  PARAMETER (R=3)  INTEGER R  Some 
compilers get it wrong. 

• Use of CHAR or ICHAR.  These depend on the character set of the host.  Best to map 
onto ASCII using wrapper functions, but almost always safe today. 

• Use of ASSIGN or assigned GOTO.  An obsolescent feature legendary for producing 
unreadable code. 

• Use of Arithmetic IF.  An obsolescent feature legendary for producing unreadable 
code. 

• Non-CONTINUE DO termination.  An obsolescent feature which makes enhancement 
more difficult. 

• Shared DO termination for nested DO loops.  An obsolescent feature which makes 
enhancement more difficult. 

• Alternate RETURN.  An obsolescent feature which can easily produce unreadable 
code. 

• Use of Fortran keywords or intrinsic names as identifier names.  Keywords may be 
reserved in future Fortran standards.  The practice also confuses readability, for 
example, IF (IF(CALL)) STOP=2 Some people delight in this sort of thing.  Such 
people do not take programming seriously. 

• Use of the INTRINSIC statement.  The ANSI standard is particularly complex for this 
statement with many exceptions.  Avoid. 

• Use of END= or ERR= in I/O statements.  (IOSTAT should be used instead).  Using 
END= and ERR= with associated jumps leads to unstructured and therefore less 
readable code. 

• Declaring and not using variables.  This just confuses readability and therefore 
maintainability. 

• Using COMMON block names as general identifiers, where use of COMMON has 
been approved.  This practice confuses readability and unfortunately, compilers from 
time to time. 

• Using variables without initializing them.  Reliance on the machine to zero memory 
for you before running is not portable.  It also produces unreliable effects if character 
strings are initialized to zero, (rather than blank).  Always initialize variables 
explicitly. 

• Use of manufacturer specific utilities unless specifically approved by the project 
manager.  This simply reduces portability, in some cases pathologically. 
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• Use of non-significant blanks or continuation lines within user-supplied identifiers.  
This leads both to poor readability and to a certain class of error when lists are parsed, 
(it may have been a missing comma). 

• Use of continuation lines in strings.  It is not clear if blank-padding to the end of each 
partial line is required or not. 

• Passing COMMON block variables through COMMON and through a calling 
sequence.  This practice is both illegal and unsafe as it may confuse optimizing 
compilers and in some compilers simply not work.  It is a very common error. 

• An IF..ELSEIF block IF with no ELSE.  This produces a logically incomplete 
structure whose behavior may change if the external environment changes.  A frequent 
source of "unexpected software functionality". 

• DATA statements within subroutines or functions.  These can lead to non-reusability 
and therefore higher maintenance and development costs.  If constants are to be 
initialized, use PARAMETER. 

• DO loop variables passed as dummy arguments. 

• Equivalencing any arrays other than at their base, even if use of EQUIVALENCE has 
been approved.  Some machines still have alignment problems and also modern RISC 
platforms rely on good alignment for efficiency.  So at best, it will be slow and at 
worst, it will be wrong. 

• Equivalencing any variable with COMMON, even if use of EQUIVALENCE and 
COMMON has been approved.  This rapidly leads to unreadable code. 

• Type conversions using the default rules, either in DATA or assignment statements.  
Type conversions should be performed by the programmer - state what you mean.  For 
example: R = I Wrong R = REAL(I) Right 

• Use of mixed-type arithmetic in expressions. 

• Use of precedence in any kind of expression.  Parenthesize to show what you mean.  
Although Fortran precedence is relatively simple compared with C which has 15 
levels of precedence, it is still easy to get it wrong. 

• Concatenated exponentiation without parenthesizing, e.g. a**b**c.  People too often 
forget what this means.  Exponentiation associates from the right. 

• Calling sequence matching.  Make sure that calling sequence arguments match in type 
number and direction.  Inconsistencies here are responsible for many unreliability 
problems in Fortran. 
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H.11 Checklist of Pascal programming practices for safety 
Derived from NUREG/CR-6463, appendix B.  Refer to generic list (H.5) as well. 

• If using pointers, use handles whenever possible.  Handles allow the memory 
management to recapture and compact free memory. 

• Use care with multiple-condition flow statements.  The order of evaluation cannot be 
guaranteed. 

• Isolate interrupt receiving tasks into implementation dependent packages.  Pass the 
interrupt to the main tasks via a normal entry.  Interrupt entries are implementation 
dependent features that may not be supported. 

• Use symbolic constants instead of numeric literals.  This increases readability and 
maintainability. 

• Avoid the use of the mod operator.  Not all compilers follow the Standard, and this 
will create portability problems. 
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H.12 Checklist for Visual Basic 
From “An Evaluation of Object-Based Programming with Visual Basic”, James M. Dukovic 
and Daniel T. Joyce, 0-7803-2492-7/95 IEEE 
 

1. If you want to add a public function or subroutine to a form, place it in a code module 
having the same name as the form.  Place private functions and subroutines inside the 
general procedure section of the form.  This is required because general procedures 
inside forms are not visible to other objects. 

2. Do not use global variables.  Use procedure-level variables for temporary variables 
and module-level variables for object data.  This will require you to pass parameters to 
all methods ensuring a cleaner interface. 

3. Do not use the static statement to declare variables or procedures.  Use module-level 
variables for all object data.  Static variables can become lost in your code. 

4. Create handles to access properties declared in code modules.  You may access 
properties in forms and controls directly.  This will help hide the implementation of 
the object. 

5. Code modules should be objects.  They should have data and methods (subroutines 
and functions) to access and manipulated the data.  Use object-oriented design 
techniques to define your objects. 

6. Forms should only contain code that is unique to the form.  Most code should be 
placed in modules.  Forms are likely to change.  Modules are much more stable. 

7. Set the Visual Basic Environment Option called Require Variable Declaration to Yes.  
This will force you to declare variables explicitly.  It does not, however, force you to 
specify a type. 

8. Explicitly declare data types for all variables and functions.  This will improve 
readability and reduce the risk of data type errors. 

9. Hide the implementation of an object as much as possible.  The object’s interface 
should reveal as little about the implementation and underlying data structure as 
possible.  This will allow you to make changes to an object without impacting other 
objects. 

10. Avoid using environment specific parameters in the object’s interface.  For example, 
small, medium or large is preferable to passing pixels or twips. 

11. Use the variant data type sparingly.  Although it allows a form of parametric 
polymorphism, the resultant code can be difficult to understand and its use will 
increase the risk of data type errors. 

12. Declare subroutines and functions as private whenever possible.  Subroutines and 
functions should only be public if they are used by other objects.  This will make the 
code more readable and it will prevent other objects from accessing private methods 
directly. 
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13. Document your interfaces at the top of each method.  Include variable types, sizes, and 
allowable values. 

14. Use standard objects whenever possible.  For example, use message boxes and 
dialogue boxes instead of creating specific forms. 

15. Do not use the OptionBase statement to alter the lower bound of array subscripts.  
Altering the lower bound may make reuse more difficult. 

16. Design your objects with weak coupling.  That is, create your object so its dependency 
on other objects is minimal.  This will make it easier to understand your objects. 
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H.13 Checklist for selecting an RTOS 
From “Selecting a Real-Time Operating System”, Greg Hawley, Embedded Systems 
Programming, March, 1999 
Criteria Considerations 

Language/Microprocessor 
Support 

The first step in finding an RTOS for your project is to look at those vendors 
supporting the language and microprocessor you’ll be using. 

Tool Compatibility Make sure your RTOS works with your ICE, compiler, assembler, linker, and 
source code debuggers. 

Services Operating systems provide a variety of services.  Make sure your OS supports the 
services (queues, times, semaphores) you expect to use in your design. 

Footprint RTOSes are often scalable, including only those services you end up needing in 
your applications.  Based on what services you’ll need, and the number of tasks, 
semaphores, and everything else you expect to use, make sure your RTOS will 
work in the RAM and ROM you have 

Performance Can your RTOS meet your performance requirements? Make sure you understand 
benchmarks vendors give you and how they apply to the hardware you will really 
be using. 

Software Components Are required components (protocol stacks, communications services, real-time 
databases, Web services, virtual machines, graphics libraries, and so on) available 
for your RTOS? How much effort will it be to integrate them? 

Device Drivers If you’re using common hardware, are device drivers available for your RTOS? 

Debugging Tools RTOS vendors may have debugging tools that help find defects that are harder to 
find with source-level debuggers (such as deadlocks, forgotten semaphore puts, and 
so on). 

Standards Compatibility Are there safety or compatibility standards your application demands? Make sure 
your RTOS complies. 

Technical Support Phone support is typically covered for a limited time after your purchase or on a 
year-to-year basis through support.  Sometimes applications engineers are available.  
Additionally, some vendors provide training and consulting. 

Source vs. Object Code  With some RTOSes you get the source code to the operating system when you buy 
a license.  In other cases, you get only object code or linkable libraries. 

Licensing Make sure you understand how the RTOS vendor licenses their RTOS.  With some 
vendors, run-time licenses are required for each board shipped and development 
tool licenses are required for each developer. 

Reputation Make sure you’re dealing with someone you’ll be happy with. 

Services Real-time operating systems provide developers a full complement of features: 
several types of semaphores (counting, mutual exclusion), times, mailboxes, 
queues, buffer managers, memory system managers, events, and more. 

Priority Inheritance Must support, or priority inversion can result 
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H.14 Good Programming Practices Checklist 
These items should be considered when creating a Coding Standard or when beginning a 
software project. 

Programming Practice Yes/No/NA Comment or Justification 

General Suggestions 

CPU self test.  Test the CPU on boot up.   

Fill ROM/RAM/flash with a known pattern (halt, 
illegal instruction, return) to guard against illegal 
jumps. 

  

ROM tests.  Verify integrity of ROM (EEPROM, 
Flash disk, etc.) prior to executing the software stored 
in it.  

  

Watchdog Timers.  Implement a watchdog timer to 
reboot software if it gets “stuck”. 

  

Guard against Variable Corruption.  Store multiple 
copies of critical variables, especially on different 
storage media or physically separate memory. 

  

Stack Checks.  Checking the stack guards against 
stack overflow or corruption.  By initializing the stack 
to a known pattern, a stack monitor function can be 
used to watch the amount of available stack space.  

  

Write what you need, and use what you write!  
Don’t make unnecessarily verbose or lengthy 
documentation, unless contractually required.  It is 
better to have short documents that the developers will 
actually read and use. 

  

Initialize all unused memory locations to a pattern 
that, if executed as an instruction, will cause the 
system to revert to a known safe state. 

  

Don’t use a stop or halt instruction.  The CPU 
should be always executing, whether idling or actively 
processing 

  

When possible, put safety-critical operational 
software instructions in nonvolatile read-only 
memory. 

  

Don’t use scratch files for storing or transferring 
safety-critical information between computers or tasks 
within a computer. 

  

Keep Interface Control Documents up to date.  
Out-of-date information usually leads to one 
programmer creating a module or unit that will not 
interface correctly with another unit.  The problem 
isn’t found until late in the testing phase, when it is 
expensive to fix.  
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Programming Practice Yes/No/NA Comment or Justification 

Prohibit program patches.  During development, 
patching a program is a bad idea.  During operations, 
patching may be a necessity, but should still be 
carefully considered. 

  

Follow the two person rule.  At least two people 
should be thoroughly familiar with the design, code, 
testing and operation of each software module of the 
system.  If one person leaves the project, someone else 
understands what is going on. 

  

Design Issues 

Program Calculation Checks.  Simple checks can be 
used to give confidence in the results from 
calculations.   

  

Verify all reused code was designed for reuse.   

Do not implement program as “One big loop”.  A 
single large loop forces all parts of the software to 
operate at the same rate.  

  

Analyze hardware peculiarities before starting 
software design.  

  

Avoid inter-module dependencies when possible.  
This maximizes software reusability. 

  

Create more than a single design diagram.  Getting 
the entire design on paper is essential. 

  

Design in error detection and handling! Tailor the 
effort to the level of the code – don’t put it 
everywhere!  

  

Perform a memory analysis of the design.  Estimate 
how much memory your system uses and adjust the 
design if the system is bumping up against its limits.   

  

Avoid indiscriminate use of interrupts.  Use of 
interrupts can cause priority inversion in real-time 
systems if not implemented carefully. 

  

Use come-from checks.   For safety-critical modules, 
make sure that the correct module called it, and that it 
was not called accidentally by a malfunctioning 
module. 

  

Provide separate authorization and separate 
control functions to initiate a critical or hazardous 
function.  This includes separate “arm” and “fire” 
commands for critical capabilities. 

  

Do not use input/output ports for both critical and 
non-critical functions. 
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Programming Practice Yes/No/NA Comment or Justification 

Provide sufficient difference in addresses between 
critical I/O ports and non-critical I/O ports, such that a 
single address bit failure does not allow access to 
critical functions or ports. 

  

Make sure all interrupt priorities and responses are 
defined.  All interrupts should be initialized to a 
return, if not used by the software. 

  

Provide for an orderly shutdown (or other acceptable 
response) upon the detection of unsafe conditions.  

  

Provide for an orderly system shutdown as the result 
of a command shutdown, power interruptions, or 
other failures.   

  

Protect against out-of-sequence transmission of 
safety-critical function messages by detecting and 
deviation from the normal sequence of transmission.  
Revert to a known safe state when out-of-sequence 
messages are detected. 

  

Hazardous sequences should not be initiated by a 
single keyboard entry. 

  

Prevent inadvertent entry into a critical routine.  
Detect such entry if it occurs, and revert to a known 
safe state. 

  

When safety interlocks are removed/bypassed for a 
test, the software should verify the reinstatement of 
the interlocks at the completion of the testing. 

  

Critical data communicated from one CPU to another 
should be verified prior to operational use. 

  

Set a dedicated status flag that is updated between 
each step of a hazardous operation.   

  

Verify critical commands prior to transmission, and 
upon reception.  It never hurts to check twice! 

  

Make sure all flags used are unique and single 
purpose. 

  

Put the majority of safety-critical decisions and 
algorithms in a single (or few) software development 
module(s). 

  

Decision logic using data from hardware or other 
software modules should not be based on values of all 
ones or all zeros.  Use specific binary patterns to 
reduce the likelihood of malfunctioning 
hardware/software satisfying the decision logic. 

  

Perform reasonableness checks on all safety-
critical inputs. 

  

Perform a status check of critical system elements 
prior to executing a potentially hazardous sequence. 
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Programming Practice Yes/No/NA Comment or Justification 
Always initialize the software into a known safe 
state.  This implies making sure all variables are set to 
an initial value, and not the previous value prior to 
reset. 

  

Don’t allow the operator to change safety-critical 
time limits in decision logic. 

  

When the system is safed, usually in response to an 
anomalous condition or problem, provide the current 
system configuration to the operator. 

  

Create a list of possible hardware failures that may 
impact the software.  The list will be invaluable 
when testing the error handling capabilities of the 
software, as well as making sure hardware failures 
have been considered in the design. 

  

Be careful if using multi-threaded programs.  
Subtle program errors can result from unforeseen 
interactions among multiple threads.  

  

Consider the stability of the requirements.  If the 
requirements are likely to change, design as much 
flexibility as possible into the system. 

  

Design for weak coupling between modules (classes, 
etc.).  The more independent the modules are, the 
fewer undesired side effects there are.  

  

  Reduce complexity.  Calculate a complexity metric.  
Look at modules that are very complex and reduce 
them if possible.  

Implementation (Coding) Issues 

Do not implement delays as empty loops.  This can 
create problems (and timing difficulties) if the code is 
run on faster or slower machines, or even if 
recompiled with a newer, optimizing compiler. 

  

 Avoid fine-grain optimizing during first 
implementation. 

 

Check variables for reasonableness before use.  If 
the value is out of range, there is a problem – memory 
corruption, incorrect calculation, hardware problems 
(if sensor), etc. 

  

 Use read-backs to check values.  When a value is 
written to memory, the display, or hardware, another 
function should read it back and verify that the correct 
value was written. 

 

Safety-critical modules should have only one entry 
and one exit point. 
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Programming Practice Yes/No/NA Comment or Justification 
 Create a dependency graph.  Given such a diagram, 

it’s easy to identify what parts of the software can be 
reused, create a strategy for incremental testing of 
modules, and develop a method to limit error 
propagation through the entire system. 

 

Consider compiler optimization carefully.  
Debuggers may not work well with optimized code.   

  

Testing Issues 

Plan and script all tests.  Do not rely on interactive 
and incomplete test programs.   

  

Measure the execution time of your code.  
Determine if there are any bottlenecks, or any 
modules that should be considered for optimization. 

  

Use execution logging, with independent checking, to 
find software runaway, illegal functions, or out-of-
sequence execution.  

  

  Test for memory leakage.  Instrument the code and 
run it under load and stress tests.   

  Use a simulator or ICE (In-circuit Emulator) 
system for debugging in embedded systems.   

  
 
                                                      
110  
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