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FOREWORD 
 

This Handbook is published by the National Aeronautics and Space Administration (NASA) as a 
guidance document to provide engineering information; lessons learned; possible options to address 
technical issues; classification of similar items, materials, or processes; interpretative direction and 
techniques; and any other type of guidance information that may help the Government or its 
contractors in the design, construction, selection, management, support, or operation of systems, 
products, processes, or services.   
  
This Handbook is approved for use by NASA Headquarters and NASA Centers, including 
Component Facilities and Technical and Service Support Centers. 
 
This Handbook establishes programmable logic design engineering guidanceIt originated from 
multiple requests for additional guidance, rationale, resources, references and lessons learned for 
acquiring, managing, developing, assuring and maintaining NASA systems. 
 
Requests for information, corrections, or additions to this Handbook should be submitted via 
“Feedback” in the NASA Standards and Technical Assistance Resource Tool at 
https://standards.nasa.gov. 
 

 

 

 

Original Signed By:                                                                          12/02/2013 

  

Michael G. Ryschkewitsch               Approval Date 
NASA Chief Engineer 
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PROGRAMMABLE LOGIC DEVICES (PLDs) HANDBOOK 

 

1. SCOPE 

 
This Handbook outlines a life cycle as a guideline for planning, designing, verifying and 
maintaining programmable logic devices (PLDs).  Additionally, best practices are recommended 
for different PLD development phases.  This Handbook provides guidance to perform project 
activities.  It covers all aspects of the design cycle from initial planning through release and 
maintenance.  The specific types of PLDs this Handbook addresses are as follows: 

 

• Field-programmable gate array (FPGA). 

• Complex programmable logic device (CPLD). 

 
1.1 Purpose 

 

The purpose of this Handbook is to establish PLD design engineering guidance. 
 
The trend toward the increased use of PLDs in aerospace systems requires increased expertise in 
the design, development, and verification of these systems.  Hardware designers are now 
expected to implement PLD designs that are as complex as traditional microprocessor-based 
systems that were designed in some cases by large teams of engineers.   
 
The development of successful PLDs requires a coordinated effort.  This Handbook contains 
guidelines that provide for a consistent approach based on best practices for the development of 
PLDs for flight and ground support systems across NASA Centers.  The advancing technology in 
PLDs has allowed for the implementation of more complex designs in single devices.  Many of 
these devices designed within NASA systems perform critical operations.  The guidelines in this 
Handbook serve to increase confidence in the quality of PLD designs. 
 
1.2 Applicability 

 
This Handbook provides engineering guidance applicable to programmable logic design. It 
serves as a primer for sound engineering design practice and can be used in its entirety, or in 
portions thereof, in conjunction with other available design resources. 
 
This Handbook is approved for use by NASA Headquarters and NASA Centers, including 
Component Facilities and Technical and Service Support Centers.  This Handbook may also apply to 
the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements only 
to the extent specified or referenced in their contracts, grants, or agreements.   
 



NASA-HDBK-4008 

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED 

 

 

9 of 121 

This Handbook, or portions thereof, may be referenced in contract, program, and other Agency 
documents for guidance.  When this Handbook contains procedural or process requirements, they 
may be cited in contract, program, and other Agency documents for guidance.   
 

2.  APPLICABLE DOCUMENTS 
 

2.1 General 

 
The documents listed in this section are applicable to the guidance in this Handbook.   
 
2.1.1  The latest issuances of cited documents shall apply unless specific versions are 
designated.  
 

2.1.2 Non-use of specific versions as designated shall be approved by the responsible Technical 
Authority. 
 
The applicable documents are accessible via the NASA Standards and Technical Assistance 
Resource Tool at http://standards.nasa.gov or may be obtained directly from the Standards 
Developing Organizations or other document distributors.  Additional documents and design 
resources are available at https://nen.nasa.gov/web/pld. 
 
2.2 Government Documents 

 

NASA-HDBK-8739.23 Complex Electronics Handbook for Assurance Professional 
 

NPR 7123.1 NASA Systems Engineering and Process Requirements 
 

NPR 8715.3C NASA General Safety Program Requirements 
 
2.3 Non-Government Documents 

 

None. 
 
2.4 Order of Precedence 

 

This Handbook provides guidance for planning, designing, verifying and maintaining 
programmable logic devices but does not supersede nor waive established Agency 
requirements/guidance found in other documentation.   
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3. ACRONYMS AND DEFINITIONS  
 

3.1 Acronyms and Abbreviations 

 

A/D analog to digital 
AID altered item drawing 
ASIC application specific integrated circuit 
CDC clock domain crossing  
CDR critical design review 
CLK clock 
CLKA/B clock A or B 
CLKBUF clock buffer 
CM configuration management 
CMOS complementary metal oxide semiconductor 
COTS commercial off the shelf 
CPLD complex programmable logic device 
CPU central processing unit 
CRC cyclic redundancy check 
CVS Concurrent Versions System 
CxP Constellation Program 
DC direct current 
DDP detailed design phase 
DDR double data rate 
DFF d-flip-flop 
DLL delay-locked loop 
DOORS Dynamic Object-Oriented Requirements System 
EDAC error detection and correction 
EEPROM electrically erasable programmable read-only memory 
EIDP end item data package 
EMI electromagnetic interference 
ESD electrostatic discharge 
ETU engineering test unit 
FET field effect transistor 
FIFO first in, first out 
FPGA field-programmable gate array 
FSM finite state machine  
GIDEP Government Industry Data Exchange Program 
GPU graphics processing unit 
HALE high altitude long endurance 
HCLK hardwired CLK driver 
HCLKBUF buffer for HCLK 
HDL hardware description language 
HSI hardware/software integration 
I/O input/output 
IC integrated circuit 
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IP intellectual property 
ITAR International Traffic in Arms Regulations 
JTAG Joint Test Action Group 
LSTTL Low-power Schottky Transistor Transistor Logic 
LVDS low voltage differential signaling 
ms millisecond 
N/C no connect 
NASA National Aeronautics and Space Administration 
ns nanosecond 
OTS off-the-shelf 
PCB printed circuit board 
PCI peripheral component interconnect 
PDP preliminary design phase 
PDR preliminary design review 
PLD programmable logic device 
PLL phase-locked loop 
PnR place and route 
POC point of contact 
POR power-on reset 
PROM programmable read-only memory 
PRP planning and requirements phase 
QA quality assurance 
RDD revision description document 
ROM read-only memory 
RTL register-transfer level 
SDF Standard Delay Format 
SERDES serializer-deserializer 
SET single event transient 
SEU single event upset 
SMA Safety and Mission Assurance 
SOW statement of work 
SRAM static random access memory 
SSO simultaneously switching output 
STA static timing analysis 
SVN Subversion 
TBD to be determined 
TID total ionizing dose 
TMR triple modular redundancy 
TRST test reset (JTAG test reset signal) 
TTL transistor-transistor logic 
UART universal asynchronous receiver/transmitter 
VDD Version Description Document 

 
VHDL very high speed integrated circuit (VHSIC) hardware 

description language (HDL) 
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VHSIC very high speed integrated circuit 
VIO voltage input/output 
VP verification phase 

 

3.2 Definitions 

 

 Asynchronous:  Inputs and/or logic that changes independently of clock changes. 
 
 Board:  Describes the electronic assembly that contains the PLD.  Note: The board can be 

purchased or customized for the design. 
 
 Brownout:  A condition where the voltage of the power source drops below the nominal 
operating range because of an excessive current loading. 
 

 CLKBUF:  A clock buffer type in an MicroSemi FPGA. 
 
 Clock Domain:  A clock domain is a block of circuitry that operates at a single clock 
frequency that may differ from the frequency of other blocks on the same chip.  A clock domain 
crossing occurs whenever data is transferred from a flop driven by one clock to a flop driven by 
another clock.   
 
 Cold spare/ing:  A spare redundant unit that remains unpowered when inactive.  Note:  

A cold sparing device is designed to allow powered input signals to be applied to the unpowered 

device without damage to the device. 
 
 Crosstalk:  Any phenomenon by which a signal transmitted on one circuit or channel of a 
transmission system creates an undesired effect in another circuit or channel.  Note: Undesired 

capacitive, inductive, or conductive coupling from one circuit, part of a circuit, or channel to 

another is what usually causes crosstalk. 
 
 Delivering Organization:  The organization that is responsible for developing and 
delivering the PLD design. 
 
 Fault Injection:  A technique for improving the coverage of a test by introducing faults to 
test code paths. 
 
 Gray Code:  An encoding of numbers so that adjacent numbers have a single digit 
differing by 1. 
 
 Hamming Code:  A linear code devised for detecting and correcting errors in digital data. 
 
 
 HCLK:  A clock buffer type in an MicroSemi FPGA. 
 
 HCLKBUF:  A clock buffer type in an MicroSemi FPGA. 
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 Hystereis:  A phenomenon wherein two (or more) physical quantities bear a relationship 
that depends on prior history.  More specifically, the response Y takes on different values for an 
increasing input X than for a decreasing X. 
 
 Krad (Si):  1000 rad (Si), see also rad (Si). 
 
 Metastability:  The ability of a digital electronic system to persist for an unbounded time 
in an unstable equilibrium or metastable state.  In metastable states, the circuit may be unable to 
settle into a stable '0' or '1' logic level within the time required for proper circuit operation.  As a 
result, the circuit can act in unpredictable ways, and may lead to a system failure. 
 
 Primitives:  The physical hardware components that exist in the PLD.  These primitives 
will be connected together in a specific way on your PLD in order to fulfill your design as 
specified.  For FPGAs, the most basic primitives are flip-flops and lookup tables. 
 
 Rad (Si):  The quantity of any type of ionizing radiation that will impart 100 ergs of 
energy per gram of silicon. 
 
 Rterm:  Value of the termination resistor. 
 
 Synthesis:  A process that starts from a high level of logic abstraction (typically Verilog 
or Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)) and 
automatically creates a lower level of logic abstraction using a library containing primitives. 
 
 Test Bench:  To simulate a design, the designer needs both the design under test or unit 
under test and the stimulus provided by the test bench.  Note: A test bench is a Hardware 

Description Language (HDL) code that allows the designer to provide a documented, repeatable 

set of stimuli that is portable across different simulators.  A test bench can be as simple as a file 

with clock and input data or a more complicated file that includes error checking, file input and 

output, and conditional testing.  Verilog designers sometimes refer to a Verilog test fixture.  

“Test bench” and “test fixture” are used synonymously throughout this Handbook. 

 
 Test Procedure:  A document that delineates the test steps required to verify full 
compliance of the PLD implementation with the requirements. 
 
 Tool:  Describes the PLD software design package used to generate the PLD design. 
 
 TPD:  Refers to the propagation delay time of a device. 
 
 TREM:  Refers to the synchronous clear preset or removal time. 
 
 VCC:  Refers to the power supply pin for a bipolar junction transistor integrated circuit 
(IC). 
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 VDD:  Refers to the power supply pin for Complementary Metal Oxide Semiconductor 
(CMOS) ICs.   
 
 VIH:  Refers to the voltage threshold for input high. 
 
 Verification:  The determination that the end product meets all of the specified 
requirements. 
 
 Zdriver:  Output impedance of the driving circuit. 
 
 Ztrace:  Characteristic impedance of a circuit board trace. 
 
 

4. LIFE CYCLE AND DEVICE DEVELOPMENT 

 
Life cycle development for the PLD development process consists of a series of phases with 
entry and exit criteria.  This section describes this series of development phases and the products 
developed in each phase.  Depending on the criticality and risk to the project, two or more phases 
can be combined into a single phase.  Additionally, device development does not typically 
consist of a single pass through each phase.  The phases iterate based on the needs of the design. 
 
This section provides a typical template for the development life cycle.  The remainder of the 
Handbook uses this development cycle for describing what products to complete in each section.   
 
4.1 Life Cycle Definitions 

 

The sections that follow describe the PLD life cycle phases.  See also figure 1, PLD Life Cycle 
Development Phases. 
 
4.1.1 Planning and Requirements Phase 

 

Development planning is essential for early identification of all the development needs and risks.  
It also provides the PLD design team with a clear view of the near- and long-term objectives and 
goals.  The planning and requirements phase (PRP) occurs when requirements have been 
allocated to the board where the PLD resides.  High-level system requirements flow down and 
the design team uses them to generate the PLD requirements. 
 
The planning phase includes documenting a development plan that all developers follow.  The 
plan documents the systematic approach used to manage, design, develop, verify, document, and 
review all PLDs delivered.  The design team can customize the level of detail to the complexity 
of the design and project.  Appendix C provides more details on customization. 
 
During development of the PLD, the design team reviews the requirements and/or the 
development plan and updates it as required.  Section 5 describes this phase in greater detail.   
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Figure 1—PLD Life Cycle Development Phases 
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4.1.2 Preliminary Design Phase 

 

During the preliminary design phase (PDP), the design team generates a top-level design based 
on the device requirements.  This top-level design includes block diagrams and data flow 
diagrams that serve as the design architecture.  Design trade studies are completed during this 
phase.  This phase is complete when the stakeholders identified in the PRP approve the 
preliminary design.  Section 6 describes this phase in greater detail. 
 
4.1.3 Detailed Design Phase 

 

The detailed design phase (DDP) begins after approval of the preliminary design.  During the 
DDP, the preliminary design is used to generate a more detailed design based on the 
requirements and architecture.  This phase iterates as needed with the design implementation 
phase to further modify and/or expand until it meets all requirements.  This phase is complete 
when the stakeholders identified in the PRP approve the documented detailed design.  Section 7 
describes this phase in greater detail.   

4.1.4 Design Implementation Phase 

 

During the design implementation phase, design capture (such as coding in a hardware 
description language (HDL)) is completed.  The design team performs design simulation, 
synthesis, place and route (PnR), and timing analyses.  The design may be tested on a 
development board and/or hardware resembling the final flight system.  This phase iterates with 
the DDP as needed.  Section 8 describes this phase in greater detail.   

4.1.5 Verification Phase 

Verification determines that the end product meets all of the specified requirements whereas 
validation determines the requirements are correct.  Validation is beyond the scope of this 
document since it often requires a higher level of integration.  Verification activities include 
reviews, tests, and simulations in accordance with the plan developed in the PRP.  Formal 
acceptance of the final design occurs at the conclusion of the verification phase (VP).  Section 9 
describes this phase in greater detail.   
 
4.1.6 Delivery Phase 

After successful verification, the design team releases the completed design for integration into 
the next higher-level assembly (e.g., board, box, etc.).  Section 10 describes this phase in greater 
detail.   
 
4.1.7 Maintenance Phase 

The development team continues to provide troubleshooting support for issues deemed 
unsolvable by the user of the design, and investigates and tracks potential design anomalies to 
completion.  Maintenance support covers any issues reported after the delivery.  Section 11 
describes this phase in greater detail.   
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5. PLANNING AND REQUIREMENTS PHASE 

Numerous projects do project planning as part of the system planning.  All items that are 
identified in the PRP can be done separately or as part of the larger planning.   
 
The output of the PRP for a PLD can include documents, such as: 
 

a. A development plan.  

b. A requirements document.  

c. A verification plan.   
 

The design team applies customization to each of the documents depending on the project.  
Appendix C shows a proposed PLD classification to aid in determining an appropriate 
customization.   
 
All planning and requirements documentation and development will need to be coordinated with 
Project Management, System Engineering, and the Chief Engineer.  The use of NPR7123.1, 
NASA Systems Engineering and Process Requirements, continues to serve as the governing 
requirements for system development. 
 
5.1 Roles and Responsibilities 

The scope of work for each role on the development team varies with the size and complexity of 
the development.  A development team member may perform multiple roles for a simple 
development.  Conversely, multiple individuals might be required to share the responsibilities for 
a single role for a large development.  Work with the line management to set the initial roles and 
responsibilities for the development effort.  This can then be worked into the efforts defined by 
the project. 

A PLD development effort typically includes the following roles and responsibilities: 
 

a. PLD Team Lead. 
 
(1) Co-develop the development plan with the technical development lead. 

(2) Manage the development plan. 

(3) Manage budget and schedule. 

(4) Collect development metrics and provide status to project management. 

(5) Manage procurement contracts. 

b. PLD Technical Development Lead. 
 
(1) Co-develop the development plan with the PLD team lead. 
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(2) Provide single point of contact (POC) for technical interactions with external 
stakeholders. 

(3) Oversee the technical aspect of the overall development and the end delivery of the 
design (including design analyses/trade studies, identifying intellectual property (IP) 
core usage, etc.). 

(4) Develop, negotiate, and maintain the PLD design requirements. 

(5) Select design and configuration management (CM) tools when necessary. 

(6) Develop/select the revision control process and associated tools(s). 

(7) Owner of the PLD design specification. 

(8) Manage design tools (maintenance support, license files, tool availability). 

(9) Ensure adherence to the required design process. 

(10) Responsible for the overall quality and delivery of the end product. 

(11) Assign responsibilities to members of the development team. 
 

c. PLD Configuration Lead/Librarian. 
 
(1) Manage revision control. 

(2) Maintain the design repository/library. 

(3) Build and release (official and unofficial) design into the test venue and for delivery. 

(4) Assemble the end item data package (EIDP) of the official releases. 
 

d. Verification Lead. 
 
(1) Responsible for the development of the PLD verification plan, including defining test 

(hardware and software) requirements, verification items for simulation and pass/fail 
criteria for each verification item. 

(2) Support the test lead on the PLD hardware verification plan development and 
hardware testing. 

(3) Oversee and ensure the completion of the verification activities. 

(4) Archive the verification results. 

 

(5) Generate test reports. 

(6) Contribute to development of functional coverage checks. 

e. Design Engineer. 
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(1) Design the assigned design modules. 

(2) Generate pertinent documentation for the assigned design modules. 

(3) Perform incremental testing. 

(4) Contribute to the development of functional coverage checks. 

f. Possible Customer/Stakeholders 
 
(1) Board Design Lead: Owner of the board where the PLD resides.  The board design 

lead works with the technical development lead on defining the PLD requirements, 
ensures compatible interface between the board and PLD throughout the design 
phases, and coordinates the overall verification effort for the board. 
 

(2) Test Lead: Responsible for leading the effort on completing the PLD verification at 
the board level and providing a single POC for reporting the testing status to the PLD 
development team.  The test lead is the source of the testability requirements 
(software, test points, fault injection, etc.). 

 
(3) Test Equipment Development Lead: Responsible for developing and negotiating the 

functional requirements for the test equipment with the technical development lead. 
 

(4) Safety and Mission Assurance (SMA) personnel: Serves as an independent assessor.  
NASA-HDBK-8739.23, NASA Complex Electronics Handbook for Assurance 
Professional, documents the SMA roles and responsibilities, and they are NOT duplicated 
in this document.  In addition for safety-critical projects, SMA personnel will also use 
NPR 8715.3C, General Safety Program Requirements, for applicability to PLDs.  

 
(5) System Safety Engineer. 

 
(6) Users:  People who operate the PLD in its intended applications.  Depending on the 

design, users may include:  
 

A. Software developers. 

B. Subsystem engineers. 

C. System engineers. 

D. Test engineers. 
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A possible role-based organization chart of the development team is shown in figure 2, Example 
Development Team Role-Based Organization Chart, follows. 
 
 

 

 

Figure 2—Example Development Team Role-Based Organization Chart 

 

In addition to the development team, the corresponding delivery organization also plays an 
integral role in the development process.  It is the delivery organization’s responsibility to: 
 

a. Ensure the quality of its products through defining and enforcing local design and 
monitoring processes. 

 
b. Support the assembling of review boards. 
 

The line organization can delegate this authority to the PLD design lead. 
 

5.2 The Development Plan 

The PLD design process includes documenting a development plan(s) for the developers to 
follow.  This plan(s) documents the systematic approach used to manage, design, verify, 
document, and review all PLDs delivered.  Development planning involves defining several 
items that have long-term implications on the project.  These can include the following: 
 

a. Development tools. 

b. Metrics measurement. 

c. Risk management. 

d. System safety considerations 

e. Configuration management. 

f. Training. 
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g. Schedule. 

h. Bug tracking. 

i. Project deliverables. 

j. Review planning. 

k. Roles and Responsibilities. 
 

The design team can customize the development plan depending on the complexity and project 
requirements.  All items listed above do not necessarily require a separate detailed plan.  The 
team notes each item, the related activities, and issues that affect the cost and schedule.  Many 
times these plans can be a part of an overall project development plan. 

 
5.2.1 Development Tools 

 

The technical development lead determines the development tools and version to be used.  This 
includes at least the following:  
 

a. Determine a specific list of tools with the following information: 

(1) Manufacturer. 

(2) Tool. 

(3) Version. 

(4) Function. 

(5) Repository for tool archival. 
 

b. Determine the rationale for tool upgrades.  It is a best practice not to upgrade the tools 
without sufficient justification (e.g., re-characterization of the targeted device and/or a bug fix 
that would affect the functionality of the programmed PLD).  When an issue warrants a tool 
update, revise the development plan and notify the development team. 

 
c. Determine how tool alerts, such as Government Industry Data Exchange Program 

(GIDEPs) or manufacturer notices, will be communicated to the design team.  This could come 
from other discipline areas, such as assurance or parts engineering.  This is also applicable to the 
PLD itself, not only the programming tool. 

 

d. Determine a data back-up/recovery plan. 
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5.2.2 Metrics Measurement 

 

Advances in today’s technology have allowed PLD capacity to become increasingly dense. 
Therefore, PLD designs have also become proportionally more complex.  There is a need for 
projects and programs to be able to measure the progression of the PLD design toward the final 
end product.  Metrics measurement allows project management to track PLD design through 
design, implementation, verification, and integration. 
 
The objectives of the measurement process are as follows:   

a. To provide visibility into the design progress. 

b. To complete the development per the agreed-upon schedule and budget. 

c. To identify programmatic risks. 

d. Monitor accepted and rejected design change requests. 

The PLD team lead would be responsible for collecting project metrics, storing them in the 
project folder, analyzing the measurement data and reporting them periodically.  The report may 
also contain a summary statement of the metrics pointing out any measurements trending 
towards a limit that may indicate a pending problem.  Project metrics for each PLD can include:  

a. Coverage metrics (code and functional). 

b. Design effort (man-hours) – planned versus actual. 

c. Budget – planned versus actual. 

d. Requirements stability – number of requirements, number of requirements changes, 
and number of items to be determined (TBDs).   

 
e. Device resource utilization in percentage of capacity per phase (e.g., C-cells, S-cells, 

PLD inputs/outputs (I/Os), static random access memory (SRAM) memory, timing, etc.) – 
actual.   

 

f. Requirements verification progress (procedures or test benches developed and verified).   

g. Number of problem reports and review item discrepancies – open, closed, and 

withdrawn.   

h. Number of reviews – planned versus actual.   

i. Risks and mitigations. 
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5.2.3 Risk Management 

 

Depending on the size and project requirements of the PLD development, the development team 
will want to identify and manage risks.  The technical development lead identifies and manages 
the risks.  Pay special attention to areas such as the following: 
 

a. Device resource utilization. 

b. Timing. 

c. Power consumption. 

d. External interfaces. 

The project’s risk management team owns these items; the PLD team does not hold them. 
 
5.2.4 System Safety Considerations 

 
Safety-critical applications impose requirements on a project’s system safety team to develop 
key documents, including a safety data package and a hazard report.  For such safety-critical 
PLD designs, the PLD team could be tasked with supporting the safety team to provide 
information that they can use to document hazards and their mitigation.  Hazard identification 
could cover safety elements: 
 

a. Controlled by the PLD. 

b.   Monitored by the PLD. 

c.   Caused by the PLD. 

d.   Mitigated by the PLD. 
 

NASA requires Safety and Mission Assurance (SMA) to validate the verification of safety 
requirements.  This can include the witnessing of tests.  This validation typically happens at 
levels higher than the PLD, such as at box or subsystem level.  For those cases where validation 
is applied down at the PLD level, PLD verification planning needs to accommodate key 
participants such as SMA. 
 
5.2.5 Configuration Management and Revision Control 

 
The project or Center defines formal CM for control of released items.  At lower levels, the PLD 
team or line organization typically establishes a revision control system to manage the changes to 
and archiving of working documents and design files.  A controlled item is anything submitted to 
the revision control or CM system. A typical system needs to incorporate capabilities including 
the following:  

 

a. Comprising an established tool or proven process. 
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b. Method(s) for identifying/marking a controlled item. 

c. The process for modifying a controlled item. 

d. The process established for user access and privileges. 

e. Institutional IT Security measures necessary to secure controlled items for 
unauthorized access. 
 
The PLD team follows established processes for revision control.  If none exist, then they work 
with their line organization to establish revision control.  The PLD team, in conjunction with the 
project, if necessary, determines the minimum document and design file types to be 
controlled.  A set of revision controlled items typically includes the following: 
 

a. Design environment (e.g. *.ADB file for MicroSemi devices). 

b. Design and test files. 

c. Deliverables. 
 

At a minimum, any time the design team programs the design into a physical device, it also puts 
the controlled items into the revision control system.  It is best practice to keep all files used in 
design, simulation and hardware testing under revision control.  This is especially useful in 
diagnosing problems where the design needs to revert to a prior test configuration.   
 

5.2.5.1  Design Environment 

 

The revision control goal for the design environment is to ensure that the design environment is 
documented, controlled, and reproducible.  These revision control items include the following: 
 

a. Design tools such as those used for simulation, synthesis, PnR, and PLD 
programming.  If the design is not text- or HDL-based, such as Matlab or schematic, keep the 
design entry tool under revision control. 

 
b. Setup, project files and any other file that can dictate the behavior of the design tool. 

c. Script files and makefiles. 
 

5.2.5.2  Design and Test Files 

 

All files used in design, simulation and hardware testing are kept under revision control.  This set 
of revision-controlled items typically includes the following: 
 

a. Design documents (design specifications, the verification plan, test procedures, etc.). 

b. Files needed for producing the design. 

c. Internal or external IP that is used for the design. 

d. Simulation test benches and environment. 
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e. Models used in simulation. 

f. Test software and test scripts used during PLD hardware testing. 

g. Information obtained from reviews (e.g., peer reviews, action items, defects found, etc.). 

h. All results from verification efforts including test results.  Any known or open issues 
related to this design. 

i. All programming files (fuse files, bit files, etc.). 

j. Bug reports. 
 

It is a best practice to adopt one of the common software revision control tools (e.g., Concurrent 
Versions System (CVS) or Subversion (SVN)) to manage the files.  In addition to keeping the 
test software and scripts under revision control, the design team records the script, software, and 
hardware version information in the test log and archives it along with the test artifacts.  The 
design team reconstructs the test environment when troubleshooting a problem using these items. 
 
5.2.5.3  Deliverables 

 

The development plan also defines how the delivered design is uniquely identified within the 
version control system.  This includes the identifying files used for programming the design, the 
programmed device, and information about when to use the programmed device in a higher 
assembly.  Section 10 contains a list of delivery items. 
 
5.2.6  Training 

 

Training may be required to ensure that all members of the development team maintain a core 
skill set.  The skills can include, but are not limited to:  
 

a. Digital design (basic design, I/O standard, I/O thresholds, etc.). 

b. Design capture (VHDL, Verilog, etc.). 

c. Design analysis (worst-case analysis, signal integrity analysis, etc.). 

d. Radiation effects. 

e. Design tools (synthesis, PnR, etc.). 

f. Verification (simulation techniques, test techniques, etc.). 

g. CM tools or revision control tools. 
 

 

The PLD team identifies the needed training and records the costs and schedule to implement it 
in the development plan.  The team also itemizes training costs in the development budget. 
 

5.2.7 Schedule 
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The PLD team lead creates and maintains the schedule for the PLD life cycle, which includes, 
but is not limited to:  
 

a. All the tasks and work products required to implement this plan.  Include planning 
through the verification effort. 

 
b. All receivables (products that are delivered to the PLD team) that affect the ability to 

implement the development (e.g., tools, IP cores, development hardware, etc.). 
 

c. The assigned resource and individual responsible for each task/work product. 
 

d. All project level reviews (preliminary design review (PDR), critical design review 
(CDR), code reviews, etc.). 

 
e. Dependency links with the upper-level project schedule tasks that ensure the 

development activities occur at the required times. 
 

f. Upon approval, the schedule is baselined with an initial cost estimate. 

g. Deliverables. 

h. Training. 

i. Monitor progress against schedule periodically. 

j. Identify issues that affect the PLD development team’s ability to adhere to the schedule. 

k. Revise schedule as problems are discovered or new requirements added.   
 

5.2.8 Bug Tracking 

 

Bugs are errors in the design or implementation.  “Bug tracking” tools simplify the process of 
capturing and tracking bugs and the exact logic and test case versions required to recreate them.  
This tool is useful for tracking project-level metrics related to defects found versus defects fixed.  
It is a best practice for the PLD development team to have a tool for tracking bugs, issues, or 
potential design changes.  Bug tracking information can include: 
 

a. A description of the error, issue, and/or potential design change. 

b. The PLD version. 

c. The severity of the error, issue and/or potential design change. 

d. The status of the error or issue (open, resolved, in progress, use as is). 

e. The test configuration. 

f. The individual assigned to resolve the error or issue, or to implement the design change. 

g. The required completion date/release date. 
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h. A closure statement identifying the resolution and the source version number 
 with the change.  

i. Any impacts to safety.  
 

A best practice for bug tracking is to select a tool that is searchable, sortable, and provides 
statistics for a number of open, resolved items.  For larger projects, this simplifies the gathering 
of metrics and the sorting of large quantities of issues. 
 
5.2.9 Product Deliverables 

 

Every PLD delivery includes at least the products itemized in section 10.  The PLD team lead 
identifies the expected deliverable(s) for this unique development.  If there are intermediate 
developmental deliveries, they are identified and documented in the development plan. 

All product deliverables are included in the schedule. 
 
5.2.10 Review Planning 

 

The development plan defines the appropriate types of reviews that will occur and the 
appropriate stakeholders that can participate for each review.  For purposes of this document, a 
broad range of possible reviews and participants is provided.  The reviews will be customized 
per the complexity of the design.   

The reviews ensure that the design meets all of its requirements for its intended application early 
in the development process to prevent costly debug and rework.  Benefits of reviews include the 
following: 
 

a. The identification of issues. 

b. The clarification of requirements. 

c. The sharing of knowledge (technical knowledge, lessons learned, etc.).   

d. The generation and satisfaction of exit criteria prior to proceeding to the next phase.   
 

Reviews listed in table 1, List of Possible Reviews, are internal to the PLD development team 
and separate from the project milestone reviews.  Depending on the project, the schedule of the 
reviews may be planned to coincide with project-level reviews.  The reviews and list of involved 
participants can be customized based upon the complexity of the design. 
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Table 1—List of Possible Reviews 
Phase Possible Reviews Possible Participants 

Planning and Requirements Planning Document(s) Project, Line Management, 

Stakeholders, PLD Technical 

Development Lead 

 Requirements Review  Project, Stakeholders, PLD 

Technical Development Lead 

Preliminary Design Architecture Review Stakeholders, PLD Technical 

Development Lead, Subject 

Matter Experts as appropriate. 

 Preliminary Design Review  Stakeholders, PLD Technical 

Development Lead, Subject 

Matter Experts as appropriate. 

Detailed Design  Design Specification Review Stakeholders, PLD Technical 

Development Lead, Subject 

Matter Experts as appropriate. 

 Detailed Design Review Stakeholders, PLD Design Team, 

Subject Matter Experts as 

appropriate. 

Implementation Code Review(s) PLD Design Team, subject 

matter experts 

 Synthesis Review PLD Design Team, subject 

matter experts 

 PnR Review PLD Design Team, subject 

matter experts 

Verification Phase Verification Review Stakeholders, PLD Technical 

Development Lead, Verification 

Lead 

Delivery Review Ready to Program Review Stakeholders, PLD Technical 

Development Lead, Verification 

Lead 

 

 
5.2.11 Design Review Checklist 

 

Design review checklists are often used for reviews to facilitate the design review process.  
Depending on the focus of the review, some review checklists can have more details than others 
can.  Appendix B contains sample checklists. 
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5.3 Requirements 

 

Requirements are allocated to each electronic assembly and flowed down to the board and 
ultimately the PLD.  PLD requirements are negotiated between the board design lead and the 
technical development lead.  The requirements development process iterates as needed.  Analyze 
and review allocated requirements during each iteration.  Any issues and questions that are found 
are discussed and resolved.  As a result of this review and discussion, the allocated requirements 
are refined, clarified, and new requirements derived as needed.  For complex PLD designs with 
many requirements, tracking such requirements can be aided by using a formal requirements 
database tool such as the Dynamic Object-Oriented Requirements System (DOORS). 
 
5.3.1 Requirements Document 

The technical development lead generates a PLD requirements document, to capture all the 
requirements that flowed down.  The technical development lead also provides requirements 
traceability and derived requirements.  Once baselined, this document provides traceability for 
the implementation, and establishes the guidelines for the test and verification steps.  Most PLD 
requirements flow down from the board-level requirements, and can include:  
 

a. Functions to be implemented from the requirements.  Block diagrams are appropriate 
for upper-level function only. 

 
b. Performance (speed, critical timing, throughput).   
 

c. Interface requirements (signal levels, timing, interface-specific data formats). 
 

d. Environmental constraints (thermal, radiation level at part, mission duration). 
 

e. Testability requirements (Joint Test Action Group (JTAG), board scan, software, 
observable internal points). 

 

f. Redundancy requirements. 
 

g. IT Security (any security requirements on the fielded device, such as mitigation of 
reverse engineering or unauthorized access). 

 

h. Safety-critical requirements. 
 

For safety-critical requirements, a unique identification can be used.  The identification will be 
used by SMA to identify the appropriate level of verification for the requirements that are safety 
critical. 
 
For smaller projects, the PLD requirements can be documented in the requirements at either the 
board or box level and identify the PLD requirements as such. 
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5.3.2 Requirements Traceability 

 
A traceability matrix provides for top-down and bottom-up requirements tracing.  Top-down 
tracing, such as change impact analysis, verifies that requirements are implemented, and assesses 
the impact of a system-level requirement change.  Bottom-up tracing, such as defect impact 
analysis, ensures that only required features are present and assesses the impact on the higher 
level system of any defect found at a low level.   
 

5.3.3 Requirements Maintenance 

 

The technical development lead maintains the requirements document.  This includes a process 
for new or changing requirements that involves the following activities:  
 

a. Analyze the requirements change to determine schedule and cost impacts. 

b. In the event of a conflict, assemble the appropriate people to work the issue until 
impacts and resolutions are determined. 

c. Analyze the requirements change for technical impact.   

d. Analyze the requirements change for risk impact, including safety. 
 

See also section 5.2.3 for project risks. 
 

5.3.4 Safety Considerations 

 

Safety considerations are typically translated to requirements at the PLD level, such as 
redundancy, interlocks, upset rates, etc.  Appendix E contains additional design considerations.  
For safety-critical designs, use design criteria 5 found in table 5, PLD Classification, of 
Appendix C. 
 
5.4 Verification Plan 

 

The verification lead generates the verification plan for verification activities, which includes 
methods, environments, and criteria.  The verification plan documents the plan to verify that the 
design meets all requirements, is subject to the review of the project team, and includes details 
regarding how the verification team will record, address, and track to closure the results of 
verification activities.  Verification occurs to the lowest level possible.  PLD design verification 
typically comprises simulations and testing in a hardware environment.  Under the formal list of 
verification methods, simulation falls under analysis. 
 
Independent verification is recommended for larger and more complex projects or safety-critical 
applications, because it supports a more objective interpretation of the requirements.  The 
advantage here is a more complete assessment of the design. 
 
The verification plan typically includes the following:  
 



NASA-HDBK-4008 

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED 

 

 

31 of 121 

a. Formal methods of verification, from a systems engineering standpoint, typically include: 

(1) Inspection. 

(2) Analysis (e.g., simulation, etc.). 

(3) Demonstration. 

(4) Test (preferred verification method). 

b. Environment of verification (e.g., hardware test configurations; the simulation approach, 
including test bench descriptions; identification of additional verification, such as 
negative testing or simulations). 
 

c. Identify verification method for each requirement.  This is necessary for requirements 
traceability. 
 

d. Test descriptions, including: 

(1) Test identifier. 

(2) Requirements addressed by the test case. 

(3) Prerequisite conditions. 

(4) Test input. 

(5) Instructions for conducting procedure. 

(6) Expected test results, assumptions, and constraints. 

(7) Criteria for evaluating results. 

(8) Requirements traceability. 

(9) Identification of test configuration. 
 
5.4.1 Verification of Intellectual Property Cores 

 

The use of IP cores (acquired, inherited, reused) does not eliminate the need to verify the core.  
See section 6.3 for more information on the use of IP.  Considerations for the verification of IP 
cores include:  
 

a. Verify that the designer has reviewed the latest IP core data sheet specifications, 
application notes, revision notes, test benches, addendums or errata notices for core 
modifications, updates, license agreement, and any vendor documentation describing the extent 
of vendor verification of their IP cores. 

 
b. When using heritage design or design elements, verify that the IP has been 

demonstrated to meet all requirements in the new intended application. 
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c. Verify that the verification (simulation and hardware test) strategy is robust enough to 
maximize coverage of functional or operational scenarios and configuration (e.g., “test as you 
fly,” “fly as you test”). 

 

d. Verify project requirements on radiation have been implemented in the IP core 
design.  In other words, verify that the IP core can be synthesized to incorporate any necessary 
radiation-mitigation strategies, such as triple mode redundancy (TMR) or, for the case of a hard 
core, comes implemented with appropriate radiation-mitigation strategies. 

 
e. For externally obtained IP, seek vendor-created test bench files/examples for 

verification. 
 

5.4.2 Tool Verification 

 

The purpose of tool verification is to identify errors that the tool may inject in the design.  While 
it is possible to verify some tools, it is costly.  A more effective method to mitigate the risk is 
through extensive PLD verification using accepted industry-standard tools.  It is a best practice 
for the designer to read all errata that came with the tools and be part of the user community so 
that errors/workarounds can be mitigated/used early. 
 
5.4.3 Verification Matrix 

 
The verification matrix maintains traceability from the requirements through the verification of 
all the requirements.  The matrix shows how the requirements are described/designed in the 
design specification and where in the verification plan the requirements are tested.  Finally, it 
traces the requirements into the verification documentation (test procedure, test bench, analysis 
report, etc.) that identifies how the requirement is verified.  Table 2, Sample Verification Matrix, 
below shows an example.   
 
 

Table 2—Sample Verification Matrix 

Requirement Design Specification Verification 

Method 

(I,A,D,T) 

Verification 

Plan 

Test Procedure/ 

Test Bench/ 

Analysis Report 

1.5.7 abc Section 2.3.5 T Section 1.3 TPR-123 
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6. PRELIMINARY DESIGN PHASE 

 
During the PDP, the design team generates a top-level design to describe the overall architecture 
of the design.  For small projects, the design team may combine the preliminary design in the 
DDP.  For these projects, the system-level design, the subsystem design, and the assembly design 
may incorporate the preliminary design. 
 
6.1 Entry Criteria 

 

The PDP is the design phase that begins the design cycle.  The top-level design is generated in 
the PDP.  With the design of the top level, the items from the planning phase can be updated and 
changes identified.  The PDP can be entered when the following criteria are met: 
 

a. Development plan is baselined. 

b. PLD requirements are written, but may not be baselined. 
 

This list does not include all elements of the planning phase.  It allows for work to proceed while 
additional planning is in progress. 
 
6.2 Design Specification (Preliminary Version) 

 

The preliminary version of the design specification is prepared, reviewed, and baselined.  The 
specification can include the following items: 
 

a. A board-level block diagram depicting PLD internal and external interfaces. 

b. A top-level block diagram of the PLD architecture. 

c. Data flow diagram(s). 

d. Selected PLDs part type(s) with preliminary utilization estimates. 

e. A clock distribution description with frequency information. 

f. A reset distribution description. 

g. Radiation effects mitigations (e.g., scrubbing, TMR, etc.). 

h. Board-level considerations (e.g., signal integrity, power integrity, power consumption, etc.). 

i. A description of all hardware and software interfaces. 

j. Re-configurability requirements (if applicable). 

 
If the PLD interfaces to elements outside the board then the design team includes a system-level 
block diagram. 
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6.3 Interface Definition (Preliminary Version) 

 

The interface definition, defines the interface between multiple interfaces (e.g., multiple pieces 
of hardware, hardware and software, avionics and software, etc.).  This document need not be 
unique to the PLD.  It can be part of a larger document. 

The preliminary version of the interface specification is prepared, reviewed, and baselined.  The 
interface specification can include the following items:  
 

a. The register interface. 

b. Bit definitions of registers. 

c. All interface signals. 

d. Memory map. 

e. Protocols (e.g., RS-422, PCI, 1553, etc.). 

f. Pinout. 
 

6.4 Use of Intellectual Property (In-House or Out-of-House) 

 

Each development organization documents the approach to meeting certification requirements 
for any computing system’s hardware elements that include any off-the-shelf (OTS) components 
(e.g., a previously designed “heritage” circuit board assembly, an application-specific integrated 
circuit (ASIC) used in another design, IP procured or obtained from another source.)  
 
Each developer of PLDs that include non-development items (i.e., design elements that are 
reused from another application or that are procured or obtained from a source outside their 
developmental control, such as IP) ensures that the inclusion of such non-development items 
meets all the requirements of the PLD design in its intended application.  This assessment 
extends to the overall circuit design as well.   
 
When purchasing IP, the licensing agreements are reviewed to make sure they extend through 
the life of the project.  This includes the maintenance phase.  Additionally, purchased IP may not 
include the source code or the detailed core design, possibly making testing of the core very 
difficult.  When the source code is not available, the project has to analyze the risk of using that 
core.  The core will have to be verified without the ability to review the source code completely.  
There may also be limited access to testing the core.  The project team weighs the risk versus the 
benefits of that core. 

When purchasing IP, allow your Center’s legal team to review the licensing agreement.  
Licensing agreement negotiations can be lengthy, impacting the schedule.  Also, ensure that the 
agreement extends through the life of the project, including the maintenance phase. 
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6.5 Exit Criteria 

The PDP is the first phase of the design cycle.  The PDP is complete when the following criteria 
have been met: 
 

a. The preliminary design is complete. 

b. A preliminary version of the design specification is baselined. 

c. The interface definition(s) are baselined. 

d. A list of proposed IP (heritage and new) that will be used in the design is identified. 

e. Reviews are completed as defined in the development plan. 

f. The planning phase documents (see section 5) are baselined, including: 
 

(1) Requirements. 

(2) Development plan. 

(3) Verification plan. 
 

7. DETAILED DESIGN PHASE 

 
The DDP is entered upon completion of the PDP.  The DDP generates the design specification, 
but not the design files used to implement the PLD.  Detailed design information, such as timing 
diagrams, detailed block diagrams, is developed during this design phase.  The information 
developed in this phase is used for capturing the design during the design implementation phase. 
 
7.1 Entry Criteria 

 

The DDP details the PLD design information as well as generating the complete design.  The 
DDP can be entered when the following criteria are met: 
 

a. The preliminary design specification is baselined. 

b. The interface definition is baselined. 

c. The PDP and associated reviews are successfully completed. 

d. The planning phase documents (see section 5) are baselined, including : 

(1) Requirements. 

(2) Development plan. 

(3) Verification plan. 
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7.2 Coding Standard 

 

It is recommended that the PLD team utilize a common HDL coding style.  Design organizations 
may consider the use of common coding standards across multiple projects, in order to facilitate 
effective reviews and design insight. 

The following items help make a design reviewable: 
 

a. Standard coding style. 

b. Documentation that is consistent with the design. 

c. Current, regularly updated documents. 

d. Use of appropriate comments for the design. 

e. Use of configuration control for the design. 
 

Examples of the types of HDL standards that may be defined include, but are not limited to: 
 

a. Use of naming conventions to allow recognition of the function of signals by their name. 

b. Use of the header of the HDL design to capture nomenclature (see Appendix A). 

c. Use of modular design to ease testability, readability, and simulation. 

d. Use of editor tools (tool editor software, Ultra-Edit, use of spaces versus tabs, etc.). 

e. Use of self-checking/documenting test-benches. 

f. Use of proper code documentation, particularly inline documentation, which later 
helps if a personnel change is made in the middle of the project. 
 

g. Documentation of each procedure or function. 

h. Use of inline comments to explain thoroughly the applicability of assumptions and 

rationale used to achieve the design. 

i. Use of a consistent design language across all designs, agreed upon at the 
project/branch level. 
 

7.3 Design Standard/Best Practices 

 

This section describes a list of items that are design specific.  The PLD designer reviews all the 
items to decide which are applicable and which are not.   
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7.3.1 Synchronous Design 

 

It is recommended as a best design practice to use synchronous design methods.  The behavior of 
a synchronous design is predictable/deterministic and more tolerant to race conditions, hazards 
(dynamic or static), or glitches introduced by environmental conditions.  Fully synchronous 
designs can also be more easily migrated or reused across PLD device types.  The use of non-
synchronous design methods is rarely appropriate, and their use has to be sufficiently justified, 
because they usually require more effort to validate or verify in the design. 
 
Synchronous design techniques include the following: 

a. Transition all signals on the clock edge. 

b. Avoid using a gated clock (a clock that is driven from logic, not a clock buffer). 

c. Handle carefully signals that cross clock domains.  There are many techniques, such 
as double registers; metastable resistant registers; first in, first outs (FIFOs); etc.  The design 
identifies the best method for the particular implementation. 

d. Synchronize asynchronous inputs to system clock in one location. 

e. Minimize the number of clock domains. 

f. Utilize synchronously de-asserted rests. 
 

7.3.2 Clock Design 

 

When following synchronous design methodology, a PLD best practice is to use low-skew clock 
buffers on clock and reset nets.  Use of low-skew clock buffers simplifies timing analysis and 
avoids race conditions (e.g., hold-time violations) by enabling more simultaneous (synchronized) 
clock arrival times.  This ensures more deterministic functional behavior.  Therefore, when 
sequentially adjacent registers are clocked on a common edge, use low-skew clock resources.  It 
is acceptable to design with routed clocks, and this can often result in a reduction of power 
consumption or an effective increase in the number of clocks available.  However, precise skew-
tolerant design techniques and analysis have to be used.  In addition, routing clock signals over 
long distances inside the PLD to the inputs of clock buffers using regular routing resources may 
make the signals vulnerable to crosstalk from nearby signals, possibly resulting in errant 
behavior.  To avoid this, ensure that PLD clock input pin or logic that generates the clock is close 
to clock buffer input. 
 

7.3.2.1  Chip-to-Chip Timing Strategy 

 

Many analysis tools are useful for analyzing logic within a single chip, but few are effective at 
analyzing system or chip-to-chip timing.  In addition, while the worst-case behavior of the clock-
to-out of the source chip is easily analyzed using “minimum” or “best case” timing parameters, 
the hold time of the destination chip may need to be analyzed assuming a slow path for the clock 
and a fast path for the data for the same calculation.  A strategy to consider would be to assign or 
allocate delays to each signal leaving one device and being received at the next.  These 
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allocations can be used as constraints for synthesis and timing analysis to ensure that the system 
will meet timing once integrated.   

In general, rigorous analysis of the chip-to-chip interface delays and clock skew is performed to 
validate the destination capture scheme.  Analysis considerations include the following: 
   

a. Trace delays from board-level connections (or other medium connectors).  

b. Output (source chip) and input (destination chip) buffer delays. 

c. Delays from input buffer routing to internal structures. 

d. Clock tree latency. 

e. Signal skew. 

f. I/O signal integrity (e.g., transmission line effects, ground bounce, and cross talk).   
 

The optimum criteria for passing is that all worst-case setup and hold times are always satisfied. 
 

7.3.2.2  Delay-Locked Loops (DLLs) and Phase-Locked Loops (PLLs) 

 
Consider the analysis required before using the DLLs and PLLs.  DLLs and PLLs can have many 
useful functions in digital systems, but they have some requirements that have to be satisfied:   
 

a. Check that the worst-case frequencies (both slowest and fastest) are compatible with 
the circuits; often the acceptable ranges are very limited.   

 

b. When these circuits clock finite state machines (FSMs) or other sequential logic, 
verify that the DLL/PLL starts up, stabilizes, and locks up properly and reliably to ensure safe 
circuit operation. 

 

c. Check the worst-case performance when the DLL or PLL encounters a single event 
upset (SEU).  This can result in a change of programming of the DLL or PLL, which is 
sometimes subtle, or a change in mode.   

 

(1) Safe operation of the system has to be ensured during these off-nominal 

conditions.   

(2) An SEU or single event transient (SET) can cause the DLL or PLL to unlock or 
glitch and, consequently, make the entire circuit that is within the clock tree 
unstable or inoperable, necessitating a reset. 

 
 
 
d. Account of DLL/PLL clock jitter and stability. 

e. Power supply and decoupling strategies on the circuit board for the DLL/PLL circuit. 
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Use of internal DLL/PLL PLD circuitry has to include careful analysis of a project’s radiation 
requirements and available radiation test data on the PLD’s DLL/PLL circuitry, which is 
typically softer than the other elements within the PLD. 

7.3.2.3 Crossing Clock Domains 

 

FPGA designs with multiple clock domains are now common.  Perform clock domain crossing 
(CDC) analysis.  Based on analysis of the clock trees, identify all signals crossing clock domains 
and determine the need for metastable state resolution.  When de-metastability logic is used, it 
needs to be evaluated for its correctness and effectiveness.  This is especially important for reset 
signals used in each clock domain to ensure proper operation for all possible sequences of reset 
removal between clock domains.  Additionally, ensure that the latency involved in signal 
synchronization is tolerable to the system.   
 
7.3.2.4 Opposite-Edge Clocking 

 

Consider duty cycle in timing analysis for designs that use both clock edges.  With justification, 
document any designs that pass data from one edge of a clock to the other.  Analyze such circuits 
using the worst-case duty cycle for each phase.  Often designers assume a 50 percent duty cycle, 
which may not be the case.  Sources of duty cycle distortion include oscillator characteristics, 
with 50 +/- 10 percent duty cycles being common, including uneven delays through logic gates 
and buffers, etc.  Unless required to meet timing, avoid using opposite-edge clocking as it 
complicates the timing analysis for the design.   
 
7.3.2.5 Metastability  

Ensure that proper synchronizers are used for each asynchronous signal to guard against 
metastability.  Often designers will use two series D-flip-flops (DFFs).  While this is a common 
and acceptable topology, be aware that for high-speed signals, the failure rate of this 
synchronizer can be non-negligible.  Analysis has to be done for situations that may require a 
third DFF to be put in the series.  The following are notable conditions to address: 
 

a. The metastability analysis includes nominal through extreme temperature and voltage 

values.   

b. Ensure that there is margin in these circuits as they are impractical to test and verify.   

c. Also, note that for ASICs, different flip-flop macros may have significantly different 
metastable parameters.  This can also be a consideration in PLDs. 
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7.3.2.6 Latches 

 

A best practice is to avoid the use of latches because they complicate the timing analysis of a 
design.  Furthermore, PnR tools do not satisfactorily analyze timing paths with latches.  It is not  
uncommon that a latch can be replaced in a design by a DFF.  Therefore, the recommended 
approach is to replace latches with DFFs. 
 
Latches can also be unintentionally inferred (added by the tool during synthesis), for example by 
not defining all output states.  Run a register report after PnR to confirm that there are no latches 
present. 

7.3.3 Finite State Machine Design 

FSMs have to be designed with care for critical applications.  Verify the implementation at levels 
of abstraction appropriate for each circuit.  For example, for certain critical sections of an HDL-
based design, examination of the tool-generated netlist via a schematic viewer may be required 
to ensure that a reliable circuit has been implemented.  There are very few designs with a single 
independent state machine.  Most designs have several, if not many, interconnected state 
machines.  Any correction or recovery algorithm (an FPGA or card-level reset, for example) 
would need to take into account all of the interconnected state machines and be thoroughly 
analyzed and tested in order to verify proper recovery.  Note that the correction method may 
even reside at a higher level such as at the subsystem or box level. 
 
7.3.3.1 State Machine Transitions and Default States 

 

Analyze and verify that state machines start in a known state and transition through all states as 
intended.  The analysis also needs to include, especially for critical state machines, 
considerations for off-nominal events that could cause faults that interrupt nominal state 
transitions.  Credible faults could occur because of such hazard events as a disturbance on the  
power bus, an electrostatic discharge (ESD) event, a radiation-induced upset, etc.  Note that 
hazard events are not synchronized to the system clock and the logic network is not guaranteed 
to be glitch free. 
 
Any critical state machine has to be robust under all credible faults.  In general, analysis of the 
combinational circuits that implement the next-state logic and their inputs to the registers making 
up the state register is needed.  In particular, for any of these schemes, it has to be determined 
whether the circuit implementations are static hazard free and, if not, whether an erroneous 
transition to a state (or set of states) can occur.  It may be very difficult for a user to guarantee 
deterministic behavior of the state machine if an upset occurs.  This could also be the case for 
very large or complex state machines. 
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7.3.3.2  State Machine Transition and Fault Recovery 

The PLD design team addresses FSM lockup at a higher level and analyzes FSM outputs.  In 
general, each FSM is analyzed to make sure that the system can detect a locked up FSM and 
return it to a known state in a timely and safe manner.  Recovery options can include an 
automated system recovery or an external event (watchdog reset, commanded reset, or power  
cycling), if acceptable to the system design.  For mission-critical applications, the FSM outputs 
have external protection, such as requiring flight software to “arm” the FSM outputs. 
Implementation of a reset from an external resource (e.g., watchdog timer) can simplify fault 
recovery analysis in that the reset forces the entire design associated with that reset into a known 
state.  Though the externally generated reset would be the preferred approach, if there were no 
system-level watchdog available or it does not adequately address an FSM’s response to a fault, 
an alternative method could be to implement an onboard watchdog that operates off separate 
clock and reset resources. 
 
A further recommendation would be to incorporate off-nominal events into the simulation 
environment to assess system response, such as verifying a watchdog reset.  This assessment 
may be extremely valuable given that this functionality may be impossible to test in a hardware 
test environment. 
 
7.3.3.3  State Encoding 

 

The use of a state vector encoding scheme that meets requirements is another recommended best 
practice.  The choice of state vector encoding is one that factors in radiation effects, timing 
constraints, and criticality of operation.  Often, designers allow the synthesis tool to choose the 
encoding scheme that is optimal for timing constraints.  However, the designer still reviews the 
synthesis tool’s choice factoring in radiation effects and criticality of operation.  Following are 
some factors to consider: 
 

a. In PLDs, if using TMR with triplicated registers, upsets are more common from SETs 
than SEUs.  Therefore, combinatorial logic poses a greater vulnerability.  One-hot encoding uses 
more flip-flops, but less combinatorial logic to encode the states and becomes a robust high-
speed option. 

 
b. With one-hot encoding, single bit errors are detectable.  If the implementation 

decodes all bits in the state, the implementation can recover from an invalid state.  However, 
when one-hot encoded state machines experience an upset, it is likely that two state bits will 
become “hot” and activate two parts of the design that aren’t normally activated simultaneously.  
The designer determines whether this situation could cause any damage. 
 

c. With binary coded state machines, detecting illegal states and transitions requires the 
use of additional logic that increases susceptibility to radiation effects. 
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d. Binary encoding of states that uses all 2
n
 states does not guarantee the FSM will not 

lock up if the FSM interfaces with external logic.  In this situation, an SEU could disrupt the 
normal sequence of operation.   

 
e. Generally, the upset rates between different state machine types are very small even 

with error detection and recovery (safing) implemented.  As such, avoid over-engineering FSMs. 
More specifically, don’t assume that “safing” FSMs individually is better than using one hot 
and/or binary FSM encodings without safing.  Whether to safe an FSM or not depends on the 
system level consequences of an FSM being upset and what recovery actions are needed. 

7.3.3.4  State Machine Synthesis 

 

The PLD design team analyzes the synthesis reports and synthesis tool outputs.  Common things 
to check include the following: 
 

a. Recognized state machines.   

b. Lockup states.   

c. Outputs from the state machine that can glitch. 

d. Unintended register replication.   

e. Implementation of the desired and specified style (sometimes the synthesis tool 
substitutes one type of state machine for another).   
 
Additionally, some logic synthesis tools generate “safe” state machines.  Use of this feature is 
not recommended because it typically increases the use of combinatorial logic, which increases 
the SET susceptibility.  If this feature is used, examine the generated design carefully as it could 
sometimes add an excessive number of gates to the implementation.  Other times, resets are 
generated on the opposite edge of the clock resulting in tight timing for the removal of clears that 
are not visible to the designer.  Note that when using enumerated states in VHDL, not all 
physical states are covered (only enumerated states are covered).  Hence, the “others” clause 
only refers to states in the enumerated type and not the physical realization.  The HDL does not 
identify one-hot or binary or gray-coded implementation or which registers have been replicated.  
This is not detectable at the black box simulation level or by Boolean equations for logical 
equivalence. 
 
To ensure that the state encoding is not altered by the synthesis tool, synthesis directives such as 
“syn_preserve” (from Synplicity) can be used to ensure that the synthesis tool does not change 
the state encoding. 
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7.3.4 Resets 

 

It is important to understand the purpose of reset implementations.  For example, different 
approaches are recommended depending on if the reset signal is used to initialize finite state 
machines as opposed to protecting external resources (e.g., contention on a tri-state bus, 
electrically erasable programmable read-only memory (EEPROM) protection, relay activation, 
pyrotechnic initiation). 
 
Every flip-flop in a design is reset to a known state by the global power-on reset (POR) signal.  
Failure to reset all registers in a design can cause mismatches between simulation and actual 
device.  Each flip-flop has either an asynchronous preset or a reset signal.  If the flip-flop needs 
both a reset and preset condition, one has to be changed to a synchronous signal.  If they are both 
asynchronous, they can nullify each other since the timing relationship between them is 
undetermined.  It is important to make sure that the design specification clearly defines all 
register states at POR for bits that are directly controlling circuit functions (on- or off-chip) 
without first being initialized by software. 
 
Synchronous resets can typically be analyzed with just static timing analysis (STA) as far as the 
PLD is concerned but require board, box and/or system analysis to determine if indeterminate 
PLD outputs are acceptable until the synchronous reset is clocked through.  Synchronous reset 
signals have to be routed on low-skew global routing networks.  This is vitally important to 
ensure that all synchronous elements in a design are reset at exactly the same time.  System reset 
is typically active low at the board level because at power on, the board starts at 0 volts so 
nothing needs to be done to assert the reset.  Inside the PLD, the active state of the reset (high or 
low) is dependent on the technology being used.  It is best to check the device technology prior 
to setting the reset active state.  A recommended system reset is asynchronously asserted, and 
synchronously de-asserted, with the minimum pulse width required.  An analysis is done to 
determine the time that the reset is to be asserted and de-asserted.  This is design dependent, and 
is done for the following reasons:  
 

a. Ensures that the PLD is held in reset at power up even if the clock is not stable. 

b. Ensures that the PLD cannot come out of reset in the absence of a clock. 

c. Ensures that the internal reset signal is held for a sufficient amount of time to 
propagate throughout the chip.  This does not allow a glitch on the reset line to cause an internal 
race condition. 
 
Refer to Appendix F for more information on resets. 
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7.3.4.1  Implement Synchronous De-Asserted Reset. 

It is recommended that the team implement synchronous de-asserted reset using a global buffer, 
if available.  For asynchronous presets and clears, there are two basic parameters that have to be 
met.  First, there is a pulse width requirement that has to be guaranteed.  Second, removing the 
preset or clear from a device asynchronously to the clock may result in metastable states in the 
sequential circuit.  This parameter is frequently called the removal time (asynchronous (clear and 
preset) or removal time) and is denoted as tREM.  Unfortunately, many data sheets do not specify 
the removal time.  Use a synchronously de-asserted reset to ensure that the removal time 
requirement is met. 
 

7.3.4.2 Generate a Reset Tree Diagram 

 

Drawing a tree of all the reset sources, buffers, and domains is often helpful in ensuring that the 
reset logic is well defined.  Often there are multiple forms of reset from system resets, software 
resets, watchdog timers, etc., and having a detailed tree diagram shows the relationships between 
them.  Ensure that proper synchronization is made when required.  Additionally, if the reset 
needs to be activated quickly, the tree helps to ensure that the logic and delays are well 
understood.  Examples include when there is a need to protect non-volatile memories from false 
writes, or other circuits from initiating one-time events, such as firing pyrotechnics or explosives.   
 
7.3.5 Device Inputs/Outputs 

 

The PLD designer reviews/analyzes each I/O’s dynamic and static characteristics, such as 
timing, logic threshold, direct current (DC) voltage characteristics, and I/O standard, with the 
board designer to take into account the manufacturer’s recommendations to ensure proper 
operation of the devices.   
 
7.3.5.1 Simultaneous Switching Outputs (SSOs) 

 

Adhere to the vendor’s recommendations for handling SSOs.  There may be limits to the number 
of output pins that can switch at one time.  Sometimes the manufacturer specifies these limits in 
a data sheet, describes them in an application note, and/or leaves them to the discretion of the 
designer.  Ground/VDD bounce can be a serious issue that can dynamically affect input switching 
thresholds, decrease system noise margins for fast-switching devices with large pin counts, and 
lower noise margins.  It is also important to note that for many devices, the number of SSOs can  
affect the propagation delay time (TPD). 

Care and planning is also important for pin assignments.  Pin assignments that seem organized 
with all the data bits on a bus lined up in a row have been notorious for causing both ground 
bounce problems on the printed circuit board (PCB) and routing problems inside PLDs.  
Consider using power integrity tools, as they provide a means to accurately predict the effects of 
SSOs on a given design.  Note the considerations that follow for simultaneous switching outputs, 
noise immunity, quiet design principles, and minimizing bounce issues: 

a. Use the lowest possible I/O slew rate and drive strength the design timing will 
support. 
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b. Distribute SSO signals across different power banks instead of grouping them 

together.  Refer to the device datasheet for recommendations on allowable SSO signaling per 
ground pin. 

 

c. Control the number of SSOs through sequencing.  For example, determine whether 
address or data bus bits all need to switch at the same time. 

 

d. For some families, programming “unused” outputs improves internal grounding or power 
integrity of the I/O ring, if they are terminated to the power or ground sources on the board. 

 

e. When PLD output drive is not sufficient, particularly for large memory arrays or long 
lines, use external buffers, being careful to adhere to proper PCB design techniques. 

 

f. Do not use sockets for flight applications. 
 
g. Choose input thresholds with maximum noise margin. 
 

h. Choose input options with higher voltage threshold to mitigate the effects of ground 
bounce. 

 

i. Keep sensitive signals (i.e., clocks, resets) physically away from pins that can cause 
ground bounce (i.e., high frequency switching pins, pins with fast (short) rise times and 
address/data buses). 

 

j. Assign clocks to pins that are close to ground pins. 
 

k. Driving test data through the Joint Test Action Group (JTAG) test interface, 
especially over multiple parts, can induce SSO data patterns, particularly with large data buses.  
For example, switching patterns from FFFFFFFF to 00000000.  Though this may be an artificial 
failure or an artifact of the test, this can damage or potentially overstress hardware through a loss 
of control. 

 
l. Test cabling, particularly for vibration, thermal/vacuum, and electromagnetic 

interference (EMI) tests, presents different conditions for normal bench testing or systems 
application.  Design for the worst-case over the entire project flow. 

 

m. If applicable, consider the use of lower voltage I/O standards.  PLDs often have lower 
voltage I/O standards available.  Lower voltage I/Os have lower transient currents that can 
reduce SSO.   
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7.3.6  Radiation Effects on Reconfigurable PLDs 

 

The use of reconfigurable PLDs is sometimes desired because it allows in-flight reconfiguration, 
usually has more on-chip resources, and can operate at higher speed than the one-time 
programmable PLD.  The issue with using reconfigurable PLD in space flight or high altitude 
vehicles (e.g., High Altitude Long Endurance (HALE)) is its susceptibility to radiation-induced 
errors.  As a result, additional logic is usually needed to reduce such susceptibility and improve 
the device reliability for space applications.   
 
Reconfigurable PLDs contain internal memory for configuring the logic blocks within the PLD 
to perform the required logic functions.  The internal configuration memory is not always 
radiation hardened and can be upset by radiation events.  When the configuration memory is 
altered through a radiation event, the impacted logic can be permanently changed unless the PLD 
configuration memory is reloaded or scrubbed.  The upset rate of configuration memory depends 
on the PLD technology and the radiation environment. 
 

7.3.6.1  Radiation Mitigation Techniques 

 

The simplest form of protection used on PLD configuration memory is open-loop scrubbing.  
This consists of using a separate radiation hardened or tolerant device to continuously overwrite 
the configuration memory of the PLD with configuration data from a known and reliable source.  
This method of protection is easy to implement and can usually correct the upset memory very 
quickly.  However, its effectiveness depends on the radiation upset rate of the PLD configuration 
port.  It only works if the PLD configuration port stays healthy.  Without a feedback mechanism, 
it can sometimes be difficult to determine whether the configuration port is receiving the data 
sent by the scrubbing logic.  As a result, this method of protecting PLD configuration memory is 
usually used along with other protection schemes, such as configuration memory read back or 
periodic reconfiguration of the entire PLD. 
 
Another technique is to read back and verify the configuration memory.  The content of the 
memory can be verified by either comparing it to that from a reliable source or checking the 
associated cyclic redundancy check (CRC) signature against the expected value.  Once the 
configuration memory is deemed corrupted, it can be overwritten with data from the reliable 
source.  The correction can be done only for the corrupted memory blocks or all the 
configuration memory blocks, depending how sophisticated the readback/scrubbing controller 
design is.  Unlike the scrubbing logic, the readback logic can be implemented inside the 
reconfigurable PLD itself as long as the health of the readback logic can be monitored by an 
external radiation hardened or tolerant circuit or PLD.  This method of configuration memory 
protection is more reliable than open-loop scrubbing.  Any corruption to the configuration data 
or the configuration port can always be detected.  The drawback with this approach is that 
response time can be slow.  Once the corruption is detected, another mechanism, such as open-
loop scrubbing or full reconfiguration, has to be deployed to correct the problem.  This is 
expected to take more time than using open-loop scrubbing.   
 
7.3.6.2  Redundancy 
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TMR is also used for mitigating radiation induced upsets in PLDs.  The scheme employs three 
copies of the circuit to be protected by TMR and a voting logic.  The correct output of the circuit 
is determined using majority rule.  Feedback logic is sometimes used to correct the errors in the 
corrupted copy of the circuit.  For reconfigurable PLDs, TMR is usually not built into the PLD.  
The designer may need to implement TMR or other methods to mitigate the potential problems 
caused by radiation-induced upsets.   

Designers need to be aware that there are different TMR methods including Local TMR, Global 
TMR, and Distributed TMR.  Each has its advantages and disadvantages in terms of protection 
afforded versus impacts on device or circuit resource.  It is not sufficient to rely solely on 
manufacturer’s literature on radiation effects mitigation.  For the purposes of this document, it is 
recommended that the PLD designer (or design team representative) also consult appropriate 
radiation effects engineering resources to determine the optimum method for the intended 
application.   

TMR can be implemented manually by the designer or by using design tools.  Once TMR is 
implemented, the designer ensures that the PLD synthesis tool does not reduce the redundant 
circuits from the TMR design while optimizing the design. 
 
7.3.7 In-Flight Reconfiguration 

 

In-flight reconfiguration is used very carefully if the PLD is performing system-critical 
functions.  Improperly configured PLD can cause the device to stop functioning in-flight.  
Systems designed to support in-flight PLD reconfiguration have to have a fail-safe mode to 
restore the system to the last working state in the event of a reconfiguration error.  The fail-safe 
mode allows the PLD to be reconfigured using the last known reliable configuration file stored 
locally in the system, from an external location on the spacecraft, or even from the ground.    
 

7.3.8 Designing for Testability 

 

Consider adding signals to facilitate design development and debugging.  Debugging designs in 
the lab comes with many constraints.  One of them is visibility of signals.  Be sure to allocate test 
points or spare pins for diagnostic purposes.  There are many steps that a designer can take to 
address these constraints, including the examples that follow: 
 

a. JTAG interface.  PLDs often come with JTAG interfaces that can be used to probe 
internal signals.  Such interfaces can come in very handy, but often come with frequency 
limitations and limit the number of signals that can be viewed simultaneously.  Be sure to 
accommodate the PLD signals associated with the JTAG interface. 

 
b. Debug mux.  A multitude of internal signals can be brought to a multiplexer whose 

output connects to PLD outputs.  The multiplexer select signals can be driven by PLD inputs or 
by other suitable means.  This approach can be used when a PLD’s JTAG interface has 
limitations that pose a problem. 
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c. Heartbeat output.  A quick and easy method of checking if a PLD is “functional” is to 
generate a heartbeat output signal that pulses periodically when certain critical events occur.  The 
utility of such a signal depends greatly on how the designer chooses to generate the output. 

 

d. Ensure there is a way to disable debug outputs for flight.  Signals that are clocks or 
switch states can be a source of unwanted EMI. 
 

Regardless of testability features implemented, it is important that the implementation be 
analyzed sufficiently in the final flight design to ensure no impact on in-flight system 
functionality or reliability.  Ideally, all testability features are disabled for flight. 
 

7.4 Design Specification 

 

During the DDP, detailed design information is generated based on the preliminary design.  
Detailed timing, state, and block diagrams are generated.  The PLD specification containing the 
detailed design is prepared, reviewed, and released.  The specification contains enough details to 
allow an engineer to implement and verify the design.  Updates to the specification include the 
following: 
 

a. Block diagram of the PLD architecture, including: 

(1) Clock generation, distribution, frequencies, etc. 

(2) Reset generation, distribution, etc. 

(3) State machines, state diagrams, and state tables. 
 

b. A functional description of the device and a detailed description of the individual 
blocks, including IP definition and usage.  The mathematical functions that are required will 
include the following:  

 
(1) Method of calculation, including the name of the theorem (e.g., whose method of 

a fast Fourier transform or which Reed Solomon implementation is being used). 

(2) Precision. 

(3) Accuracy. 

(4) Performance. 
 

c. List of targeted devices to be used, including prototyping versus engineering units 
versus flight units. 

 
d. SEU mitigation implementation, including scrubbing, TMR, etc. 

e. A description of all interfaces, including board-level implementation constraints 
(critical pins for board routing, proximity to other devices, input slew-rate limitations, etc.). 

 
f. Software interface, including: 
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(1) Memory map. 

(2) Register definitions. 

(3) Operations constraints. 
 

g. Timing information, including waveforms for critical interfaces. 
 
h. Re-configurability, if applicable. 

7.4.1 Clock Tree Diagram 

Draw a board level diagram showing the clock trees for the circuit that includes PLLs, DLLs, 
clock buffers, clock dividers, and all chips that use the clock.  See the example provided by 
figure 3, Sample Clock Tree Diagram, that follows.  
 

 

 

 
 

Figure 3—Sample Clock Tree Diagram 
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7.5 Board and PLD Interface Considerations 

 

In order for a PLD to operate correctly, it is important to review and ensure the correctness of the 
interface between the PLD and the board on which it resides.  The following list provides some 
key areas to review for the PLD and board interface: 
 

a. Review the connections of vendor-specific special pins.  Pins such as TRST, 
VPUMP, and VREF for PLDs from MicroSemi and HSWSPEN, INIT_B and PROB_B for 
PLDs from Xilinx all have to be terminated properly for the PLD to operate correctly.  Review 
the PLD datasheet for the requirements about how the special pins are connected, and verify that 
the corresponding connections are correct on the board. 

 
b. Review output loads and fan-outs.  Make sure that the PLD I/O buffer driving 

strength is compatible with the loading (e.g., high capacitance or non-logic loads). 
 
c. Review I/O standard compatibility.  Make sure that the correct logic threshold is 

selected for the PLD I/O buffer when mixed logic families are used.   
 

d. Review signals coming from and going to a different power domain.  Make sure the 
cold-sparing and power sequencing requirements are met.  Review circuitry that may be powered 
independently of the PLD, including cold-sparing applications, and make sure that adequate 
protection circuitry is implemented. 

 
e. Review circuit board signal integrity analysis.  Ensure that the signal overshoots and 

undershoots do not violate PLD manufacturer’s absolute maximum ratings for I/O signals.  
Using low slew rate for the PLD outputs and terminating the board signals are two effective 
methods for reducing ringing levels for board level signals. 

 
f. Review selections of pull-up and pull-down in the PLD I/O buffers and on the circuit 

board.  Make sure that the selections for the pull-ups and pull-downs inside the PLDs are 
consistent with those implemented on the circuit board. 

 

g. Plan the design with testing in mind and incorporate the resources needed to facilitate it: 
 

(1) Consider observability as the design is implemented. 
 

(2) Consider approaches for debugging the circuit while the part is on the 
(breadboard/engineering test unit (ETU)/flight) board. 
 

Appendix F details additional board-level considerations. 
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7.6 Design Test Coverage 

 

The designer identifies what design features or functions outside the formal requirements 
verification process need to be tested.  The purpose is to mitigate any risks that may develop as a 
result of functions that may not be fully tested during requirements verification.   
 

7.7 Software Development for an Embedded Processor 

 

PLDs may contain one or more embedded processors, such as microcontrollers, central 
processing units (CPUs), graphics processing units (GPUs), and/or digital signal processors.  
These embedded processors execute software ranging from a simple series of instructions to an 
operating system running applications, which is separately developed from the PLD design code.  
This Handbook does not cover the development, verification, and validation of software for such 
embedded processors.  All software will be covered by software requirements in NPR 7150.2, 
NASA Software Requirements.  
 

7.8 Exit Criteria 

 

The DDP is the final phase of the design cycle.  Upon completion of the DDP, the following 
criteria are met: 
 

a. The design specification is reviewed and baselined. 

b. The interface definition(s) are baselined. 

c. The detailed design (from the design specification) is completed. 

d. Reviews are completed as defined in the development plan. 
 

8. DESIGN IMPLEMENTATION PHASE 
 
The design implementation phase is the phase when the design is implemented, coded, and 
reviewed.  This occurs after the detailed design is completed.  The generated result will be the 
PLD programming file(s) that will be used in the verification aspect.  During the design 
implementation phase, the verification team may begin to implement preliminary versions of the 
verification items.  These can include test procedures, test scripts, test benches, etc.  In addition 
to generation of the programming files, the design undergoes several timing analyses, including 
STA and worst-case timing analysis. 
 

8.1 Entry Criteria 

 

The design implementation phase can be entered upon completion of the DDP. 
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8.2 Implementation 

 

The implementation of the design follows the detailed design and involves: 
 

a. Transferring the design from the design specification to the HDL code (coding). 

b. Incremental testing: Simulations at both the module and chip levels.   

c. Reviewing the design files. 
 

The sections of this phase are not followed in linear form.  These phases are iterated by the 
designer and the team, as appropriate. 
 
8.2.1 Implementation of the Design 

 

The implementation of the design occurs when the design engineer takes the design 
specification, the coding standard, and the design standard and implements the design in the 
specified technique (VHDL, Verilog, schematic entry, etc.).  The designer follows the coding 
standard setup by the project and applicable sections of the design standard (section 8.4).   
 

8.2.2 Incremental Testing 

 

As part of the coding, the designer typically performs incremental testing (generally in the form 
of simulation) to test the operation of the code.  Incremental tests begin at the lowest level and 
continue up through various levels of code.  For purchased IP, it is best first to perform a test on 
the IP to confirm its functionality prior to using it in the design. 
 
8.2.3 Reviewing the Design Files 

 

As the design is developed, the PLD team lead organizes and runs reviews on the 
implementation (code, drawings, etc.) per the development plan.  For example, the purpose of a 
code review is not just to check the stylistic portions of the code, but to ensure that the design is 
complete and meets the requirements specified.  Issues found at the design file level are much 
easier and take fewer resources to fix than those found in various stages of verification. 
Prior to any review, the design is deposited in the appropriate revision control system.   
 

8.3 Verification Preparation 

 

The verification team begins development of the test preparation (test benches, test scripts, test 
procedures) used for verification and independent testing of the device.  This effort can occur in 
parallel to the development of the design.  Section 9 defines the verification items. 
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8.4 Synthesis and Timing Analysis 

 

This section describes a list of items that are design specific.  The PLD designer reviews all the 
items to decide which are applicable and which are not.   
 
8.4.1 Synthesis and Place and Route 

 

8.4.1.1 Synthesize the Design 

 

When synthesizing the design, consider the following items: 
 

a. Synthesis is performed for both prototype and flight parts to ensure that the design is 
implementable on the final flight part. 

 
b. Use constraint files and script files, rather than the tool’s graphical user interface, to 

assist with self-documenting design. 
 
c. Review output files and logs to verify that the design was not altered by the synthesis 

tool. 

(1) Search through the synthesis report for unexpected resources/primitives macros 

such as:   

A. Flip-flops without sets or clears, indicating circuitry that will not be reset on 
POR or reset command. 
 

B. Flip-flops with both sets and clears, indicating possible asynchronous design 
techniques (the absence of set/clear flip-flops does not indicate the absence of 
asynchronous design techniques). 

 
C. Unintended latches.  For intended latches, the timing has to be checked 

manually. 
 

D. Opposite-edge flip-flops (e.g., falling edge flip-flops in a predominantly 
rising edge design) that could place constraints on clock symmetry and be 
more difficult to analyze with the STA tool. 
 

(2) Search for high fan-out resources.  These resources may need to be distributed via 
spare global clock network or other high fan-out/low-skew buffers. 

 
(3) Review and verify that the synthesis tool properly encoded all FSMs. 

 
(4) Verify that de-metastability buffers are not replicated. 

 
d. Understand all warnings and notes.  Disposition all warnings. 
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e. Timing analysis in the synthesis phase can be used as an indication of long timing 
paths and of predicted timing.  However, accurate timing analysis can only be achieved from a 
STA that is performed after PnR. 

 
8.4.1.2 Register Replication 

 

Synchronizing circuits for asynchronous inputs and CDCs are checked to ensure key flip-flops in 
the source and destination clock domains have not been replicated.  Replicated flip-flops in 
synchronizers can result in intermittent functional failures.  Synthesis constraints are added to 
these flip-flops to prevent replications and preserve the structural design of each synchronizer. 
    

8.4.1.3  Transfer Netlist to Vendor-Specific Place and Route Tool 

 

To transfer a netlist to a vendor specific PnR tool consider the following: 
 

a. Set timing constraints.  Document and archive constraints files for reproducibility 

and review. 

(1) Ensure that false paths/multi-cycle paths are valid. 

(2) Consider timing requirements for devices that interface with the PLD. 

b. Set up the PnR tool for: 

(1) Part type: 

A. Package. 

B. Speed grade. 

(2) Temp range: 

A. Military range is suggested to ensure sufficient timing margin. 

B. The tools assume that temperature is the device junction temperature and not 
the case temperature of the board's thermal control surfaces.   

(3) Voltages (core, I/O). 

(4) Radiation level. 

(5) Device-specific settings. 

c. Fix pin assignments and properties: 

(1) I/O standard, threshold, slew rate, output loading, etc. 

(2) Verify I/O compatibility with the board designer. 

(3) It is preferred to accomplish this with a vendor-specific constraints or 
configuration file. 

d. Run PnR. 
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e. Export min-typ-max Standard Delay Format (SDF) files for simulation: 

(1) Min/max delays are contained within this file, ranging from the best case to the 
worst case. 

(2) Use loading for each pin by reviewing schematics and specifications for each 
interfacing part. 

 
8.4.1.4  Post-Route Verification 

 

In PnR verification, consider the following: 
 

a. Review all logs from vendor tools for errors, warnings, and notes.  Disposition all 

warnings. 

b. Timing analysis: 

(1) Use the vendor's STA tool or an approved independent STA tool that can perform 
an equivalent analysis using SDF files generated by the vendor tool. 

(2) Check maximum timing with procured speed grade. 

(3) Check minimum timing using the fastest speed grade, in case the PLD vendor 
delivers a faster PLD (from their current inventory).   

(4) Include delays to/from pads on the board. 

(5) Consider clock source and delays. 

(6) Include loading on outputs. 

(7) Get min/max data for any device interfacing with the PLD. 

(8) Analyze both best case and worst case timing to reveal any setup/hold time 
violations.   

(9) A minimum 10 percent timing margin is suggested. 

(10) Carefully scrutinize logic crossing clock domains, and the symmetry 
requirements of clocks when both edges are used. 

(11) Slew rates (especially clock slew). 
 

c. Review and verify pin report assignments. 
 
d. Run back-annotated simulations (minimum, typical, and maximum).  Verify that 

timing and functionality are both met. 
8.4.2 Timing Analysis 

 

Timing analyses showing positive margins are performed to ensure the PLD will operate 
properly through all environmental conditions it may experience.  PLD timing requirements are 
derived from all of the PLD’s interface components to ensure timing compatibility.  Constraints 
are applied as needed to the synthesis and/or PnR software to meet all timing requirements. 
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The environmental factors that affect timing are as follows: 
 

a. Temperature. 

b. Voltage. 

c. Radiation – total ionizing dose (TID). 

d. Process (speed grade, best/worst). 

e. Aging. 
 

PLD vendors try to provide timing estimates, which are based on user-specified environmental 
values or ranges, that envelope the effects of all of these factors.  The effects of some factors 
(such as radiation and aging) are harder to predict than others.  Therefore, positive timing 
margins (margin on top of margin), such as 20 percent at initial PnR and 10 percent for the final, 
are preferred.  For example, prolonged radiation exposure can slow down some circuit elements 
and/or speed up others within the same device.  In addition, logic upsets due to transient 
radiation events are addressed, but not as part of timing analyses.   
Timing analyses may need to be run with more than one set of environmental conditions and 
resolved into an overall set of minimum and maximum values that envelope the values from 
various environmental conditions.  The number of environmental condition combinations 
analyzed is often referred to as the number of corners analyzed.  An example of a two-corner 
analysis is shown in the table 3, Example of Two-Corner Analysis, below.  
 
 

Table 3—Example of Two-Corner Analysis 

Environmental factor 
Condition 

Worst/Max Best/Min 

Temperature 125 °C -55 °C 

Voltage 3.0V and 1.35V 3.6V and 1.65V 

Radiation 100 krads 0 krads 

Process (speed grade) STD -1 

Process (best/worst) Worst Best 
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The types of timing analyses needed depend on the functional types of inputs, outputs and 
internally generated signals in the PLD.  The types of timing analyses are as follows: 
 

a. Clock frequency. 

b. Reset pulse widths. 

c. Asynchronous input pulse widths. 

d. Synchronizer metastability settling time. 

e. Synchronous input setup and hold times. 

f. Combinatorial input pulse widths. 

g. Synchronous output delays. 

h. Combinatorial output delays. 

i. Clock domain crossings. 
 

Typically, several types of timing analyses are needed to show that a PLD design will perform 
properly.  For example, a PLD design with a peripheral component interconnect (PCI) interface 
would need clock frequency, synchronous input setup and hold times, and synchronous clock-to-
output timing analyses to show compliance to PCI interface timing requirements. 
 

8.4.2.1  Clock Frequency Timing Analysis 

 

STA software is used to calculate the maximum clock frequency for each clock domain that uses 
dedicated, skew-safe clock circuitry.  This is typically the first timing check designers perform to 
see if their design implementation works at the required clock frequency(ies).  Specify a 
frequency for each clock domain in the PLD to constrain the PnR software so that the required 
frequency(ies) is achieved.  Specifying frequency constraints enables the STA software to report 
pass/fail status. 
 
For clock domains that pass signals between both edges of the clock, account for duty cycle 
variations.  Note that rising versus falling edge delay differences inside the PLD contribute to 
duty cycle variations. 
 
If the maximum clock frequency reported by the STA software is not fast enough, review the 
slowest paths and consider using a faster speed grade PLD, redesigning the logic and/or 
determining if multi-cycle clock constraints can be applied.  Slow paths sometimes consist of 
signals that functionally have two or more clocks cycles to settle.  For these paths, consider 
adding multi-cycle timing constraints.   
 
Avoid clock domains that do not use dedicated skew-safe clock circuitry because using them 
may require more manual effort (analysis and/or structural design modifications) to preclude 
internal setup and hold timing violations. 
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8.4.2.2 Reset Pulse Width Timing Analysis 

 

Analyze resets used to drive asynchronous clear or preset inputs to sequential elements (typically 
flip-flops) to meet the minimum low and high pulse widths needed by the routed PLD.   
 
Resets that assert and negate asynchronously to the PLD’s clock domain(s), such as power-on 
resets, are often synchronized before being distributed throughout the PLD.  Resets are often 
asynchronously asserted and synchronously negated, so that all sequential elements are 
initialized as soon as possible but released from reset on the same clock event.  Analyze 
synchronized resets, as well as synchronously generated resets, like synchronous inputs to 
sequential elements even though these drive the asynchronous inputs.  This will sufficiently 
negate the synchronized reset before the next clock event so that all sequential elements come 
out of reset together.   
    

8.4.2.3  Asynchronous Input Pulse Width Timing Analysis 

 

Analyze asynchronous inputs that synchronize to clock domains inside the PLD to ensure the 
minimum low and high pulse widths needed by the synchronizing circuit(s) in the routed PLD 
are less than the minimum low and high pulse widths of the input.   

The minimum low and high pulse width of a “standard” two flip-flip synchronizer (shift register) 
is not just its clock period.  The minimum low and high pulse width is the sum of the flip-flip’s 
clock period, setup time and hold time and the rise versus fall time variances of the input’s path 
to the first flip-flop. 
 
Some asynchronous inputs are gated by other inputs or signals in the PLD and do not need to be 
synchronized on every clock edge.  It may be better to design and analyze these as gated 
synchronous inputs. 
 
8.4.2.4 Synchronizer Metastability Settling Time Timing Analysis 

 

Flip-flops used to capture asynchronous signals may have longer clock-to-output settling times 
when setup or hold times are violated due to metastability settling in the flip-flop.  Although it is 
possible to have a flip-flop’s output oscillate indefinitely due to metastability, it is unlikely the 
feedback paths in the flip-flop will be perfectly matched to sustain this.   
 
The typical synchronizing circuit consists of two or three flip-flops connected as a shift register.  
For each synchronizer, ensure the path from the first flip-flop to the second has sufficient timing 
margin (slack) to account for metastability settling.  Having margin is typically not an issue if 
there is no combinatorial logic between these flip-flops and these flip-flops are usually placed 
close together.  It may be worth adding a maximum path delay constraint for each synchronizer 
from the first flip-flop to the second that is less than the clock period to help ensure margin for 
metastability settling. 
 

8.4.2.5 Synchronous Input Setup and Hold Time Timing Analysis 
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STA software can be used to calculate the minimum setup and hold times needed for each 
synchronous input pin.  Setup and hold constraints can be specified to guide the PnR software 
and enable the STA software to report pass/fail status.   
 
Some synchronous inputs are gated by other inputs or signals in the PLD and do not need to meet 
setup and hold timing on every clock edge.  For these types of inputs, it may be worthwhile to 
constrain the setup and/or hold times to values larger than the clock period, as appropriate.  This 
is analogous to multi-cycle timing constraints. 
 

8.4.2.6 Combinatorial Input Pulse Width Timing Analysis 

 

Analyze combinatorial inputs used to drive outputs without being clocked to ensure the rise 
versus fall time variances through the combinatorial logic do not exceed the input’s minimum 
pulse widths.  Otherwise the input pulse could be missed and not reach the output or significantly 
distort the output pulse shape.  This could cause glitches that produce unwanted outputs.  It is 
recommended that outputs be clocked. 
 

8.4.2.7 Synchronous Output Delay Timing Analysis 

 

For designs where the output delay relative to the clock matters, STA software can be used to 
calculate the minimum and maximum clock-to-output delays.  Minimum and maximum clock-to-
output delay constraints can be specified to guide the place-and-route software and enable the 
STA software to report pass/fail status.   
 
For designs where the output delay relative to the clock does not matter, this is documented and 
no constraints are applied. 
 
A best practice is to register outputs through an I/O register.  This produces more predictable 
output timing and delays. 
 
8.4.2.8  Combinatorial Output Delay Timing Analysis 

 

For designs where the output delay relative to its input(s) matters, STA software is used to 
calculate the minimum and maximum input to output delays.  Constraints for minimum and 
maximum input to output delays are specified to guide the PnR software and enable the STA 
software to report pass/fail status.   
 
For designs where the output delay relative to its inputs does not matter, this is documented and 
no constraints are applied. 
   

8.4.2.9 Clock Domain Crossing Timing Analysis 
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The timing analysis shows that each CDC works properly and includes dispositions for each 
signal involved in the CDC.  The clock domains have either fixed or (more often) varying clock 
edge timing relationships.   
 
Synchronous CDCs may be able to take advantage of guaranteed timing relationships between 
the source and destination clock domains and use STA to verify setup and hold times for their 
control signals.   

Asynchronous CDCs have to work with all timing relationships (leading, lagging and co-
incident) between the source and destination clock edges.  Asynchronous CDC control signals 
are analyzed using asynchronous pulse width timing analysis. 
Setup and hold timing analysis are used for the data signals of CDCs.  More specifically, the 
analysis shows that data presented on the appropriate source clock edge meets the setup and hold 
times needed by the appropriate destination clock edge.  CDCs may be designed to hold data for 
multiple clocks before and/or after control signal transitions to facilitate meeting these setup and 
hold times. 
 
8.5 Baseline Work Products 

 

Design is baselined in the appropriate configuration control system.  This includes design source 
files, simulation test benches, script files used during simulation, synthesis, and PnR.  The goal is 
to keep everything required for design implementation and verification under configuration 
control so that the design can be reliably reproduced. 
 

8.6 Generate the Programming File 

 

This phase includes generating the PLD design per the design.  The design may not be the 
complete design but may be the completed section(s) per the plan.  It includes the process to 
synthesize, PnR, and generate the programming files for the design. 
 
Prior to generating the program file, the following occurs: 
 

a. Design implemented in HDL is baselined. 

b. Simulations are completed. 

c. Reviews per the development plan are completed. 
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8.6.1 Programming File(s) Build Considerations 

 

A build procedure is used to document the steps involved with generating the programming 
files(s) to ensure that versions of all source files and tools are identified.  If required, it can serve 
as an as-run procedure.  In addition, the procedure can contain SMA witness or acceptance.  The 
procedure serves as a standard method to generate the programming file(s) that maintain a 
detailed list of what source files are used.  By tracking the versions of the source files, changes 
and modifications are easily tracked through revision control.  The procedure may contain the 
following information: 
 

a. A mechanism to get all source files from the revision control repository.  This can be 
either a procedure to check out the latest/specified version or a script to perform the operation. 

 
b. When using a script, it is a best practice to record the version number of each file in a 

text file.  This maintains the name and version of each of the source files. 
 

c. The detailed information about the software used to perform the build (such as 
version). 

 
d. Location for the repository where the programming file and released EIDP are stored. 
 

e. An executable procedure (where special considerations are required) that describes 
how to conduct the build and how to verify it was successful. 

 

f. Identify the need for involvement, including witnessing of operations, by appropriate 
quality assurance (QA) personnel as required by the project. 

 

g. Record of the checksum(s)/CRC(s) of the program file(s). 
 

h. How to disposition any anomalies in the build. 
 

i. Procedure for baselining or archiving the as-run programming procedure and data. 
 

8.6.2 Implementing the Design 

 

Implementing the design is the process by which the build (or implementation) procedure is used 
to generate the programming file(s) that are required.  A separate build procedure is used for 
each PLD that is generated.  When implementing the design, the design files are first to be 
placed in the appropriate CM system.  The procedure is then run with the appropriate level of 
SMA required by the project.  The resulting programming files are then put in the appropriate 
revision control repository. 
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8.7 Exit Criteria 

 

Upon completion of the implementation phase, the following criteria (from the development 
plan) are to be met: 

a. The design implementation is complete.   

b. Reviews are completed as defined in the development plan: 

(1) Back-annotated simulation and regression simulation suites were performed for 
formal design releases. 
 

(2) Worst-case analysis of the design was performed to ensure sufficient internal and 
external I/O timing margins. 

 
c. All build files that were needed to generate the implementation file for programming 

the PLD should be complete.  These include, but are not limited to, the following: 

(1) Timing Constraints. 

(2) Synthesis.   

(3) PnR. 

(4) Timing Analysis. 

(5) Programming File. 
 

d. All files are baselined in the appropriate revision control system. 
 

9. VERIFICATION 

 
The verification of the design is the process where the design is checked to make sure that it 
meets the specified requirements.  Verification is generally a formal process in which 
verifications are monitored by QA as they are being performed.  See section 5 for a description 
of verification planning.   
 
The verification begins with a discussion of the test process and test procedures.  Test procedures 
have to be completed prior to verification, but are described here because they logically fall into 
the verification phase. 
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9.1 Entry Criteria 

 

Prior to beginning the verification process, complete the following procedures: 
 

a. All test procedures and code used in the verification are to be maintained in 

version control. 

b. A successful build of the device is maintained under version control. 

c. A programming procedure is baselined. 
 

9.2 Test Process 

 

The test process involves using the baselined test procedures and SMA (when applicable) to 
verify the requirements.  
 

9.2.1 Test Procedure 

 

A test procedure is a document that delineates the test steps required to verify full compliance of 
the PLD implementation to the requirements.  It is to be written clearly, so that it can be handed 
to an independent tester.  The test procedure may include topics such as: 
 

a. Test identifier (name or number to uniquely identify each test, for example, the 
universal asynchronous receiver/transmitter (UART) test). 

 
b. Requirements addressed by the test case. 

c. Test configuration(s) (recorded information about the test setup, such as software 
version number, PLD version number, etc.). 

 
d. Prerequisite conditions (what needs to be completed prior to the test, e.g., ESD 

certification). 
 

e. Test input (things required as input to the test, e.g., test scripts). 

f. Instructions for conducting the test. 

g. Assumptions, constraints, and expected test results, including pass/fail criteria for 
evaluating results. 

 
9.2.2 Quality Assurance Provisions 

 

The use of QA in the test process depends on the project requirements. 
 

a. For all projects designated as safety-critical or flight projects, the programming and 
test of the programmable device is witnessed or monitored by QA personnel, in accordance with 
the project documentation.   
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b. For non-flight projects, the project may choose to provide independent personnel to 

monitor the activities, filling the role normally filled by QA for flight projects. 
Any discrepancies encountered are handled according to the project error tracking process. 
Section 10.1 describes the programming test procedure in detail. 
 

9.3 Simulation 

 

Simulations can be used to unit test functionality of the PLD design prior to formal testing on the 
board.  The amount of testing required is dependent on the functionality.  Simulation for 
verification may not always be appropriate.  For example, the simulation of the digital interface 
of an analog-to-digital (A/D) converter does not verify the operation of the A/D converter.  The 
verification of the A/D conversion circuit can only take place on the hardware.  However, it is 
advantageous to simulate the operation to ensure that the appropriate signals are operating as 
expected. 
 
Simulation for formal verification can be used for a number of functionalities.  Examples of 
these would include: 
 

a. Off-nominal operation. 

b. Hardware failures. 

c. Basic command operation. 

d. Internal operation of the PLD. 
 

It is a best practice to simulate all functionality of the PLD prior to running on the actual 
hardware even if formal verification is not gained. 
 
When using simulation for formal verification, a self-checking test bench is the best method.  
The test bench that is used for formal verification is reviewed during the review process.  The 
test bench review is set up to ensure appropriate operation and requirements verification. 
 

9.3.1 Test Bench Development 

 

Test benches are developed in order to facilitate simulation testing.  The test benches generate 
the test vectors that are used to drive the circuit being simulated. 
 
When developing test benches, an independent PLD test bench developer is preferred, but is not 
mandatory.  Observe the following guidelines: 
 

a. Assign a test number to the test cases for tracking purposes. 

b. Use self-checking/documenting test benches. 

c. Analyze code coverage of simulation and test vectors. 
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d. Automate tests using scripts for repeatability and unattended runs. 

e. Place test bench components under revision control. 
 
Check the simulation results for correctness.  The following items help in the review of the 
results: 
 

a. Review waveforms for internal and external signals for proper functionality. 
 
b. Compare simulation results with requirements, especially interfaces.  This can include 

collaborating with other team members to ensure compliance of interfaces. 

c. Disposition all warnings and errors reported by simulation tools.  Document the 
dispositions. 

 
9.3.2 Modeling of External Components 

 
External components on the circuit board interfacing to the PLD are modeled.  While there may 
be others, some examples of models are as follows: 

a. Electrically EEPROM flash memory. 

b. 1553 chip. 

c. Memory. 

d. PCI. 
 

Specific features to include in a model would be the following: 
 

a. Timing from device data sheets (setup and hold checking). 

b. Handshake protocols. 

c. Error checking. 

d. Fault injection. 
 

It is a best practice to obtain models from the vendor so that the appropriate delays are correct.  
Some simulation tools come with models.  Check with the tool vendor for their models. 
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9.3.3 Simulation Results 

 

The results of the simulation are reviewed for correct operation.  The tester reviews the 
following: 
 

a. Waveforms for sanity check. 

b. I/O waveform/timing with the board design lead or other PLD designers as 

appropriate. 

c. All warnings and errors reported by simulator: 

(1) Understand why they are there. 

(2) Document any decision to ignore them. 
 

9.3.4 Code Coverage 

 

When textual design entry method is used, code coverage is used to assess the thoroughness of 
the simulation cases.  Code coverage analysis is performed for statement coverage, toggle 
coverage, branch coverage, and expression coverage.  All of these coverage analyses can 
uncover deficiencies in the design simulation.  Coverage analysis is used frequently while 
implementing the design to assess the completeness of the simulation test benches. 
 
Code coverage analysis of the simulation test benches is performed for each formal release.  
Simulation code coverage analysis provides a useful measure on the thoroughness of the 
simulation test benches.  A design is only released after it has been thoroughly simulated.  
Though it is desirable to have a high simulation coverage, setting up a hard coverage requirement 
is not practical.  Achieving high simulation coverage can sometimes be very laborious and time 
consuming and not be supported by the project schedule.   

Instead of imposing requirements on the code coverage level, the designers disposition all the 
coverage deficiencies flagged by the code coverage tool.  Reviewing coverage deficiencies helps 
the designer understand the cause of the deficiencies and determine how they need to be 
addressed.  In the disposition, the designer documents the rationale for the coverage deficiency 
and risk associated with not addressing this deficiency.  The dispositions are released along with 
the coverage report as part of the final EIDP of the PLD design.  The disposition for the coverage 
deficiencies and the coverage report provide a metric for the quality of the design simulation.  
They are treated as part of the design documentation and released along with the design.   
 

9.3.5 Back-Annotated Simulations 

 

Back-annotated simulation allows the designer to simulate the synthesized, PnR design using the 
timing delay models extracted for the worst-case and best-case operating conditions.  The 
designer bases the design simulated during the back-annotated simulation on the final HDL net 
list produced by the PnR tool and models of the logic primitives specific to the targeted PLD 
device.  The back-annotated simulation is performed using maximum, typical, and minimum 
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timing models.  PLD design is verified with back-annotated simulation before each formal 
release.  By running a post PnR structural simulation with unit delay (without the timing 
information), the designer can verify that the design is accurate.  The value of a unit delay post 
PnR structural simulation is that it may execute significantly faster.   
 
Passing the back-annotated simulation proves that the design is not altered by the synthesis and 
PnR process.  It also validates the timing constraints used during the synthesis and PnR process 
when the back-annotated simulation is performed using the best and worst timing delay models. 
 
Since running back-annotated simulation can be very time consuming, the designer may not want 
to re-run every test in back-annotated mode.  The designer needs to decide which parts of the 
simulation need to be re-run using back-annotated design. 
 

9.3.6 Defect and Anomaly Reporting 

 

If a failure occurs during testing, the designer investigates the failure.  This investigation needs 
to include root-cause determination, which is necessary to ensure that a proposed solution 
resolves the failure.  The designer may need to generate a new PLD version and perform 
regression testing.  The amount of regression testing depends on the level of functionality where 
the failure occurred.  Automated, self-checking test benches will help simplify regression testing.  
The verification plan clearly defines the details and corrective actions of test failures.   
 
The designer documents any anomalies that occur during formal testing (qualification and 
production acceptance).   

The designer may initiate replacement or reprogramming of a device due to a test failure.  The 
designer will establish a new design baseline prior to programming a configuration-controlled 
device with a new design.  Section 10.1 discusses programming practices. 
 

9.4 Independent Peer Verification 

 

Independent verification is an approach used to provide higher confidence in the outcome of the 
verification process, by avoiding the inadvertent masking of design errors that can sometimes 
occur if the same personnel are responsible for both design and the design verification.  A classic 
example is the misinterpretation of a requirement: If both are designed, tested, and analyzed by 
the same person with the same misinterpretation, the design can pass the verification, but still not 
meet the requirement.  The use of independent personnel for verification is highly recommended 
in cases where sufficient personnel, cost, and schedule are available.  There is additional 
overhead for maintaining separate personnel for design and verification that may be prohibitive 
for some projects; however, without this measure, those projects will have to decide whether to 
accept an increased risk. 
 
As with all verification activities, independent verification can occur at any point throughout the 
life cycle, including simulation, analysis, developmental tests (e.g., “breadboard,” “engineering 
model,” etc.), or integration tests with software or higher level systems.  The design team may 
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also utilize independent verification for items such as IP or other non-developmental items used 
as part of their design approach. 
 
In those cases where the outcome of independent verification is a required step in the developer’s 
process, the design team has to identify those constraints early in the development to allow for 
adequate planning and schedule. 
 

9.4.1 Functional Coverage 

 

The verification team verifies the design team’s work products from all phases of the life cycle 
against the same set of requirements used by the design team.  In order for an independent team 
to begin verification, they have to use the same set of requirements used by the design team.  In 
addition, the verification team has to have access to all the design products (e.g., HDL, constraint 
files, etc.), as well as documentation from the design team, including traceability reports, full 
descriptions of any derived requirements, or design features that were incorporated.  For testing, 
the independent team generates test cases and procedures per the verification plan and verifies 
the functionality based on the requirements.   
 
For simulation, the independent team may utilize test benches provided by the developers, 
primarily as a way to begin to understand how the design operates but also generates its own test 
benches to use. 
 
For formal verification activities, the independent team:   
 

a. Utilizes revision-controlled design products (e.g., VHDL, design description 
documents, traceability reports, etc.). 

 
b. Controls all verification products (such as test procedures, scripts, etc.) in accordance 

with the projects revision control requirements.   
 

c. Documents any issues per the bug tracking tools and issues formal verification reports. 
 

d. Provides coverage reports as an output of the verification process.   
 

9.4.2 Communication (Independent Peer Verification) 

 

Communication between the design and verification teams is of paramount importance for 
independent peer verification.  The term “independent” is not to be interpreted as a ban to 
communication, including (where appropriate) direct contact and discussion about the design, 
and any verification issues found.  A successful outcome is achieved through a thorough 
understanding of the work of each team. 
Traditionally, design activities and independent verification activities could be divided into 
separate phases, where the design team handed off the design to the verification team, and then a 
verification report was provided back to the design team.  The design team could then address 
any required changes and iterate through the verification team until all issues were resolved.  In 
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this scenario, written documentation, such as design and version description documents and 
verification reports (see section 9.5), are the primary formal means of communication. 
 
However, a more iterative model utilizes ongoing development (including correction of issues 
previously found by verification) concurrently with verification activities.  Verification activities 
can span multiple iterations of the design cycle that leads ultimately to the final product.  This 
can result in multiple versions, with differing issues, and different iterations of changes.  In this 
scenario, communication is of even greater importance.  Ultimately, both the design and 
verification teams have to converge upon one final design supported by successful verification 
results. 
 
A “bug tracker” tool (usually electronic) is one valuable way of achieving communication 
between the design and verification teams, particularly in cases where the two activities are 
active in parallel.  The bug tracker provides not only communication, but assists in traceability of 
changes, and development of the Version Description Document (VDD).  See section 5.2.8 for 
additional information about bug tracker tools. 
 
9.5 Verification Review 

 

The developer and/or an independent party, as defined in the development plan, can perform the 
verification review.  The verification process ensures that the PLD meets all the requirements for 
development and design of the project. 
 
The verification team reviews the PLD against the known criteria (usually in the form of a 
checklist and a traceability matrix) and issues a verification report. 

The function coverage check involves the tractability matrix.   
 
During the verification review, the developer and/or independent reviewer reviews the 
tractability matrix to ensure that the testing covered all functions. 
 
The verification report provides an overview of the verification results.  It includes the following 
items: 
 

a. Overall success/failure evaluation of the verification. 

b. Any known deficiencies, limitations, or constraints. 

c. Any results of any corrective actions that were assigned during the verification process. 

d. Impacts of any items listed. 

e. Verification environment including impacts. 

f. Verification results: 

(1) Project unique identifier of test and procedure. 

(2) Details of results with traceability. 
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(3) Problems/anomalies encountered. 

(4) Deviations from test cases. 

g. Verification log: 

(1) Date and time of the verification. 

(2) Verification environment, hardware and software configuration. 

(3) Identification of individuals who performed the verification. 
 

A verification report does not necessarily mean a separate document.  The report can be an as-run 
test procedure, provided the team records all pertinent information in the test procedure. 
 
9.6 Regression Testing 

 

Regression testing is required for changes made to verified code.  During the test phase, a 
regression plan is to be developed that will indicate what testing needs to occur as changes are 
made.  A basic form of a regression plan can be a regression matrix, as seen in table 4, 
Regression Testing, below. 
 

Table 4—Regression Testing 

 Test Procedure 1 Test Procedure 2 Test Bench 1 Test Bench 2 

Function 1  X X  

Function 2 X X   

Function 3    X 

 
The table above shows that a change in a particular function requires a re-test of the appropriate 
test procedures or test benches. 
 
9.7 Hardware Verification 

 

It is desirable to have the test environment for hardware verification resemble the final 
configuration to achieve a higher level of confidence in the test results.  This can include the use 
of hardware emulators, simulation software, flight hardware, qualification hardware, certification 
hardware, certification software, and flight software.   
 
 
Devices used for the final deliverable article are preferred for the final verification of a PLD 
design.  For cases in which the final deliverable is a one-time programmable PLD and there are 
budget and schedule constraints, verification may be performed on a prototype device prior to 
the final deliverable.  In these cases, it is recommended that the prototype device closely 
resemble the final part.   
 
In addition to the choice of prototyping devices, it is also important to perform hardware 
verification using high fidelity test interfaces and stimuli.  If simulators produce the test stimuli, 
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it is important to have the behavior of the simulator verified against the final interfaces and 
document any non-compliance. 
 
When the PLD design contains a software interface, it is recommended that the PLD be tested 
with the final software, such as the flight software.  Though test software is sometimes sufficient 
for verifying the PLD software interface, it typically does not operate the PLD the same way as 
the final software.  Test results obtained using test software have lower fidelity than those from 
testing using the final software. 
 
9.8 Exit Criteria 

 

Projects that have multiple releases (i.e., projects that have re-programmable flight units or 
projects with engineering releases) iterate through the verification process.   
 
Verification is complete when the following items are complete: 
 

a. All as-run test procedures and test reports are released. 

b. All review documents are released. 

c. All documents that have changed are released. 

d. EIDP is released. 

e. Anomalies are documented and dispositioned. 

f. All requirements for this release are verified 
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10. DELIVERY 

 
Once the verification team completes the verification of the PLD, the design is delivered for 
board or assembly level testing.  Delivery of the device requires that related design 
documentation and data products be completed and released under CM control.  This includes, 
but is not limited to, items identified as follows: 
 

a. Design Specification: The version that describes the as-built design. 
 

b. As-built Design Files: The set of files that enables other designers to troubleshoot the 
design or to recreate the design when needed.  Following is a list of as-built design files 
released when the design is delivered: 
 

(1) Pre-Programmed Verification Matrix:  Record that shows how the design was 
verified prior to programming. 
 

(2) Waivers and Problem Reports:  Waivers and problem reports generated against the 
delivered design. 

 
(3) Design Source Files:  Includes all the source code for the as-built design, the test-

bench source files, and the simulation models. 
 
(4) Synthesis Project and Script Files:  Includes all the files the synthesis tool uses to 

produce the as-built synthesis net list.   
 

(5) Synthesis Constraints File:  Includes both the timing and physical constraints files for 
the as-built design. 
 

(6) Synthesis Transcript/Log File:  Includes the synthesis transcript/log file for the as-
built design.  Additional documentation is provided for the disposition of all the 
synthesis warnings. 

 
(7) PnR Project and Script Files:  Includes all the design database and binary files 

produced during the PnR process.  The goal is to have all the files necessary to 
regenerate the fuse/configuration/programming file when needed. 

 
(8) PnR Constraints File:  Provides both the timing and physical constraints files for the 

as-built design. 
 
(9) PnR Transcript/Log File:  Includes the PnR transcript/log file generated for the as-

built design.  Additional documentation is included for the disposition of the PnR 
warnings. 
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(10) PLD Programming File:  The “fuse/configuration/programming” file for the design.  
Necessary precautions are required to preserve the integrity of the programming file 
when transferring the programming file from one computer platform to another. 

 
(11) Design Review Reports:  Includes review reports for all design reviews held for the 

delivered design and evidence supporting the closure of the action items from those 
reviews. 

 
(12) PLD Design Drawing:  The drawing that documents the PLD vendor information, 

PLD vendor part number, tool used for developing the design (including licensing 
information), and the revision and/or the last modification date of all the files listed 
above.  All the design files referenced in this drawing are released under this 
drawing number as supporting documents.   

 
(13) Revision Description Document (RDD):  After the initial release, tracks the revision 

history of the design. 
 
(14) Post-Programmed Verification Matrix:  The verification record for any testing done 

on the programmed device. 
 

c. Verification Plan. 
 

d. Other Documentation (such as a drawing or readme file):  Contains the following 
information: 
 
(1) Location of the repository for related design analyses. 

 
(2) Location of the repository for the design review reports and action items. 
 

e. The RDD contains, at a minimum, the following information: 
 
(1) The version and last modified date of the released files. 

 
(2) The revision control version(s). 
 
(3) All changes made since the previous releases need to contain bug numbers from the 

bug tracking system. 
 
(4) Data integrity checks (checksums). 
 
(5) Workarounds for any issues. 
 

In addition to the above files and documents, the team also releases a drawing or equivalent 
documentation along with the design to document how to label the programmed device and how 
it can be clearly linked to its source design files.   
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10.1 PLD Programming 

 

A programming and, when required, post-programming, test procedure is developed for each 
design.  The design team can capture the programming procedure in a document or in an altered 
item drawing (AID).  As a minimum, the procedure contains the following information: 
 

a. Name, version, and checksum information of the programming file. 
 
b. Location for the repository where the programming file and released EIDP are stored. 
 
c. An executable procedure (where special considerations are required), such as 

installing the device into the programming hardware, loading the design files into the 
programmer, configuring the programmer for the specific device, ensuring appropriate ESD, 
programming the device, etc. 

 
d. Identify the need for involvement, including witnessing of operations, by appropriate 

QA personnel, as required by the project. 
 
e. Verify the expected checksum against that reported by the programmer based on the 

fuse information loaded from the programming file. Verify the expected checksum against that 
reported by the programmer based on the fuse information read back from the programmed 
device. 

 
f. How the programmed device needs to be marked and labeled.  This can be a reference 

to the AID or equivalent document. 
 
g. Post-programming test requirements and procedure, when applicable. 
 
h. A minimum post-programming requirement would be to verify the checksum of the 

program once the device is programmed. 
 
i. How to disposition devices rejected by the programmer or not passing the post-

programming test. 
 
j. Procedure for archiving the as-run programming procedure and data 
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10.2 PLD Marking 

Once programmed, a PLD becomes an application-specific part.  The manufacturer’s part 
number no longer identifies it.  The design team assigns a unique identifier or a project part 
number to the programmed device.  Typically, instructions for programming and marking a 
programmed PLD are captured in a design specific AID and the drawing number, serial number, 
and revision information for the AID becomes the part number marked on the programmed PLD.   
 
No PLD is programmed until the design is released under CM control.  This includes all the data 
products required by the EIDP, such as the design source files, synthesis, and PnR transcripts, 
and, most importantly, the programming files.  In addition, the team also releases an AID or 
equivalent document to link the EIDP revision information and design specific information, such 
as fuse checksum or design date code, to the marking or part number of the programmed device.   
 
It is very helpful if the PLD is designed with a software readable identifier or label.  This is 
usually implemented by storing the identifier or label, including the design revision information, 
in a software accessible register.  When such an implementation exists, it is also important to 
document software accessible identification in the AID or equivalent document. 
 

11. MAINTENANCE 

 
PLD maintenance considerations are different depending on the design’s place in its life cycle.  
This section describes designs as either active or retired.  The determination of the category of a 
design is based on the life cycle plan developed by the delivering organization.  The rules used to 
make this determination are based on factors like the delivering organization’s lifetime guarantee 
on the design and whether an active project is currently using the design. 

11.1 Design Libraries 

 

It is recommended that the delivering organization establish a design library (revision control or 
CM) to store designs.  Maintaining an active design in the library is a job focused on protecting 
the pedigree of the design from the modifications performed by projects.  The delivering 
organization is responsible for ensuring that the design has been verified with the appropriate 
level of rigor before submitting the design to the library. 
 
It is recommended that projects refrain from inheriting designs directly from each other and 
instead go through the design library.  This ensures that the organization can play its role in 
protecting the pedigree of the design.  Direct project-to-project inheritance of designs bypasses 
this important role of the organization. 

The delivering organization is typically not able to make design changes without project funding.  
Therefore, track the desired design changes with designs in the library.  They can be 
implemented and verified when project funding becomes available and the new revision of the 
design can be accepted back into the library. 
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11.2 Active Designs 

 

Active designs are those that the organization has released under configuration control and used 
on active projects.  Other projects have to be able to retrieve the design from a library under CM 
and immediately put to use.  This includes the following:   
 

a. Its specification is kept up to date.   

b. Problems reported against the design have been documented.   

c. Its tool chain is maintained in working order. 
 

11.3 Post-Delivery Anomalies 

 

Even after a thorough verification process, customers using the designed part may report 
anomalies and changes to the requirements.  When this occurs, there are two options: Fix the 
anomaly, or use the design as-is.  Fixing an anomaly may be the preferred solution.  However, 
the complexity associated with making a change involves a risk trade.   

Making a change to a design reintroduces that design into the design process and sets it back to 
an appropriate design phase.  The design modification has to progress through the same 
processes with the same rigor until a new final design can be delivered to the customer.  Along 
with the design process, the project team considers schedule and budget effects. 
 
Design problems considered to be use-as-is are documented as a design idiosyncrasy in the 
appropriate level of documentation.   Capturing the idiosyncrasy preserves intent behind the 
design and provides a path for product improvement.  At a minimum, the design specification is 
updated to document the as-built behavior and the idiosyncrasy is clearly identified.   
 
11.4 Retired Designs 

 

Eventually the project designates a design as no longer active, and it is retired.  The requirements 
for active designs no longer apply, but the organization keeps all retired designs available for 
reference and study.  As part of the life cycle plan, it defines a format for storage of these 
designs.  The selected format focuses on longevity because designs may be stored for a very long 
time.  When a design is originally released as active, a copy of the design in this designated 
format has to accompany it.  This way, as the design ages and is considered retired, the design 
knowledge is stored in an electronic format which is backed-up. 
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12. RELEASE PROCESS 

 
There can be multiple levels of the release process, initial, intermediate (or engineering), and 
final. 
 
For the initial release, the developer is moving the PLD logic code into revision control for the 
first time.  This includes information such as version, tools required, special instructions, etc. 
 
The intermediate or engineering releases are interim releases that add functionality or correct 
issues.  As the intermediate releases are saved, an active note of the changes with rationale for 
the changes are documented and maintained.  Other items in the notes include issues found and 
testing completed.  This allows multiple developers/users to understand the changes and a single 
developer to remember why the changes were made.  The version number increases each time 
the release is changed and checked back into the revision control tool.  A developer may group 
multiple changes into an intermediate release.  Note: Some engineering releases may be used in 
preliminary hardware/software integration (HSI) testing.  These releases are usually 
accompanied with the VDD or drawing. 
 
The final release is the release provided to the customer or stakeholder as the final product.  This 
release has completed verification as defined in the development plan and is accompanied with a 
released EIDP. 
 
Some projects use multiple revision/configuration repositories.  The development team may have 
a separate repository than the final project or Center repository.    
 

13. OUT-OF-HOUSE CONSIDERATIONS 
 
This section provides guidelines aimed at ensuring the quality of PLD designs from out-of-house 
contracts and procurements.  These guidelines can be customized based on the criticality or class 
of the mission, complexity of the application, or maturity of the design (new, minor 
modifications, re-use). 
 
13.1 Contract Statement of Work (SOW) 

 

If procuring a board/system that includes PLD(s), contract SOWs can include the following: 
 
a. The vendor provides NASA insight into the PLD design, development, and test 

activities, including monitoring verification adequacy; trade study data; auditing the PLD design 
and development process; and participation in PLD reviews and technical interchange meetings. 

 
b. The vendor documents NASA’s insight into PLD activities/processes in the PLD 

development plan. 
 
c. The vendor provides PLD design data package(s) for each PLD at point(s) defined in 

the PLD development plan. 
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d. NASA performs an independent assessment of all PLD designs against the project’s 

specified design guidelines using the information in the PLD design data packages. 
 
e. The vendor reviews all NASA PLD design findings and recommendations.   
 
f. The vendor resolves all action items with NASA. 

 
13.2 The Flight PLD Design Review Process 

 
As illustrated in figure 4, Flight Project PLD Design Review Process, the optimum management 
of  flight project PLD development efforts encompass five distinct phases, as follows: 
 

1. Issue contract requirements for vendors to deliver a PLD development plan that describes 
the vendor’s process for developing flight PLD applications, and deliver the PLD design 
data packages for each PLD, which contains all the required data elements to perform an 
independent review of the design. 
 

2. Review and acceptance of the vendor’s submitted PLD development plan. 

3. Participate in agreed-to reviews to assess vendor’s compliance to the approved PLD 

development plan. 

4. Review and acceptance of the PLD design data. 

5. Continue review and assessment of flight PLDs throughout the integration and test 

phases. 
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Figure 4—Flight Project PLD Design Review Process 

 
The following sections detail each of the above phases. 
 

13.2.1 Issuance of Contract Requirements 

 

This initial step is to ensure that all vendors providing hardware for the instruments and 
spacecraft are contractually obligated to deliver a PLD development plan (see section 5.2) 
describing the vendor’s methodologies for developing flight PLD solutions, and the complete set 
of artifacts that allow for an independent review of all flight PLD projects developed by the 
vendor.  These two sets of requirements are depicted in the subsections that follow.   
 
13.2.2 The PLD Design Data Package 

 

A PLD design data package is required for each PLD design to allow independent NASA review 
and assessment of vendor PLD designs. 
 
The PLD design data package is submitted for each PLD developed by the vendor for the Flight 
Project. 
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The PLD design data package includes the same information defined in section 10.  The PLD 
design data package has to contain all source code and design files indicated in section 10.  Be 
sure that purchased IP licensing agreements allow NASA to view all source code, have access to 
all design files, and remain valid during the entire maintenance cycle.   
 

13.2.3 PLD Development Plan Review and Acceptance 

 

Once the contract is in place, the vendor is required to submit its PLD development plan for 
NASA’s review and approval. 
 
Several iterations may be required until the final version of the vendor’s PLD development plan 
is accepted by NASA.  It is also possible that the plan is modified over the lifetime of the project 
to adjust to the reality of the system development.  Every modification of the plan requires 
formal acceptance by NASA. 
 
13.2.4 Vendor-Internal Peer Review Participation 

 

In accordance with the vendor process described in the approved PLD development plan, NASA 
representatives may participate in peer review meetings.  The PLD reviewer representing NASA 
is expected to receive the review materials (presentations, requirements, specifications, test 
descriptions, source code, etc.) at least a week before the scheduled date of the meeting.  The 
reviewer reads all the material in preparation for the meeting.  After the meeting, the reviewer 
prepares a summary report for the flight project management as a record of his/her participation 
in the meeting. 
 
The PLD reviewer fulfills two roles in the peer review meetings.  First, the reviewer provides 
expertise to support the review team in assessing the state of the project, making suggestions for 
corrections and/or improvements.  Second, the reviewer assesses whether the vendor is following 
the process described in the approved PLD development plan. 
 

13.2.5 Independent Review and Acceptance of PLD Design Data Package 

 

At a point(s) established in the approved PLD development plan, the vendor supplies NASA 
with a PLD design data package.  For simple revisions to PLDs, one review may be sufficient 
after PnR, timing analysis, and signal integrity analysis have been completed.  Typically, a 
minimum of two reviews are warranted, one concurrent with the beginning of non-flight testing 
and one prior to commitment of the final design. 
 
The two acceptable formats for the independent review are off-site independent review and on-
site independent review. 
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13.2.5.1 Off-Site Independent Review 

A PLD subject matter expert chosen by the project performs an independent assessment of the 
vendor submitted PLD design data. 

The vendor reviews and assesses all NASA PLD design findings and recommendations.  The 
vendor notifies NASA of those instances where corrective action was not taken on specific PLD 
design findings and recommendations. 
 
It is recommended that the reviewer utilize a PLD design checklist to perform the analysis of the 
design (one suggestion is included in Appendix B).  The checklist can also be provided to the 
vendors as a guide for them to prepare their designs for independent review. 
 
The independent review is complete when all findings have been dispositioned/resolved or, if 
not, risks are identified and bounded.  The reviewer submits a report to the appropriate flight 
project manager with all the responses to any findings and notifications and the final version of 
the checklist with comments and responses. 
 

13.2.5.2 On-Site Independent Review Board 
 
An alternative method to independently review a PLD design data package is to assemble an 
independent review board at the vendor’s facility.  A PLD subject matter expert chosen by the 
flight project leads the review board.  The vendor provides the complete PLD design data 
package the least two weeks prior to the review board meeting.   
 
The lead reviewer and other review board members assess the PLD design data package prior to 
the review board meeting.  At the meeting, concerns and recommendations are discussed and 
action items are assigned.  The lead reviewer is responsible for taking action items and follow-up 
on their resolution. 
 
The vendor reviews and assesses all independent review board design findings and 
recommendations.  The vendor notifies NASA of those instances where they decided not to take 
corrective action on specific PLD design findings and recommendations. 

The work of the independent review board is complete when the lead reviewer is satisfied with 
the submitted design and submits a report to the project. 

13.2.6 Integration and Verification Oversight 

 

Design errors and/or manufacturing defects may appear during stress testing and/or integration 
phases, be it at the board, box, instrument or spacecraft levels.  The PLD review team 
participates in delta reviews to resolve all technical problems. 
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APPENDIX A 
 

SUGGESTED SOURCE CODE  

HEADER AND FOOTER TEMPLATE 
 
Header: 
//*************************************************************************** 
// File Name:   
// 
// PLD Name: 
// 
// Project Name:   
// 
// HDL Standard: 
//  
//   
// THE TECHNICAL DATA IN THIS DOCUMENT IS (OR IS NOT) CONTROLLED UNDER THE U.S.   
// EXPORT REGULATIONS, RELEASE TO FOREIGN PERSONS MAY REQUIRE AN  
// EXPORT AUTHORIZATION.   
// 
// 
// Notes: 
// This section includes what the module is intended to do and other 
// related design information 
//  
// Change log is located at the end of the file 
// 
//*************************************************************************** 
 
Footer: 
//*************************************************************************** 
//  
// Change Log: 
// 
// Date:  mm/dd/yy  Name:  FirstName LastName   
//  
// Description: 
// Use “Created” for “Description” for the initial release.   
// The name field includes first name and last name. 
// 
// 
// Date:  mm/dd/yy  Name:  FirstName LastName   
//  
// Description: 
// Describe the changed made for the next revision 
//  
//    
//*************************************************************************** 
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Rationale:  

 
The information contained in the header stays static throughout the development, but the footer 
is expected to change over time.  In order to avoid changing the line number of the code, it is 
recommended to include the change log in the footer.   
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APPENDIX B  

SAMPLE PEER REVIEW CHECKLISTS 

A PLD design checklist is a helpful tool to assist both the designer and subsequent reviewers.  
The checklist can be used during the design process to ensure all aspects are covered that can 
then be reviewed during design reviews.  A sample design checklist follows.  The files that may 
be needed in the design reviews are as follows: 
 

a. PLD design specification. 

b. PLD verification matrix. 

c. Synthesis script/project file. 

d. Synthesis constraints file. 

e. Preliminary synthesis log/transcript file. 

f. PnR script/project file/database file(s). 

g. PnR constraints file. 

h. PnR log/transcript file. 

i. Worst-case timing analysis report. 

j. Fuse or bit file. 

k. Design source files. 

l. Test bench files. 

m. Board schematic drawing and net list. 

n. Data sheet for components connected directly to the PLD. 

o. Other script files used during design, simulation, synthesis, and PnR. 

p. Action item status summary from earlier reviews (gating and peer reviews). 

q. A readme file describing the simulation environment and setup to help reviewers 
rerun the simulation when needed.
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B.1 Design Specification 

 

  Review Item Rationale Reviewer Comments/Feedback 

1.1 
Is the design specification using required 
format?  If not, list the deficiencies. 

In order to facilitate the review process, it is 
desirable to have a template for the design 
specification. 

  

1.2 

Is the design specification complete?  
Does it have sufficient details for design 
implementation and verification?  If not, 
identify the deficiencies. 

The design specification is complete enough to 
start a code walk-through.  The peer review is 
delayed if the design specification is deemed 
immature.  The design specification provides 
sufficient information about the design to allow 
the peer review reviewer to perform an 
effective review of the HDL source code. 

 

1.3 

Check the design specification against 
the board schematic/netlist.  List I/Os 
with internal and external pullups.  
Identify all the I/O standards used in this 
design.  Are the internal and external 
terminations compatible?  Do the pin 
assignments agree?  Is the correct I/O 
standard used for the intended use?   

Need to double check the interfaces between 
the PLD and the board.  Need to ensure that the 
physical requirements, such as I/O standard, 
pin assignment and I/O type, imposed by the 
board designs, are met.   
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B.2 Design Source Code 

 

  Review Item Rationale Reviewer Comments/Feedback 

2.1 

Does each design module have required 
header/trailer (when applicable)? 
Is the design, HDL source code (or 
equivalent) well commented?   
 
Can one understand the flow of the 
design using only the comments?   
 
Is there an International Traffic in Arms 
Regulations (ITAR) warning included in 
all source files, if it is required on the 
project? 

The code is to be well commented to make it 
readable and inheritable by others.  See 
Appendix A for recommended header/trailer 
template. 

  

2.2 
Is the HDL code (or equivalent) easy to 
follow?  Identify improvements for 
better readability. 

The code has to be readable to the reviewer to 
have a meaningful review.  The statements 
need to be short and concise. 

 

2.3 

Is there a consistent coding style in the 
source code?   
 
Is there a consistent signal naming 
convention? 

Regardless of the coding style adopted, it is 
always easier to follow the code when the style 
is consistent.  This is also true with signal 
names. 

  

2.4 

Does the HDL source code contain 
excessively long lines?   
 
Is there proper indentation in the source 
file for readability?  Are the indentations 
consistent (same number of spaces, no 
mixing tabs with spaces)? 

Excessive long lines and inconsistent 
indentation can make the HDL source difficult 
to read. 
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  Review Item Rationale Reviewer Comments/Feedback 

2.5 
Are there any recommended 
coding/implementation optimizations? 

The designer can sometimes overlook simple 
things.  The reviewer can sometimes spot 
design optimizations not seen by the designer.  
Reasonably optimized code can be reviewed 
more easily. 
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B.3 Design 

 

  Review Item Rationale Reviewer Comments/Feedback 

3.1 
Is the design matching its specification?  
Identify the inconsistencies if there are 
any. 

The design specification and the design need to 
be consistent. 

  

3.2 

Does the HDL use any 
constants/parameter in the design?   
 
Are there any constants/parameters 
requiring adjustments between different 
design instances (engineering model 
versus flight model)?   
 
If so, how are they adjusted to ensure the 
proper values assigned for a specific 
design instance? 
 

If there are any parameters used for 
customizing the design for different design 
instances, an autonomous process, such as the 
use of scripts, is developed to ensure that the 
parameters are set correctly for the targeted 
application. 

  

3.3 

Are there any global 
definitions/variables, and “ifdef’s” in the 
source files?   
 
If so, are they set up correctly for the 
intended applications? 

Need to make sure that there is a reliable 
process to set up these variables correctly 
during the build process. 
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  Review Item Rationale Reviewer Comments/Feedback 

3.4 

How many clock domains are there?   
 
How are the clocks buffered? 
 
What are their duty cycles and phase 
relationships?   
 
How many signals cross clock domains?  
Are the signals pulsed or leveled signals?  

How are the signals buffered/de-meta-
stabilized, for both signals going from 
fast to slow and slow to fast clock 
domains?   
 
How are input signals buffered? 

Clocks need to be buffered using global 
buffers. 
 
Need to pay more attention to signals crossing 
clock domains.  Need to understand how the 
pulsed signals are de-metastabilized when the 
signals are going from a fast to a slow clock 
domain. 

  

3.5 

How many resets are there?   
 
How are they buffered? 
 
How are they de-asserted?   
 
When the reset is used in multiple clock 
domains, is it de-asserted synchronously 
to the clock from the domain? 

Need to use high fan-out buffers for resets. 
 
Need to make sure each reset used in the 
design is de-asserted synchronously. 

  

3.6 

How many FSMs are in the design?   
Can the logic flow in the FSM be 
understood easily?    
 
Are all the FSM outputs registered? 

The FSM code is clear enough for review.  
FSM outputs need to be registered to avoid 
potential glitches caused by state transition. 
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  Review Item Rationale Reviewer Comments/Feedback 

3.7 

Are all the states used in the FSMs 
defined?  Do the default conditions in the 
FSM direct the FSM to a valid safe 
state?   
 
Are there any states polling for status?  If 
so, is there potential for them to become 
lock-up states?   

Need to identify potential lock-up states and 
look for undefined states in the FSM.  FSM 
designs contain a default condition.  Need to 
ensure that the default conditions are capable 
of directing the FSM back to a safe state in the 
event of an SEU. 

 

3.8 
Are there any vendor/device specific 
primitives used in the design?  If so, why 
are they used? 

Using vendor/device specific primitives makes 
the design less portable. 

  

3.9 

Are the vendor SSO-related 
recommendations followed?  If not, is 
there power integrity analysis data 
available to show acceptable noise level 
on the ground and power planes? 

SSO causes ground bounce and reduce noise 
margin.  Need to identify these signals in 
advance so that proper measure can be taken to 
alleviate its impact. 

  

3.10 

Are there any derived or gated clocks?   
Are both edges of a clock used in the 
circuit?  If so to either, how are they 
used?  Are there any potential timing 
issues with the way they are used?   
 

Derived and gated clocks tend to create 
asynchronous designs.  It is sometimes hard to 
weed out timing problems with asynchronous 
designs. 
 
Need to pay extra attention to the STA when 
both edges of a clock are used in a design. 

  

3.11 
Are there any potential race conditions? 
(This is hard to tell without deep design 
penetration). 

Race conditions cause the design to behave 
unpredictably.   
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  Review Item Rationale Reviewer Comments/Feedback 

3.12 

Is there any register using only 
synchronous reset?  If so, what is risk of 
having an undefined state for that 
register?  For registers driving output 
signals, what is done to ensure a 
deterministic state for these output 
signals if synchronous reset is used? 

Need to make sure that the outputs of the PLD 
have deterministic state during POR.  Using 
synchronous reset can create brief uncertain in 
the outputs. 

  

3.13 
Do all the “case” (or equivalent) 
structures have a default state?  List all 
cases with a default state. 

Need to make sure the case structure has all 
possible cases covered. 

  

3.14 

Are there any IP or inherited design 
modules in the design?  If so, are all 
inputs to the top level IP or inherited 
modules either connected to a signal 
source or terminated?  Are all the unused 
outputs from the top level IP or inherited 
modules left unconnected? 

IP or inherited design modules are expected to 
have unused functions, inputs and outputs.  
Unused inputs at the top level need to be 
properly terminated and unused outputs need to 
be left unconnected. 

 

3.15 
Are register clears always using an 
explicit action?  If not so, described how 
they are cleared. 

Do not want to clear any registers 
inadvertently. 
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  Review Item Rationale Reviewer Comments/Feedback 

3.16 

Are control bits that activate different 
functional behavior independently 
controllable without knowledge of prior 
bit states? 

Do not want read/modify/write.  

3.17 
Are all software writeable registers 
readable? 

Do not want write-only register.  Need to be 
able to verify the content of register after write 
access. 

 

3.18 
Is there any feed-through network (input 
pin tied directly to output pin without 
going through any flip-flops)? 

Hard to control the timing of feed-through 
network. 

 

B.4 Implementation 

 

  Review Item Rationale Reviewer Comments/Feedback 

4.1 

Does the preliminary synthesis report 
have warnings?   
 
Can they be removed easily? 

Too many warnings tend to cover up real 
problems. 

  

4.2 

Review the synthesis and PnR constraint 
files.   
 
What are the driving factors behind these 
constraints? 

Need to understand if the design is constrained 
adequately.  Over or under constraining the 
design can lead to unreliable product. 
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  Review Item Rationale Reviewer Comments/Feedback 

4.3 
Are there any tool-specific synthesis 
directives embedded in the HDL source 
code?  If so, why are they needed? 

Need to understand why the synthesis 
directives are used. 

  

4.4 
Could the design be altered by the 
synthesis tool in any way during the 
synthesis process? 

Need to make sure that the synthesis tool does 
not unintentionally change the FSM design, 
replicate registers or logic blocks, etc. 

  

4.5 
Is the synthesis script/project set up 
correctly? 

Need to review the synthesis directives and 
settings.  As a minimum, review the following 
information:  
 
- Device technology. 
- Part number. 
- Package.   
- Speed grade. 
- FSM encoding control*. 
- FSM optimization control*. 
- Resource sharing setting. 
- Fan-out limit. 
 
* All the FSM-related synthesis directives need 
to be TURNED OFF.  This allows the design 
entered by the designer to stay unaltered during 
the synthesis process.  In Synplicity, for 
example, the symbolic_fsm_compiler has to be 
set to zero to preserve the FSM encoding 
scheme selected by the designer.   
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  Review Item Rationale Reviewer Comments/Feedback 

4.6 
If “ifdef” is used in the source code, is 
the synthesis environment set up for the 
right “ifdef” conditions? 

“ifdef” can change the as-built design.  Need to 
make sure the right variables are defined in 
synthesis. 

  

4.7 
What device/package/speed 
grade/operating voltages is the project 
set up for?  Are the parameters correct? 

Need to review the PnR directives and settings.  
Need to review (when applicable): 
-  Device family. 
-  Package type. 
-  Speed grade. 
-  Die voltage. 
-  I/O voltage. 

  



NASA-HDBK-4008 

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED 

 

 

95 of 121 

  Review Item Rationale Reviewer Comments/Feedback 

4.8 
Identify the parameters for fuse/bit file 
generation.  Are they set up correctly? 

Need to review the fuse/bit file generation 
settings. 
 
For MicroSemi, need to review the selection of 
the following options (when applicable) for the 
fuse file:  
 
-  Are clamping diodes for unused I/O pins 
disabled? 
-  What programming algorithm is selected? 
-  Is JTAG reset pull-up resistor used? 
-  Is the global set fuse used? 
- Is Antifuse security feature enabled?  (This 
feature is not desired.) 
 
For Xilinx, need to review the following 
parameters for Bitgen: 
-  Setting for HswapenPin. 
-  Setting for UnusedPin. 
-  Is DONE pin driven after completion of 
configuration? 
-  Is PERSIST set if configuration readback is 
used? 

  

4.9 
What operating environment is the PnR 
tool set up for?  Is it consistent with the 
expected operating environment? 

The environment has to be set up correctly for 
the tool to perform the STA correctly.  Need to 
review set up on: 
-  Operating temperature range. 
-  Operating voltage range. 
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  Review Item Rationale Reviewer Comments/Feedback 

4.10 
What are the flip-flop, combinatorial 
logic, I/O and timing margins?  Are they 
adequate? 

Need to ensure the design margins are meeting 
the requirements defined by the design 
organization. 

  

4.11 
Is the I/O standard and threshold level 
consistent with the components shown in 
the schematic? 

Need to make sure that the signal levels 
specified by the PLD are compatible with those 
specified by the devices interfacing to the PLD.  
For example, is a 5V CMOS output from the 
PLD driving a device using 3.3V CMOS I/O?  
This might work logically, but can create an 
electrical stress condition to the device. 
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B.5 Verification 

 

  Review Item Rationale Reviewer Comments/Feedback 

5.1 

How are the test cases organized?  What 
is the fidelity of the simulation models?  
Is the test bench organization support 
effective verification review?   

The design of the test bench affects the 
effectiveness of the verification effort.  It uses 
high fidelity simulation model supplied by 
vendor when possible.  Constraints of the 
simulation models need to be noted in the 
verification matrix.  The organization of the 
simulation tests need to support the 
organization of the verification to facilitate the 
verification review process. 

  

5.2 

Are there any complex algorithms in the 
design?  If so, how are they verified?  Is 
there any Matlab type simulation done 
on the algorithm?  If so, what has been 
done to reconcile the Matlab simulation 
results with the simulation results? 

It is sometimes impossible to simulate complex 
algorithm adequately in HDL simulation.  
However, it is likely to achieve reasonable 
confidence level of the design when comparing 
the limited HDL simulation results with those 
produced with Matlab or other modeling tool. 

  

5.3 
Are self-derived requirements from the 
design specification covered in the 
verification? 

It is important to make sure that the 
verification addresses the self-derived 
requirements documented in the design 
specification. 

  

5.4 
What is the maturity of the verification 
matrix?  Has the verification matrix been 
reviewed? 

The maturity of the verification matrix can 
help gauge the maturity of the design. 

  

5.5 
What is the code coverage of the existing 
simulation test bench? 

Uncovered statement, toggle, transition, etc. 
need to be dispositioned. 
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  Review Item Rationale Reviewer Comments/Feedback 

5.6  

Are there any functions not testable in 
hardware? 
 
Can anything be done to improve the 
testability of these functions in 
hardware? 

Need to pay special attention to functions that 
can only be tested in simulation. 

  

5.7 
Are all the test benches self-checking?   
If not, what is done to make sure that the 
test results are consistently verified? 

Self-checking test benches makes sure that the 
simulation results are consistently verified.  
Visual inspection of the waveforms does not 
always detect unexpected test results. 
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B.6 Radiation Tolerant FPGA (RTAX) 

 

  Review Item Rationale Reviewer Comments/Feedback 

6.1 
Are internal probe points limited to 2 
per tile?  

  

6.2 
Is embedded FIFO controller used in 
the design? 

Embedded FIFO controller is not used 
because it is not rad-hardened in RTAX. 

  

6.3 
Are single-ended clock inputs only 
assigned to the P-side of a P/N clock 
input pair? 

According toMicroSemi:   “…when CLKBUF 
(HCLKBUF) is used with a single-ended I/O 
standard, it must be tied to the P-pad.…of the 
hardware clock (HCLK) package pin.  In this 
case, the HCLK N-pad can be used for user 
signals.” 
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APPENDIX C 

CUSTOMIZING 

This appendix provides a framework to assist projects in the customization process.  It uses a 
risk-based assessment and safety-criticality factors.  This process cannot be applied to safety-
critical or mission-critical projects.  The following tables calculate a project classification score 
and then use this score to determine applicable parts of this document to the given project.  
 

a. The first step is to generate a classification score.  Table 5, PLD Classification, 

provides a list of criteria.   

b. Each item (row) gives a score from 1-5 based on a number of factors.    

c. Average the score from table 5 (rounding up). 

d. Table 6, PLD Development Customization Recommendations, uses the classification 

score from table 5. 

e. Use table 6 as a starting point for customizing. 

 

Table 5—PLD 
ClassificationFactor 

1 2 3 4 5 
Score 

Resourcing  
Project cost  <500k $500k-1M $1M-2M $2M-20M $20M and up  

Organizational Complexity  

Development Location Single Branch Single Center 2 Centers 3 Centers 4+ Centers  

Customers Self 
Low number 

of users 
Within Center 

Outside 
Center 

External to 
NASA 

 

Developers Experience 
Staff 

experienced 
Most staff 

experienced 
Half of staff 
experienced 

Few staff 
experienced 

Staff not 
experienced 

 

Technical Complexity  

Test Requirements 
No testing 
required 

Minimum 
testing 

Standard 
testing 

required 

Integrated 
testing 

Major testing 
effort required  

 

Board 

Commercial 
Off The Shelf 

(COTS) 
Evaluation 

Board 

Proven 
custom 

Modified 
custom 

New custom Flight boards 

 

Operational Software No software 
Familiar to 

project 

Software has 
to be 

purchased and 
learned 

Some 
software has 

to be 
developed 

 
Full custom 
software has 

to be 
developed 

 

 
 
 
 
 

Integration of 
Deliverables 

Standalone 
Some 

integration  
Integrated 

Highly 
integrated 

Fully 
integrated 
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Table 5—PLD 
ClassificationFactor 

1 2 3 4 5 
Score 

Implementation Risk  
Well proven, 

known to 
Center 

Proven with 
some Center 
experience 

Proven, but 
new to Center 

Partially 
proven  

Pioneering 
 

Safety Critical 
Projects identified as safety-critical and/or mission-critical uses column 5 for every 
row in this table. 

N/A 

Classification = Simple Average (score / 9)  

 

 

 
Key Definitions: 

 

• Board – The board on which the PLD is run.   

• Customer – Location of the customers. 

• Developers Experience – Examines the experience of the development team. 

• Development Team Location– Defines the locale of the development team. 

• Implementation Risk – An indication of how familiar the team or Center is with this type of 

implementation or technology. 

• Integration – An indication of the types of devices the PLD interfaces with. 

• Integration of Deliverable – The PLD is always on a board with some additional circuitry.  This 

is meant to distinguish the level of integration with other boards, functions, software, etc. 

• N/A – Not applicable. 

• Operational Software – The software that interfaces to the PLD.  It can be internal on an 

embedded processor or and external interface (i.e., custom command handler). 

• Project cost – The total cost of the project (not just the PLD). 

• Software Tools – Determines the complexity of software that needs to be integrated. 

• Test Requirements – Defines the testing requirements.  Small development or research project 

do not have formal verification requirements.   
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Table 6—PLD Development Customization Recommendations 
Classification 1 2 3 4+ 

Planning Documentation 
PLD Development 

Plan 
Schedule and 

Budget 
Schedule and 

Budget 
Yes Yes 

Requirements  Simple  Simple  Yes Yes 

Bug Tracking N/A N/A Simple  Yes 

Verification Plan N/A N/A Yes Yes 

Planning Review N/A N/A Yes Yes 

Requirements 
Review 

N/A Informal Yes Yes 

Preliminary Design Phase 

Design 
Specification 

Simple Block 
Diagrams 

Simple Block 
Diagrams 

Yes Yes 

ICD N/A N/A Yes Yes 

Architecture 
Review 

N/A N/A Recommended Yes 

PDR N/A Informal Recommended Yes 

Detailed Design Phase 

Design 
Specification 

State Diagrams State Diagrams Yes Yes 

Design Practices 
(Section 7.3) 

Review  Review  Yes Yes 

Detailed Design 
Review 

N/A Recommended Yes Yes 

Design 
Specification 

Review 
N/A N/A Recommended Yes 

Implementation Phase 

Build Procedure N/A N/A Yes Yes 

Code Reviews Recommended  Recommended  Yes Yes 

Revision Control Basic Basic Full Full 

Design Practices 
(Section 8.4) 

N/A N/A Yes Yes 

Synthesis Review N/A N/A Yes Yes 

PnR Review N/A N/A Yes Yes 

Verification Phase 

Test Procedures N/A N/A Yes Yes 

Verification Unit Testing Unit Testing Full Full 

Independent Peer 
Verification 

N/A N/A Informal Yes 

Verification Review N/A N/A Yes Yes 

Delivery Phase 

Programming 
Procedure 

N/A N/A Yes Yes 

Revision Control Basic Basic Full Full 

Formal Release (in 
CM) 

Recommended Recommended Yes Yes 

Documentation Simple Report Simple Report Full Full 

RDD N/A N/A Yes Yes 

Delivery Review N/A N/A Yes Yes 
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KEY: 

• Basic – Revision Control is a simple tool that tracks versions of items.  Complicated 

merges and branches are not applicable. 

• Full – Per this Handbook. 

• Informal – A discussion with colleagues that is not formally documented or 

tracked.  It could be a tabletop review or informal discussion. 

• N/A – Not applicable. 

• Preferred – This is a recommended item, but in a tight project, could be combined 

in the larger project planning. 

• Recommended – A practice that is high priority. 

• Simple – Implementation might involve a spreadsheet or an email. 

• Unit Testing – Simple module level simulations or testing. 

• Yes – A practice that is highly recommended. 
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APPENDIX D   

LIFE CYCLE PRODUCT GUIDANCE 

Table 7, Guidance for PLD Life Cycle Products at Various Reviews, below summarizes the current 
guidance for PLD life cycle products and their maturity level at various life cycle reviews.  The chart 
serves as guidance only.  Final decisions are made at the project level. 
 

Table 7—Guidance for PLD Life Cycle Products at Various Reviews 

Product SRR SDR PDR CDR TRR SAR 

Development Plan  P B U U  

Schedule D P B U U  

Requirements Specification D P B U U  

Verification Plan  D P B U  

Design Specification D P P B U  

ICD  D P B   

Test Procedures     B  

Test Reports      F 

 

Key: 

• D – Draft 

• P – Preliminary 

• B – Baselined 

• U – Updated 

• F – Final 
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APPENDIX E 

 

SAFETY CRITICAL 

 
E.1 Safety-Critical Considerations 

 

The following bulleted list provides design considerations (highlighted in bold) that the PLD 
requirements document needs to address.  The PLD design team considers these items when 
creating the requirements and implementing the design.  For example, in a safety-critical design, 
the design team ensures that a requirement is in the form of: “The PLD device shall provide the 
status of inhibits used to control hazards.”  This was taken from the first bullet/design 
consideration. 
 

• Inhibit Status.  Computing systems provide the status of inhibits used to control hazards. 

• Hazardous Function Control.  Computing systems provide hazardous function control 

where the inadvertent activation, deactivation, or proper control by the function could 

result in an identified critical or catastrophic hazard.   

• Safe Initialization.  Computing systems are initialized to a known, safe state.  Circuitry 

interfaced to the PLD takes into consideration the transient nature of inputs/outputs 

during power-up/power-down conditions. 

• State Transition.  Computing systems transitions safely between all predefined known 

states.   

• Orderly Shutdown.  Computing systems that implement termination of safety-critical 

functions perform orderly, controlled shutdowns of those functions to known, safe states.   

• Off-nominal Power.  Safety-critical computing systems establish a safe or powered-

down state when self-monitoring functions detect off-nominal power conditions. 

• Operator Overrides.  Computing system overrides require at least two independent 

actions by the operator.   

• Command Sequence.  Where execution of commands out of sequence can cause a 

hazard, the computing system rejects commands received out of sequence.   

• Anomaly Recovery.  Computing systems establish a predefined safe state prior to the 

operational time predicted to cause a critical failure, following detection of predetermined 

indications of incorrect or incomplete processing.   
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E.2 Checklist for Safety-Critical Design Specification 

 

The following checklist items are suggested for the development and documentation of PLD 
designs used in safety-critical applications.  Not all items are appropriate to all designs.   
 

a. Demonstrate completeness of system state requirements including the following: 

(1) Design starts in a known safe state.  Interlocks are initialized or checked to be 
operational at system startup, temporarily overriding interlocks. 
 

(2) All signals are properly initialized upon startup. 
 

(3) The maximum time for the PLD to have deterministic behavior/outputs is 
specified. 
 

(4) Expected response to all documented hazards for all safety-critical functions is 
documented, demonstrated, and tested (as possible). 

b. Demonstrate completeness of requirements for events that trigger state changes 
including: 

(1) Robustness criteria: 

A. Every state has a behavior (transition) defined for every possible input. 

B. Every state has a behavior (transition) defined in case there is no input for a 
given period of time (a timeout). 

(2) Non-determinism criterion - the behavior of the state machine is deterministic. 

(3) Value and timing assumptions: 

A. All incoming values are checked and a response specified in the event of an 
out-of-range or unexpected value. 

B. All inputs are fully bound in time, and the proper behavior specified in case 
the limits are violated or an expected input does not arrive.  

c. Demonstrate output specification completeness including: 

(1) Upon exceeding the duration limit of a hazardous action sequence, the state 
machine cancels the sequence automatically, returns to a safe state, and informs 
the operator. 

d. Demonstrate completeness of the specification of transitions between states. 
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APPENDIX F 

 

BOARD LEVEL DESIGN CONSIDERATIONS 

 
The topics in this appendix focus on considerations for the PCB design.  They may serve as 

discussions but are not necessarily applicable to the PLD design. 

F.1 Board Reset Consideration 

The following subsections address items of consideration when resetting the design board. 
 
F.1.1 Reset Logic Circuit 

 

Provide sufficient noise margin, adequate slew rate, and glitch filtering.  Transient effects have 
to be considered on the reset circuit.  For the application of power, the output of the POR or reset 
circuit is ideally a solid logic level and glitch-free.  This requires the POR circuitry to be 
designed using logic elements that operate correctly at the low ramping up voltages seen during 
power up.  This ensures that the POR signal is valid at the earliest time possible in the power-up-
down sequence of events.  Inrush currents to timing capacitors are not to exceed the maximum 
for that capacitor type.  Rise times to logic gates, if used as a comparator, are not to exceed the 
input's specifications.  Gates with hysteresis inputs are often used for this purpose.  Note that 
even with that type of input, output glitches may occur and several stages of logic gates are not 
to be used to dampen them.  The most robust solutions often utilize a comparator with hysteresis.   
 
Another transient factor to consider is the rise time of the flight power supply, both best and 
worst cases.  These often differ substantially from laboratory supplies and may be non-
monotonic or have substantial overshoot and ringing.  Note that flight power supplies are often 
slew-rate limited to minimize conducted emissions on the power bus.  The time constant of the 
supply may exceed that of the POR circuit.   
 
For discharge, ensure that there is a low impedance path for timing capacitor discharge and that 
the inputs of logic gates are protected.  Most CMOS inputs, but not all, have ESD diodes from 
the input to the supply rail.  Discharging a large capacitance through that input may damage it.   
 
Also, consider the requirements and response of the circuit to momentary disruptions on the 
power bus.  While many circuits may recover or be recoverable from a power-on reset, this is not 
true for all circuits.  One such example is non-volatile, erasable memories, which need to be 
carefully protected. 
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For reset circuits, many implementations have “asynchronous application, synchronous removal” 
of the reset circuit.  However, for many devices, in particular many programmable devices, the 
inputs can be blocked or ignored during the power-on transient.  This may be because of the need 
for charge pumps to start or configurations to be loaded and then released.  For devices with 
synchronized inputs, the clock oscillators have to start, perhaps taking many tens of milliseconds 
(ms), before the reset can be applied.  Outputs of these devices are to be handled at the same 
system level as the reset, which may appear to work on the schematic or in the HDL design files, 
but is ignored by the real circuits.  See figure 5, Recommended Power-On Reset Implementation, 
that follows. 
 

 

Figure 5—Recommended Power-On Reset Implementation 

 
 
Steady state or DC effects are also important.  Check the leakage currents of timing capacitors 
and logic gates, as the amount of leakage current times the resistance of the timing resistor may 
result in a voltage drop that eliminates all noise margins.   
 
F.1.2 Ensure Appropriate Component Start-up Time 

 
Allowing for appropriate start time is critical.  It is important to ensure that the guaranteed reset 
time is sufficient for all circuits in the system in order to avoid premature release of the POR 
signal, which may result in an indeterminate state.  The following illustrates some factors to 
consider when determining start-up time: 
 

a. For many PLDs, start-up includes the build-up of voltage in the charge pump to 
charge internal capacitances, a delay, and then a release of outputs.   

 
b. Other PLDs require a sequence of resets for proper loading and release, with many 

circuits having internal power-on reset circuits.  The timing of all these resets have to be 
analyzed for best- and worst-case behavior. 
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c. Some standard components on digital logic boards (e.g., crystal clock oscillators) can 
have a substantial startup time.   

 
d. Components, such as PLDs and crystal clock oscillators, may have start-up times that 

are a function of the rise time of the power supply.  This behavior is often inadequately specified 
or not specified at all.  

  
F.1.3 Protect Mission-Critical PLD Signals During POR 

 

Many logic elements do not follow their truth tables as the power supply ramps up.  Therefore, 
the POR signal has to act as a gate (via external circuitry), blocking false signals during the 
power supply rise time transient and then releasing after all circuits are stable.  On the other side, 
when the power comes down, the POR circuit may need to be asserted early, ensuring that 
critical circuits are safe before the logic elements lose control as the voltage drops.  Devices that 
often need protection are pyrotechnic and explosive initiators, EEPROMs, flash memories, etc.  
Note that some devices, such as microcontrollers, have internal flash memories; therefore, it is 
recommended that the team evaluate all components and system interfaces for necessary 
protection by the POR signals. 
 
F.2 Special Pins  

 

This section contains general information on special pins for all PLDs. 
 

F.2.1 Properly Terminate Configuration Pins 

 

A common problem identified during design reviews is the improper termination of special pins.  
For every device, the design team carefully reviews the data sheet and design schematics to 
determine whether each special pin is properly terminated.  Termination of many of these special 
pins cannot be verified by test. 
 
Ensure that each configuration pin is carefully checked against the latest data sheet.  Some pins 
have very high internal pull-up resistors that can be compromised by high-speed signals on the 
board level.  In addition, some configuration pins can naturally just happen to float to the desired 
state with nominal operation observed.  Beware of special pins, such as programming pins, that 
are required to be terminated appropriately for flight.   
 
Different devices have different pins and there is no overarching, as a general rule, other than 
that each pin is checked. 
 

F.2.2 Unused Inputs 

 

Do not leave unused inputs (pins that are defined as input) floating.  In general, all devices need 
to have properly terminated inputs.  For normal CMOS devices, this is a requirement.  Certain 
programmable devices, such as FPGAs, often take care of unused pins via software, exploiting 
the programmable nature of the microcircuit.  However, the limitations for each pin have to be 
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thoroughly considered.  For example, in MicroSemi SX and SX-S, clock inputs, such as HCLK 
or the global routed clocks, do not have an output stage—they are special purpose.  They have to 
be terminated by the user.  Failure to do so can result in large unintended currents that could 
cause device damage.  
  
Depending on the device, the manufacturer may reserve pins labeled as “N/C” (no connect) for 
internal purposes.  Check each pin carefully according to the specification and clarify with the 
manufacturer if necessary about the risk involved with terminating them on the board.    
 

F.2.3 Follow the Manufacturer’s Recommendations for Test Interface 

 

Many devices have custom test interfaces that have to be handled on a case-by-case basis.  Since 
they hook up to test equipment, following the manufacturer's instructions is recommended.  For 
example, MicroSemi SX-S device test pins need to be series terminated. 
 

F.2.4 Disable the Debug Interface for Flight Configuration 

 

If PLD I/O are used to implement a debug interface for development, make sure that the inputs 
are safely terminated or driven and that outputs are not toggling in the final flight configuration, 
causing unnecessary EMI and noise. 
 

F.3 Device Inputs/Outputs 

 

The following subsections describe device inputs and outputs. 
 
F.3.1 Signal Termination 

 

Ensure that output signals are terminated properly.  For single-ended signals, start by using 
termination resistor values equal to the trace impedance minus the output impedance of the 
driver (Rterm = Ztrace – Zdriver) then perform signal integrity analysis to optimize the termination 
resistor values. 
 

a. Address edge-sensitive signals, such as clock output signals, with special care to 
ensure that there is a smooth transition through the threshold.  For loaded clocks, perhaps 
traveling over long runs, reflections may often result in non-monotonic transitions causing false 
or double clocking.  Note that this may happen on the “inactive” edge.  Similarly, overshoot and 
ringing can also cause false clocking, particularly on the transition to ground.  Unterminated nets 
could result in ringing that is a source of EMI, even when they do not contribute to logic failures. 

 

b. Ensure good signal quality as damage to I/Os may happen.  Most manufacturers have 
tight limits on how far outside the rail a signal may travel, sometimes coupled with maximum 
time outside of the recommended limits.   

c. Plan on termination resistors in advance to support signal integrity analysis efforts.  
The signal integrity analysis may show that they can be eliminated.   However, if they are 
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required, adding them later could require additional time in layout, debugging, rework, and/or 
costly board respin.  Measurements can also be used to supplement this effort. 

 
d. Review schematics for proper terminations on interfaces such as the PCI interface.  
 

e. Signal Termination: Some modern logic devices provide internal source termination 
at specific values.  Board designers can consider the source termination options of the FPGA, 
and design traces accordingly.  In addition, input terminations can be considered as well, 
especially with Low Voltage Differential Signal (LVDS) terminations or double data rate (DDR) 
interfaces. 

 
f. Be aware of part-specific default operation.  For example, differential interfaces, such 

as RS-422 and LVDS standards, require that receivers whose inputs are open, output a logic ‘1’ 
to the system. Thus, systems need to be designed so that such a logic ‘1’ state does not cause an 
unintended lock up of the system. 

 

F.3.2 Tri-State Bus Considerations 

 

A recommended practice is to avoid contention and floating.  Bus contention wastes power, 
needlessly generates noise, and stresses components.  Consider the following actions: 
 

a. Avoid contention when actively driving tri-state buses.  Have a guaranteed off-time 
between drivers on the bus in the worst-case.  A clock cycle between tri-stating one driver and 
enabling another may be sufficient but a thorough timing analysis is necessary.  Be sure to 
consider timing parameters that have to be added together.  For example, the tri-state time of an 
external SRAM’s output enable that is controlled by a PLD’s state machine would be the sum of 
the time cut off out of the PLD + the travel time on the board + the SRAM’s tri-state time. 

 
b. Do not allow the bus to float for a long time or have slow transition times, as this 

increases power and noise and may negatively affect reliability. 
 

c. Consider parking the bus when not in use (drive to 1’s or 0’s) instead of using pull-up 
/-down resistors.  Some PLDs have a “keeper” I/O standard that does this. 

 
d. When parking a bus and still using pull-up/-down resistors, ensure that the bus is fully 

driven to the parked state before it is tri-stated to avoid ringing. 
 

e. For portability, infer a tri-state buffer in register-transfer level (RTL) design files 
instead of instantiating a device-specific tri-state buffer.   

 
f. Be sure to consider the power up, reset, or the configuration cycle for the device to 

make sure that outputs are not floating or contending.  One method to mitigate contention is to 
gate FPGA-sourced control signals with board-level POR using discrete CMOS logic gates to 
disable tri-state drivers in all devices on the bus. 
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F.3.3 Input Transition Times 

 

It is important to examine input slew rate.  Some high-speed devices have very stringent 
restrictions on input transition times.  Failure to meet the requirements may result in oscillations 
(figure 6, Glitches Due to Input Slew Rate Violations), multiple clocking, degradation, or 
damage.   

 
Figure 6—Glitches Due to Input Slew Rate Violations 

 

Simple pull-up or pull-down resistors, with transition times in the hundreds of nanoseconds (ns), 
may be too slow.  Take appropriate precautions if older digital logic families are used that may 
have outputs that are not compatible (e.g., too slow) with high-speed devices. 
 

F.3.4 Avoid Shorting Outputs Together 

 

Shorting outputs together is sometimes done to increase drive on the board.  This has to be 
avoided since it may damage components if the switching speeds are not matched, and it can be 
difficult or impractical to test this redundant topology.  If this needs to be done, consider using 
an external buffer or splitting the loads between two or more nets, each driven by a single output. 
 
F.3.5 Mixed I/O Standards 

 

Examine voltage thresholds, DC compatibility, and noise margins.  When mixing devices from 
multiple families, even from the same manufacturer, care has to be taken to ensure the devices 
are operated within specifications and there is sufficient noise margin.  This may be problematic 
when substituting parts for either upgrading circuit performance or dealing with obsolescence 
issues. 
For inputs, many CMOS technology devices advertise “transistor-transistor logic (TTL) 
compatible” inputs.  However, these inputs may in fact differ rather significantly from their TTL 
counterparts.  The first major difference for many but not all devices is the impedance presented 
to the interface when power is removed from the device.  For example, when radiation-hardened 
CMOS latches were substituted for soft 54LS373 latches in the Galileo attitude control 
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computer's memory units, block redundancy circuits failed since the sneak path through the 
radiation-hardened inputs’ ESD protection diodes was not accounted for when power was 
removed.   

Another related difference is the maximum voltage that can be applied.  Some bipolar devices 
are useful for reliable level shifting from higher voltages to lower ones; CMOS replacement 
devices will forward bias to the protection diodes resulting in unintended current flows and 
possible damage or circuit failure.  Finally, many CMOS inputs have logic thresholds that are not 
truly TTL compatible.  That is, the TTL voltage threshold for input high (VIH) specification is 
often not met, with VIH (max) values of 2.2V, 2.4V, and sometimes 2.5V being specified 
whereas true TTL devices have a threshold defined by two diode drops, typically in the range of 
1.2V to 1.4V.   
 
TTL outputs are only guaranteed to drive to VOH = 2.4V so there may be little or even negative 
noise margins present in these situations.  The switching point difference can also lead to circuit 
failure, depending on the signal integrity.  Often TTL outputs, when switching, exhibit non- 
monotonic-behavior in the waveform, particularly with heavy and/or long loads.  While the 
behavior is often at a high enough voltage so that TTL devices operate correctly, the often higher 
VIH of CMOS devices may result in multiple clocking.  Pull-up resistors can restore adequate 
DC noise margins in these situations if given enough time to settle, which may be quite a while 
for this passive circuit.  Note, however, that TTL to CMOS clock interfaces designed in this 
fashion often fail logically since the CMOS input may see multiple transitions resulting in double 
clocking. 
 
CMOS output stages can also be problematic, and subtle device characteristics can cause errors.  
It is strongly recommended to check all specifications carefully.  For example, many CMOS 
devices when driving loads are specified at only very low current levels for high or logic ‘1’ 
signals.  However, TTL inputs take substantial currents and do not present the high impedance 
seen by CMOS field effect transistor (FET) inputs and the output may be dragged down.  For 
output loads that are a mix of CMOS and TTL inputs, they often have to be split to guarantee the 
high voltage needed for the CMOS inputs.  This is typically 70 percent of VDD, and the high 
current needed for TTL inputs, with the lower VIH of 2.0V.  Another factor to consider is the 
structure of the output stage in the CMOS device.  For example, some devices will not swing all 
the way to the high rail and are voltage limited.  This may result in some totem-pole current if 
the p-channel FET in the next input stage is not cut off.  Some devices, even with a 5V I/O 
supply like an RT54SX series, only drive outputs to the core voltage of 3.3V, making this CMOS 
output incompatible with 5V CMOS inputs on the same board.   
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Components currently have many supply voltages, including 1.5V, 1.8V, 2.5, 3.3V, and 5.0V.  
There is also an abundance of I/O standards with the newest devices being programmable, so 
their characteristics are not obvious or known from viewing a board schematic.  Therefore, I/O 
compatibility has to be carefully verified, particularly when substituting “new and improved” 
devices or alternate devices. 
 

F.3.6 Power Switching and Cold Sparing 

 

Examine all power-up and power-down modes or transitions.  For either redundancy or power 
savings, care has to be taken when designing a system with blocks that are independently 
powered.  Many CMOS devices present low impedance when powered down through either the 
intrinsic or the ESD protection diodes.  Other devices, with cold sparing inputs, may have high 
input impedance that is suitable for operation.  For PLDs, selecting 3.3V PCI compatibility, as 
one example, can result in a “cold sparing” device no longer being high impedance since a 
clamping diode is enabled.  While many bipolar devices are compatible with cold sparing 
architectures, some devices have a sneak path to VCC through the output (figure 7, Sneak Path in 
Some LSTTL from Output to VCC) .  Be sure to consider test setup, not just the flight 
configuration.  For example, consider whether a piece of test equipment needs to be powered up 
and down co-incidentally with the flight unit. 
 
 
 

 

 
Figure 7—Sneak Path in Some LSTTL from Output to VCC 
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F.4 Power Related Design Considerations 

 

The following sub-sections address power-related design considerations. 
 
F.4.1 Supply Sequencing 

 

Follow device family datasheets to ensure proper power-up and -down sequencing.  Power 
sequencing requirements may differ between flight and prototype devices.  Many of the newer 
technology devices require two or more power supplies.  Often these are divided into supplies to 
power the core of a logic device and a second supply to operate the I/O cells.  Additional 
supplies may be needed for PLLs and DLLs, special I/O standards, or various bias supplies, such 
as external charge pumps.  The supplies have to meet all of the DC standards as well as ripple 
characteristics, particularly for circuits such as PLLs.  The sequence that power is supplied to a 
single device in certain cases, can affect circuit behavior, performance, and reliability.  For 
certain devices, such as SX-S series devices, if the I/O supply is brought up before the logic core, 
a large inrush current may be present; this would not be the case if the order of the supplies were 
reversed.  For certain devices, incorrect power sequencing can result in overstress or damage.  
Often the requirements for sequencing are in application notes.  When parts that require 
sequencing are present, they need to be flagged, and the design has to incorporate circuit 
protection, as required.   
 

F.4.2 Signals Into Unpowered CMOS I/Os 

 

Analyze design for sneak paths between I/O that interfaces powered and unpowered devices.  
The power supply sequencing between interfacing ICs, either on the same or separate boards, has 
to be considered.  Many ICs, particularly CMOS, present a low impedance to the system when 
powered off.  Most of these ICs require that the power supply be brought up prior to the 
application of signals on either the inputs or the outputs (many PLD outputs also have inputs 
active in the general purpose I/O modules).  Some programmable ICs cannot be analyzed by 
inspection of the schematic; the particular I/O configuration has to be reviewed.  For instance, 
some I/O modules provide for cold sparing; that is, they present high impedance to the system 
when powered off.  That same I/O, configured differently, may have clamp diodes switched in 
while powered off for PCI compatibility.  The design details are needed to do a worst-case 
analysis. 
 
F.4.3 Startup Voltage Rise Time 

 

Perform voltage supply rise time measurement on actual hardware and verify that the results 
meet PLD requirements.  Startup current transients are common in many devices.  The size of the 
current can be a function of time between power cycles, temperature, ramp rate of the supply, 
radiation exposure history, power supply sequencing, etc.  These currents can be large for certain 
devices, often as high as several amps.  Ensure the power supply system does not limit current to 
steady state levels because insufficient current during the startup sequence can result in a failure 
to properly initialize, power device shutdown, recycling in an infinite loop, or a system lockup.  
Similarly, some parts have restrictions on minimum and maximum power supply rise times.  
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Failure to meet these levels may result in circuit degradation or damage. 
 

F.4.4 Bypassing and Distribution 

 

Follow device datasheets and/or device application notes for proper decoupling.  Perform a 
power integrity analysis at the frequencies of operation.  Logic devices can be rather large, 
consisting of billions of gates.  Synchronous design techniques, high operating frequencies, and 
large I/O counts can result in a challenge to the power distribution and conditioning system.  
Application notes contain most of the manufacturer’s supply details.  Follow these rules unless a 
power integrity analysis and testing of the system for worst-case conditions reveal an alternate 
course.  Worst-case test patterns can be exploited to ensure high-fidelity power and then replaced 
with the flight application.  JTAG interfaces may also be used with care given that the JTAG test 
patterns do not violate design limits, such as SSOs.  Consider the aging effects of time and 
radiation. 
 

F.5 Non-Volatile Memories 

 

The following sub-sections address interfacing to non-volatile memories (EEPROM, flash, etc.). 
 

F.5.1 Protection During Power-Up/Down Transitions 

 

The system designer considers the power-down warning and provides enough bulk capacitance 
to complete a write access of non-volatile memories, if needed.  In cases where non-volatile 
memory protection is required, the PLD requirements specify the mitigations performed by the 
PLD.   
 
Indeterminate signals sourced from the PLD are a common problem for erasable non-volatile 
memories.  The analysis and test has to examine all of the signals for proper and safe operation 
during power-up, power-down, and brown-out transients.  Note that the real power supply and its 
bounded characteristics has to be used, not laboratory supplies that most likely have substantially 
different characteristics.  Some devices have a reset pin to help protect against inadvertent writes.  
The design, analysis, and test/evaluation of this circuit under all conditions are critical for 
maintaining the integrity of the non-volatile memory contents.  Consider circuit operation if the 
power is shut down during either a planned or unexpected write cycle.  The design needs to 
ensure the proper completion of write cycles to protect the contents of the non-volatile memory.  
The write cycle often includes the time for not only the bus operation to complete, but also for 
writing to the internal part, which can take about 10 ms.  Another related consideration is the 
unexpected application of a system reset signal.  Shutdown states are entered to help ensure that 
write cycles are fully completed and properly shut down, with the critical signals put in a safe 
mode. 
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F.5.2 Analysis of Damage During Write Cycles 

 

Implement a mechanism to detect corrupted writes.  The technology of the non-volatile memory 
has to be carefully considered if the memory is to be written in flight.  Some of these devices, 
such as EEPROMs, use high voltage to write the cell.  If struck by a heavy ion with high voltage 
applied, the failure mode needs to be analyzed and dealt with appropriately.  Thus, writing in 
flight has to be considered a high-risk operation. 
 

F.5.3 Cycle Count 

 

Design an interface to maximize useful life of memory.  Many non-volatile erasable memories 
have limited number of access cycles.  Each device has to be treated on a case-by-case basis with 
system lifetime and radiation factored in.  For example, the 128k x 8 Hitachi die, for example, 
has a lifetime write specification limit of 104 cycles in byte mode with 105 cycles in page mode.  
The write mechanism for this device utilizes an 8-byte subpage as the smallest unit that can be 
written.  Therefore, writing the same memory space one byte at a time is more stressful than 
page writes since entire subpages have to first be fetched and then re-written. 
 

F.5.4 Transients and Noise 

 

Treat control signals to non-volatile memories as critical by minimizing them.  It is critical that 
the signals interfacing with non-volatile memories be clean, that system noise be kept to a 
minimum, and that they always meet all specifications.  In this case, signals include not only 
logic signals but also power and ground connections; therefore, robust bypassing needs to be 
used.  Noise glitches on EEPROMs, for example, can cause false write cycles to be generated, 
resulting in inadvertent altering of the device’s contents. 
 

F.5.5 Reliability 

 

Design interfaces to implement the required error detection and correction (EDAC).  For 
reprogrammable PLDs that are configured, it is a best practice to maintain a non-changeable 
memory like programmable read-only memory (PROM) that can be switched on if the 
configuration memory fails. 
 
The required reliability of the non-volatile, erasable memory device is highly dependent on its 
application.  If the device operates as part of a large memory array, then some bit failures and 
even page failures can be tolerated either by error correction techniques or by error detection and 
mapping the failed segment out of service. 
 
Applications such as boot read-only memory (ROM) require error free operation for the CPU.  
Another example is when the PLD is accessing memory.  For single bit failures, a Hamming 
code may suffice, although that may be awkward for serial PROMs.  Some failure modes of non-
volatile memory devices may result in a bit oscillating or not providing a valid logic level; in this 
case, an EDAC device may or may not correct the single bit error, depending on the logic design 
of the EDAC device being used and whether or not it is static hazard free.  In any event, the 
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devices employed, combined with the architecture of the particular system, have to ensure that 
there are no lockup states from any credible failures.  Credible failures include any single bit 
error and an inadvertent corruption of a non-permanent memory’s contents. 
 
Other forms of redundancy may be required, such as TMR, with switchable spares.  Some 
options include the ability to switch in alternate devices, the use of permanent memory such as 
PROM, or the use of storage buffers to replace erasable non-volatile memory functions, using 
operational overhead to manage the risk.  For example, if a configuration memory device for a 
PLD fails, a storage buffer and CPU may configure the PLD using a different loading mode, 
assuming that, of course, the PLD is not needed to run the computer.  In general, for critical 
applications, permanent memories, such as PROM, are to be used to ensure that the spacecraft or 
other system cannot be permanently lost.  This can take the form of boot and safe-hold code for a 
processor or a basic operating configuration for a PLD. 
 

F.5.6 Refreshing and Reloading 

 

When considering whether to refresh or reload a device, factor the device’s specified data 
retention against mission life.  Another consideration is the guaranteed storage time of the device 
versus mission length.  Each device has to be analyzed on a case-by-case basis.  Ten years is a 
frequent specification for the retention of memory contents; however, system lifetimes of several 
decades is not uncommon.   

Refreshing can be risky.  The usefulness of it has to be verified with the manufacturer’s 
assistance, to ensure a guarantee of storage integrity, particularly in the radiation environment.  
When the device is refreshed, it may be susceptible to damage in the space environment by 
heavy ions.  Other errors can occur that damage the contents, such as a computer crash, brown 
out, or the unexpected removal of power due to a bus fault or a spacecraft entering a safe mode.  
In addition, each write cycle takes away from the operational lifetime of the component. 
 

F.6 Logic Design 

 

The following sub-sections discuss noise immunity in the design and considerations for off-
nominal events.  Consider the items listed during the design cycle. 
 

F.6.1 Noise Immunity and Quiet Designs 

 

If applicable to the design, consider the following board design activities to ensure adequate and 
robust noise immunity: 
 

a. Choose differential signals, particularly for connections between boards.  Newer logic 
devices are directly supporting differential standards.  Additionally, high-speed, lower power 
differential devices support standards, such as LVDS, are now qualified. 

 
b. Serializer-Deserializer (SERDES) components/cores can cut down the number of 

lines, reducing noise, and, therefore, increase the noise immunity of the system. 
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c. Use hysteresis buffers to clean up noisy inputs. 
 
d. Inputs that are “TTL compatible” often have specifications and real thresholds that 

are not TTL compatible, particularly for VIH.  Use level shifters as needed. 
 
e. Outputs, particularly from some CMOS families, may not be able to drive TTL loads 

to a valid logic ‘1’ with sufficient noise immunity.  Calculate worst-case currents and voltage 
output versus worst-case input thresholds.  Use level shifters as needed. 

 
f. Make sure PLD I/O standards are compatible with external interfaces. 
 

g. Adequate bypass capacitance for several decades of noise frequency on the voltage 
input/output (VIO) pins greatly reduces ground bounce and noise problems.   

 
h. Refer to the vendor application notes and datasheets for additional board design 

requirements. 
 

F.6.2 Defensive Design and Designing for Off-Nominal Events 

 

It is advisable to consider credible but unplanned events.  Often many of these situations can be 
economically handled with some planning.  Following are a few sample activities to consider: 
 

a. Perform limit and validity checking.  The system needs to respond in a reasonable 
fashion to unexpected input states.  For data passed from one source to another, simple bounds 
checks can detect and cause appropriate action for many off-nominal conditions, such as a 
disconnected source.  This may result in all Fs being returned on a data bus.  For floating point 
numbers, determine whether the input in a valid format.  A minimum criterion is that any 
credible input does not damage hardware and prevent recovery.  Assume that the probability of 
software failure is 100 percent. 

 
b. Provide fail-safe interfaces.  Analyze the performance and safety of the circuits if a 

wire breaks in a connector, for each wire.  For power, use multiple wires such that if any one 
wire breaks the remaining set can carry the load (and be sure to test this redundancy).  For 
signals, consider on-board terminations that pull floating signals into a safe and operational state.  
This can also provide protection if the board or subsystem is powered with a connector not 
hooked up, perhaps by test error.  Avoid putting signals such as power and ground on adjacent 
pins, as a short can take out the system. 

 

c. Consider lockup states.  If interfacing to a device that could potentially lock up, 
determine a mechanism to detect and recover from such lock up state. 

   
d. Protect PLD pins.  Avoid having PLD outputs directly driving cables or massive 

capacitive loads. 
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e. Ground the PLD lid. 
 

Follow manufacturer’s recommendation for grounding the PLD lid.  The lid may need grounding 
to ensure that there is no buildup of charges.  Doing this prevents ESD events. 
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APPENDIX G  

 

GUIDANCE 
 

 

A.1 Purpose and/or Scope 

 
The purpose of this appendix is to provide guidance and is made available in the reference 
documents listed below.  

 

A.2 Reference Documents 
 

National Aeronautics Space Administration (NASA) 

 

NPD 2810.1 NASA Information Security Policy 
  
NPR 7150.2 NASA Software Engineering Requirements 

 
Goddard Space Flight Center (GSFC) 

300-PG-8730.0.1 GSFC Assurance Activities for Digital Electronics for 
Spacecraft, Instruments, and Launch Vehicles 

500-PG-8700.2.7 GSFC Design of Space Flight Field-Programmable Gate 
Arrays 

500-PG-8700.2.8 GSFC Field-Programmable Gate Array (FPGA) Development 
Methodology 
 

Jet Propulsion Laboratory (JPL) 

IOM 3455-09-023 JPL Design Review Checklist 

DocID 68532 JPL FPGA/ASIC Hardware Development 
 

Marshall Space Flight Center (MSFC) 

MSFC-STD-3663 Marshall Space Flight Center (MSFC) Standard for 
Configurable Logic Device Developments 

 


