
APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

NOT MEASUREMENT
SENSITIVE

 NASA TECHNICAL STANDARD

NASA-STD-4009A

National Aeronautics and Space Administration

 Approved: 2018-03-14

Superseding NASA-STD-4009

(Baseline)

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)
ARCHITECTURE STANDARD

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

2 of 200

DOCUMENT HISTORY LOG

Status Document
Revision

Change
Number

Approval Date Description

Baseline 2014-06-05 NASA-STD-4009 is based on
NASA/TM—2010-216809.

Revision A 2018-03-14 Significant changes were made to this NASA
Technical Standard. It is recommended that
it be reviewed in its entirety before
implementation.

Key changes were: Removed all
precondition and postcondition to a known
state; removed configuration file processing;
changed methods to only process one
property at a time; removed the query all
functionality; changed the requirements for
C and C++ for functional equivalence;
associated types with constants; STRS
Device standardization with DEV_Open,
DEV_Close, DEV_Load, DEV_Unload;
added new requirements, methods, types, and
constants; and deprecated methods, types and
constants.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

3 of 200

FOREWORD

This NASA Technical Standard is published by the National Aeronautics and Space
Administration (NASA) to provide uniform engineering and technical requirements for
processes, procedures, practices, and methods that have been endorsed as standard for NASA
programs and projects, including requirements for selection, application, and design criteria of an
item.

This NASA Technical Standard is approved for use by NASA Headquarters and NASA Centers
and Facilities, and may be cited in contract, program, and other Agency documents as a technical
requirement. It may also apply to the Jet Propulsion Laboratory (a Federally Funded Research
and Development Center (FFRDC)), other contractors, recipients of grants and cooperative
agreements, and parties to other agreements only to the extent specified or referenced in
applicable contracts, grants, or agreements.

This NASA Technical Standard establishes a description of an architecture standard for NASA
space communication radio systems. This architecture is a required standard for communication
radio system developments among NASA space missions. Although the architecture was defined
to support space-based platforms, the architecture is applicable to ground station radios.

This NASA Technical Standard strives to provide commonality among NASA radio
developments to take full advantage of emerging software-defined radio technologies from
mission to mission. This architecture serves as an overall framework for the design,
development, operation, and upgrade of these software-based radios.

Requests for information should be submitted via “Feedback” at https://standards.nasa.gov.
Requests for changes to this NASA Technical Standard should be submitted via MSFC Form
4657, Change Request for a NASA Engineering Standard.

_____Original signed by_________ _________03/14/2018_________
Ralph R. Roe, Jr. Approval Date
NASA Chief Engineer

https://standards.nasa.gov/

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

4 of 200

SECTION

TABLE OF CONTENTS

PAGE

DOCUMENT HISTORY LOG ... 2
FOREWORD .. 3
TABLE OF CONTENTS ... 4
LIST OF APPENDICES ... 6
LIST OF FIGURES ... 7
LIST OF TABLES ... 8

1. SCOPE .. 11
1.1 Purpose ... 11
1.2 Executive Summary .. 12
1.2.1 Key Architecture Requirements .. 12
1.2.2 STRS Overview .. 13
1.2.3 Roles and Responsibilities .. 14
1.2.4 Background ... 16
1.3 Applicability ... 17
1.4 Tailoring ... 17

2. APPLICABLE DOCUMENTS ... 18
2.1 General ... 18
2.2 Government Documents .. 18
2.3 Non-Government Documents .. 18
2.4 Order of Precedence ... 18

3. ACRONYMS, ABBREVIATIONS, AND DEFINITIONS 19
3.1 Acronyms and Abbreviations .. 19
3.2 Definitions ... 22

4. HARDWARE ARCHITECTURE .. 30
4.1 Generalized Hardware Architecture and Specification 31
4.1.1 Components ... 34
4.1.2 Functions .. 34
4.1.3 Interfaces .. 35
4.1.3.1 External Interfaces ... 35
4.1.3.2 Networking .. 37
4.1.3.3 Internal Interfaces .. 37
4.2 Module Type Specification .. 38

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

5 of 200

SECTION

TABLE OF CONTENTS (Continued)

PAGE

4.2.1 General Purpose Processing Module ... 38
4.2.1.1 GPM Components .. 39
4.2.1.2 GPM Functions .. 40
4.2.1.3 GPM Interfaces .. 40
4.2.1.4 GPM Requirements .. 41
4.2.2 Signal-Processing Module ... 41
4.2.2.1 SPM Components .. 42
4.2.2.2 SPM Functions ... 42
4.2.2.3 SPM Interfaces ... 43
4.2.3 Radio Frequency Module ... 44
4.2.3.1 RFM Functions .. 45
4.2.3.2 RFM Components .. 46
4.2.3.3 RFM Interface .. 46
4.2.3.4 RFM Requirements .. 46
4.2.4 Security Module .. 46
4.2.5 Networking Module ... 47
4.2.6 Optical Module .. 47
4.3 Hardware Interface Description ... 47
4.3.1 Control and Data Interface ... 49
4.3.2 Operating Power Interface ... 49
4.3.3 Thermal Interface and Power Consumption .. 50

5. APPLICATIONS ... 51
5.1 Application Implementation ... 51
5.2 Application Selection ... 52
5.3 Application Repository Submissions ... 52

6. CONFIGURABLE HARDWARE DESIGN ARCHITECTURE.................. 54
6.1 Specialized Hardware Interfaces ... 55

7. SOFTWARE ARCHITECTURE .. 57
7.1 Software Layer Interfaces ... 57
7.2 Infrastructure ... 65
7.3 STRS APIs .. 66
7.3.1 STRS Application-Provided Application Control API ... 66
7.3.2 STRS Infrastructure-Provided Application Control API 76

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

6 of 200

SECTION

TABLE OF CONTENTS (Continued)

PAGE

7.3.3 STRS Infrastructure Application Setup API ... 81
7.3.4 STRS Infrastructure Data Sink ... 86
7.3.5 STRS Infrastructure Data Source ... 87
7.3.6 STRS Infrastructure-Provided Device Control API ... 87
7.3.7 STRS Device-Provided Device Control API .. 91
7.3.8 STRS Infrastructure File Control API .. 94
7.3.9 STRS Infrastructure Messaging API .. 97
7.3.10 STRS Infrastructure Time Control API .. 100
7.3.11 STRS Predefined Data .. 106
7.3.12 Error Handling .. 112
7.4 Portable Operating System Interface .. 113
7.4.1 STRS Application Environment Profile ... 114
7.5 Network Stack ... 117
7.6 Operating System .. 117
7.7 Hardware Abstraction Layer ... 117

8. EXTERNAL COMMAND AND TELEMETRY INTERFACES 120

LIST OF APPENDICES

APPENDIX PAGE

A POSIX® API Profile... 124
B Reference Documents ... 130
C Acknowledgments .. 133
D Requirements Compliance Matrix .. 134

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

7 of 200

FIGURE

LIST OF FIGURES

PAGE

1 Roles and Responsibilities ... 15
2 Hardware Architecture Diagram Key .. 32
3 Notional STRS Hardware Architecture Implementation 33
4 GPM Architecture Details ... 38
5 SPM Architecture Details .. 41
6 RFM Architecture Details .. 45
7 Waveform Component Instantiation .. 51
8 Notional High-Level Software and Configurable Hardware Design Waveform

Application Interfaces ..

 56

9 STRS Software Execution Model .. 59
10 STRS Layered Structure in UML .. 60
11 STRS Operating Environment ... 62
12 POSIX®-Compliant Versus POSIX®-Conformant OS 64
13 STRS Infrastructure ... 65
14 STRS Application and Device Structure ... 67
15 Profile Building Blocks ... 115
16 Command and Telemetry Interfaces .. 120

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

8 of 200

TABLE

LIST OF TABLES

PAGE

1 STRS Module Interface Characterization .. 48
2 Example—Operating Power Interface (Platform Supplied) 50
3 STRS Architecture Subsystem Key ... 61
4 STRS Software Component Descriptions.. 63
5 APP_Configure() ... 70
6 APP_Destroy() ... 71
7 APP_GetHandleID() .. 71
8 APP_GetHandleName() ... 71
9 APP_GroundTest() .. 72
10 APP_Initialize() ... 72
11 APP_Instance() .. 73
12 APP_Query() ... 73
13 APP_Read() ... 74
14 APP_ReleaseObject() .. 74
15 APP_RunTest() .. 75
16 APP_Start() .. 75
17 APP_Stop() .. 76
18 APP_Write() .. 76
19 STRS_Configure() ... 77
20 STRS_GroundTest() .. 78
21 STRS_Initialize() ... 78
22 STRS_Query() ... 79
23 STRS_ReleaseObject() .. 79
24 STRS_RunTest() .. 80
25 STRS_Start() .. 80
26 STRS_Stop() .. 81
27 STRS_AbortApp() ... 81
28 STRS_GetErrorQueue() ... 82
29 STRS_GetHandleName() .. 82
30 STRS_HandleRequest() ... 83
31 STRS_InstantiateApp() .. 83
32 STRS_IsOK() ... 84
33 STRS_Log() ... 85
34 STRS_ValidateHandleID() .. 85
35 STRS_ValidateSize() ... 86

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

9 of 200

TABLE

LIST OF TABLES (Continued)

PAGE

36 STRS_Write() .. 86
37 STRS_Read() ... 87
38 STRS_DeviceClose() ... 88
39 STRS_DeviceFlush() ... 88
40 STRS_DeviceLoad() .. 89
41 STRS_DeviceOpen() ... 89
42 STRS_DeviceReset() ... 90
43 STRS_DeviceUnload() .. 90
44 STRS_SetISR() .. 91
45 DEV_Close() ... 92
46 DEV_Flush() .. 92
47 DEV_Load() .. 92
48 DEV_Open() .. 93
49 DEV_Reset() .. 93
50 DEV_Unload() ... 93
51 STRS_FileClose() .. 94
52 STRS_FileGetFreeSpace() ... 94
53 STRS_FileGetSize() .. 95
54 STRS_FileGetStreamPointer() .. 95
55 STRS_FileOpen() .. 96
56 STRS_FileRemove() .. 96
57 STRS_FileRename() .. 97
58 STRS_MessageQueueCreate() .. 98
59 STRS_MessageQueueDelete() .. 98
60 STRS_PubSubCreate() .. 99
61 STRS_PubSubDelete() .. 99
62 STRS_Register() .. 100
63 STRS_Unregister() .. 100
64 Document STRS Clock/Timer ... 101
65 STRS_GetNanoseconds() .. 101
66 STRS_GetSeconds() .. 102
67 STRS_GetTime() ... 102
68 STRS_GetTimeAdjust() .. 103
69 STRS_GetTimeWarp() .. 103
70 STRS_SetTime() .. 104
71 STRS_SetTimeAdjust() ... 104
72 STRS_Sleep() .. 105
73 STRS_TimeSynch() ... 105

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

10 of 200

TABLE

LIST OF TABLES (Continued)

PAGE

74 STRS Predefined Data ... 107
75 Queryable Platform Parameter Names .. 112
76 Queryable Application Parameter Names .. 112
77 Replacements for Unsafe Functions .. 116
78 Sample HAL Documentation ... 119
79 Suggested Services Implemented by the STRS Command and Telemetry

Interfaces ..

 122

80 POSIX® Subset Profiles PSE51, PSE52, and PSE53 ... 124

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

11 of 200

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)
ARCHITECTURE STANDARD

1. SCOPE

This NASA Technical Standard describes the Space Telecommunications Radio System (STRS)
architecture for software-defined radios (SDRs), an open architecture for NASA space and
ground radios. STRS provides a common, consistent framework to abstract the application
software from the STRS platform hardware to reduce the cost and risk of using complex
reconfigurable and reprogrammable radio systems across NASA missions. It achieves this
objective by defining an architecture to enable the reuse of applications (waveforms and services
implemented on the SDR) across heterogeneous SDR platforms and reduce dependence on a
single vendor. The NASA Technical Standard provides a detailed description and set of
requirements to implement the architecture. The NASA Technical Standard focuses on the key
architecture components and subsystems by describing their functionality and interfaces for both
the hardware and the software, including the applications. The intended audience for this NASA
Technical Standard is composed of software and hardware developers who need architecture
specification details to develop an STRS platform or application.

A corresponding NASA Technical Handbook, NASA-HDBK-4009A, Space Telecommunications
Radio System (STRS) Architecture Standard Rationale, provides the rationale for the decisions made
to develop the architecture, provides additional information to clarify the requirements, gives further
examples, and answers questions from users.

This NASA Technical Standard is only one of a set of documents to be provided by the mission
and used by the STRS platform providers or STRS application developers in the development of
an STRS-compliant radio and/or applications. This NASA Technical Standard defines a standard
part of the architecture for software-defined radios. The complete architecture is determined by
the project. Typical radio acquisition specifications, which include size, weight, power, radiation
and safety requirements, connector details, performance and behavior requirements,
documentation, and data rights agreements are to accompany this NASA Technical Standard in a
radio procurement.

1.1 Purpose

The purpose of this NASA Technical Standard is to establish an open architecture specification
for NASA space and ground SDRs. Currently, most missions either use hardware radios, which
cannot be modified once deployed, or software-defined radios with an architecture that depends
on the radio provider and involves significant effort to add new applications. The development of
this NASA Technical Standard is part of the larger STRS program currently underway to define
NASA’s application of software-defined, reconfigurable technology to meet future space
communications and navigation system needs. Software-based SDRs enable advanced operations
that potentially reduce mission life-cycle costs for space or ground platforms.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

12 of 200

SDR technology allows radios to be reconfigured to perform different functions without the
necessity of using multiple radios to accomplish each communication function, enabling radio
count reduction to decrease mass and power resources.

The STRS project provides the infrastructure and guidance for a repository of applications
developed for SDRs using this NASA Technical Standard. Adherence to this NASA Technical
Standard for the development of SDR platforms and applications and submittal of the
applications to the repository will enable the missions to leverage earlier efforts by reusing
various software components compliant with the architecture developed in other NASA
programs. This will reduce the cost and risk of deploying SDRs for future NASA missions.

The hardware, configurable hardware design, software architecture, and the supporting
documentation defined by this STRS Standard provide the ability to port applications among
heterogeneous platforms reducing the knowledge of a second platform, reduce the reliance on the
initial STRS platform providers, and enable the implementation of waveforms and services that a
project envisions for its SDRs.

1.2 Executive Summary

1.2.1 Key Architecture Requirements

The key goals in the development of the STRS architecture are to decrease the development
time, cost, and risk of using SDRs while still accommodating advances in technology. The
advent of software-based applications allows minimal rework to reuse applications and to adapt
to evolving requirements. The architecture does not include mission-specific functional and
performance requirements such as contents or format of the external interfaces to the SDR;
waveform-specific requirements such as data rate, coding scheme, and modulation and
demodulation techniques; specific hardware; or security, fault tolerance, redundancy, and fault
mitigation approaches. Instead, the architecture is careful to enable all solutions that the mission
might require as they relate to the mission-specific functional and performance specifications.

The requirements for the architecture are derived from the following STRS goals and objectives:

• Usable across most NASA mission types (scalability and flexibility).
• Decrease development time and cost.
• Increase reliability of SDRs.
• Accommodate advances in technology with minimal rework (extensibility).
• Adaptable to evolving requirements (adaptability).
• Leverage existing or developing standards, resources, and experience (state-of-the-art

and state-of-practices).
• Maintain vendor independence.
• Enable waveform application portability and reusability.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

13 of 200

To meet these goals and objectives, the STRS architecture has an open architecture design that
accommodates the range of radio form factors that are envisioned by NASA for all mission
classes.

The architecture can also not preclude the implementation of mission-developed services on the
SDR such as:

• Multiple waveforms operating simultaneously across any RF band defined in the
SDR specification.

• Commanded built-in-test (BIT) and status reporting.
• Real-time operational diagnostics.
• Automated system recovery and initialization.
• Networking and navigation within the SDR.
• Secure transmission.
• Shared processing among on-board elements.

1.2.2 STRS Overview

This STRS Standard consists of hardware, configurable hardware design, and software
architectures with accompanying description, guidance, and requirements. The hardware
architecture is defined in section 4. Section 5 outlines the process and requirements associated
with application development. The configurable hardware design architecture is defined in
section 6. The software architecture is defined in section 7. An overview of each is provided
below.

The terms “software” and “configurable hardware design” are used in this NASA Technical
Standard to distinguish the architecture items that apply to code (source code, object code,
executables, etc.) implemented on a processor; and designs (hardware description language
(HDL) source, loadable files, data tables, etc.) implemented in a configurable hardware device
such as a field programmable gate array (FPGA). Both items can change the functionality of the
radio in-situ using program control. The term “software” is also used in a generic sense in this
NASA Technical Standard to discuss all configurable items of the radio, including configurable
hardware design. The terminology used is not meant to imply design and implementation
process.

The STRS hardware architecture is specified in a modular fashion at a functional level. The
hardware architecture requirements are written so that the hardware provider defines the
functional breakdown (modules) of the system and publishes the functions and interfaces for
each module and for the entire STRS platform in a hardware interface description (HID)
document. Using this information enables NASA and others developing applications or
additional modules, or interfacing to the platform, to have the knowledge to integrate and test the
hardware interfaces and understand the features and limitations of the platform.

This NASA Technical Standard encourages the development of applications that are modular,
portable, reconfigurable, and reusable. STRS applications use the STRS infrastructure-provided
application program interfaces (APIs) and services to load, verify, execute, change parameters,

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

14 of 200

terminate, or unload an application. The STRS applications are submitted to the NASA STRS
Application Repository to allow applications to be reused in the future according to any accepted
release agreements. The NASA STRS Application Repository contains software, configurable
hardware design, metadata, and documentation for STRS applications, STRS Devices, and
operating environments (OEs). The appropriate application artifacts provide future missions the
information to use the application with limited effort.

The configurable hardware design architecture provides guidance to the development of
applications that are partially or fully implemented in a hardware device such as an FPGA. Early
consideration to enable reuse during the development of configurable hardware design is critical.
Suggestions are provided to decrease the reuse and porting effort, and requirements are included
for the development of configurable hardware design to use the platform-specified abstraction.

The STRS software architecture is the focus of the current version of the STRS Standard. The
software architectural model describes the relationship between the software elements, defined in
layers, in an STRS-compliant radio. The model illustrates the different software elements used in
the software execution and defines the API layers between an STRS application and the OE, and
between the OE and the hardware platform.

The STRS software layers are separated to enable developers to implement the software layers
differently according to their requirements while still complying with the STRS architecture. A
key aspect is the abstraction of the STRS application, which is either a waveform or service,
from the underlying OE software to promote portability and reusability of the STRS application.
The STRS software architecture uses three primary interfaces, as follows: (1) the STRS APIs; (2)
the STRS hardware abstraction layer (HAL) specification; and (3) the Portable Operating System
Interface (POSIX®). The STRS APIs provide the interfaces that allow applications to be
instantiated and use platform services. These APIs also enable communication between STRS
applications and the STRS infrastructure. The HAL provides a software view of the specialized
hardware by abstracting the physical hardware of interfaces. It is to be published so that software
and configurable hardware design running on the platform’s specialized hardware can integrate
with the STRS infrastructure.

1.2.3 Roles and Responsibilities

The final configuration of an SDR and its applications is generally a product of multiple
organizations performing various tasks. The separation of requirements, responsibilities, and
resulting tasks is assigned in this NASA Technical Standard by logical role where each role has
requirements that may be satisfied by an individual or delegated to a subordinate organization(s).
As Figure 1, Roles and Responsibilities, illustrates, the effort begins with a mission need for a
radio, which could support communications, navigation, and in some instances even networking
functions. The mission system engineer defines radio system requirements. For each mission, the
STRS integrators, STRS platform providers, and STRS application developers are selected.
Eventually, the platform and applications are integrated into the STRS-compliant radio product.
Both the hardware and software are tailored to meet mission-specific needs.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

15 of 200

Figure 1—Roles and Responsibilities

The STRS platform provider is the organization responsible for the design and development of
the SDR hardware platform, including the STRS OE (e.g., infrastructure, OS), and associated
documentation. The OE and hardware platform are a unique set and become the SDR platform.

The STRS platform provider is responsible for all the documentation associated with the
platform. The STRS platform provider is responsible for the FPGA platform-specific wrapper
and software header files specifying the required interface, constants, typedefs, and structs. The
STRS platform provider is also responsible for any STRS script formats or software
configuration file formats, any extensible markup language (XML) schema, and any
transformation tool for controlling instantiation, and their associated documentation, if deemed
necessary. If the STRS platform provider delegates responsibility for part of the OE to a separate
infrastructure provider, the responsibility for the appropriate files and documentation may be
delegated to that provider as well. If the STRS platform provider delegates responsibility for part
of the hardware to a separate hardware provider, the responsibility for the pertinent HID
documentation may be delegated to that hardware provider as well. The STRS platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

16 of 200

is ultimately responsible to integrate and deliver all aspects of the platform and OE
documentation.

The mission and the STRS application developer have the responsibility to evaluate the contents
of the STRS repository against the mission-developed application requirements and determine if
a new application should be developed or if an appropriate application exists in the repository
that is a candidate for a port to the defined platform. Depending on the results of this decision,
the STRS application developer either creates a new application or ports an existing STRS
application, usually retrieved from the STRS repository. The STRS application developer
performs unit tests, and documents the functionality.

The STRS integrator brings the hardware platform and software application together on the SDR
platform. The STRS integrator could be the STRS platform provider, the STRS application
developer(s), a mission engineer, or even a third party. The STRS integrator’s role is to have the
application properly running on the SDR platform to meet the communication, navigation, or
other functions of the mission. Once the STRS radio integration is complete, it is delivered to a
system integrator who incorporates it into the mission spacecraft system. Software updates are
possible during the STRS radio and system integration. Following system integration, the STRS
application developer delivers the version of the software used for the deployed system, and the
associated documentation, to the STRS repository.

It is likely that multiple applications will be developed for a single STRS platform prior to
deployment and during its operational lifetime. During operations, after the radio has been
deployed, additional application providers, who may be independent of the original platform or
application provider, could develop additional applications for the original STRS radio. The new
providers develop applications for the SDR platform much like the original application provider
and deliver the application to the same or possibly a different STRS integrator. Following
successful integration, the application software is delivered to the STRS Application Repository.
Mission operations performs the role of system integrator when uploading the application to the
STRS radio.

For the next mission (mission 2), either a derivative of the initial platform or a new
STRS-compliant platform is envisioned. The mission 2 application provider may withdraw
applications from the repository to use for the new STRS radio project. The mission 2
application follows a similar path of delivery to the mission 2 STRS integrator who incorporates
the new hardware platform material and delivers the mission 2 STRS radio based on the original
application and new hardware platform. As more and more missions deploy SDRs, new
platforms and applications may be developed but also platforms and software are reused,
marking the significant difference with the new technology compared to legacy radios.

1.2.4 Background

The deployment of SDRs for NASA missions was a new concept in 2002 due to the development
of reconfigurable components useable for space radios. The need to reduce the cost and risk of
using SDRs was identified and the development of the STRS architecture was initiated. In 2007,

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

17 of 200

the architecture was determined to be ready for flight implementation in a technology
development project. This project was originally called the Communication, Navigation, and
Networking reConfigurable Testbed (CoNNeCT). CoNNeCT was later renamed the SCaN
Testbed. Three SDRs, compliant with the STRS architecture, were procured in 2008 and 2009
for the Space Communications and Navigation (SCaN) Testbed, using the architecture defined in
a technical memorandum and referred to in the procurement specifications as Version 1.02.1.
The SCaN Testbed was launched in July 2012 and operates on an external truss on the
International Space Station (ISS). The SCaN Testbed is an experimental communications system
that provides the capability for S-Band, Ka-Band, and L-Band communication with space and
ground assets. Investigation of SDR technology and the STRS architecture are the primary focus
of the SCaN Testbed. As a completely reconfigurable testbed, the SCaN Testbed provides
experimenters an opportunity to develop and demonstrate experimental waveforms and
applications for communication, networking, and navigation concepts and to advance the
understanding of operating SDRs in space. Lessons learned from the STRS platform provider,
STRS application developers, and STRS integrators of the SCaN Testbed provided critical
insight for the development of the current NASA Technical Standard contained in this document.
The updates from the Version 1.02.1 Technical Memorandum to the NASA-STD-4009 can be
requested from the STRS project.

1.3 Applicability

This NASA Technical Standard is applicable to space and ground SDRs developed by or for
NASA missions.

This NASA Technical Standard is approved for use by NASA Headquarters and NASA Centers and
Facilities and may be cited in contract, program, and other Agency documents as a technical
requirement. It may also apply to the Jet Propulsion Laboratory (a Federally Funded Research and
Development Center (FFRDC)), other contractors, recipients of grants and cooperative agreements,
and parties to other agreements only to the extent specified or referenced in applicable contracts,
grants, or agreements.

Verifiable requirement statements are numbered and indicated by the word “shall”; this NASA
Technical Standard contains 120 requirements. Explanatory or guidance text is indicated in italics
beginning in section 4. To facilitate requirements selection and verification by NASA programs and
projects, a Requirements Compliance Matrix is provided in Appendix D.

1.4 Tailoring

This NASA Technical Standard does not depend on any other NASA Procedural documents.
Tailoring is not allowed. Compliance may be adapted by a project manager or contract manager in
rare instances using the available project or contract procedures.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

18 of 200

2. APPLICABLE DOCUMENTS

2.1 General

The documents listed in this section contain provisions that constitute requirements of this NASA
Technical Standard as cited in the text.

2.1.1 [NTS-1] The latest issuances of cited documents shall apply unless specific versions are
designated.

2.1.2 [NTS-2] Non-use of specifically designated versions shall be approved by the responsible
Technical Authority.

Applicable documents may be accessed at https://standards.nasa.gov or obtained directly from
the Standards Developing Body or other document distributors. When not available from these
sources, information for obtaining the document is provided.

2.2 Government Documents

None

2.3 Non-Government Documents

 Institute of Electrical and Electronics Engineers (IEEE)

Note: The following document is the current version of the POSIX® standard as of 2003
applicable to requirement STRS-90.

IEEE 1003.13™

IEEE Standard for Information Technology—Standardized
Application Environment Profile (AEP)—POSIX®
Realtime and Embedded Application Support

See Appendix B for reference documents.

2.4 Order of Precedence

2.4.1 The requirements and standard practices established in this NASA Technical Standard do
not supersede or waive existing requirements and standard practices found in other Agency
documentation.

2.4.2 [NTS-3] Conflicts between this NASA Technical Standard and other requirements
documents shall be resolved by the responsible Technical Authority.

https://standards.nasa.gov/

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

19 of 200

3. ACRONYMS, ABBREVIATIONS, AND DEFINITIONS

3.1 Acronyms and Abbreviations

A ampere
ADC analog-to-digital converter
AEP application environment profile
AGC automatic gain control
ANSI American National Standards Institute
API application program interface
APP application
ASCII American Standard Code for Information Interchange
ASIC application-specific integrated circuit
BIT built-in test
BSP board support package
C&DH command and data handling
CCSDS Consultative Committee for Space Data Systems
CoNNeCT Communication, Navigation, and Networking reConfigurable

Testbed (This name has been replaced with SCaN.)
COTS commercial off the shelf
DAC digital-to-analog converter
DEC VMS Digital Equipment Corporation Virtual Memory System
DLL dynamic link library
DSP digital signal processor
EDIF electronic design interchange format
EEPROM electrically erasable, programmable read-only memory
FFRDC Federally Funded Research and Development Center
FIFO first in, first out
FIPS PUB Federal Information Processing Standard Publication
FPGA field programmable gate array
GPIO general purpose input output
GPM general purpose processing module
GPP general purpose processor
GPS global positioning system
HAL hardware abstraction layer
HDBK Handbook
HDL hardware description language
HID hardware interface description
HW hardware
I/O input/output

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

20 of 200

ID identification, identifier
IEC International Electrotechnical Commission
IEEE The Institute of Electrical and Electronics Engineers
IF intermediate frequency
INCITS InterNational Committee for Information Technology

Standards
IP internet property
ISO International Organization for Standardization
ISS International Space Station
JTC Joint Technical Committee
LLC logical link control
LNA low-noise amplifier
LRU logical replaceable unit
MAC media access control, a sublayer of the open system

interconnection data link layer
MDA model-driven architecture
MIL military
MMU memory management unit
mVpp millivolt peak-to-peak voltage
NASA National Aeronautics and Space Administration
NM network module
NPR NASA Procedural Requirement
NTS NASA Technical Standard
OAL OEM adaptation layer
OE operating environment
OEM original equipment manufacturer
OM optical module
OMG Object Management Group
ORMSC Operational Research MSc Programmes
OS operating system
OSS open source software
OTAP over-the-air programming
PIM platform-independent model
POSIX® Portable Operating System Interface
PROM programmable read-only memory
PSE51 minimal realtime system profile, defined in IEEE 1003.13
PSE52 realtime controller system profile, defined in IEEE 1003.13
PSE53 dedicated realtime controller system profile, defined in IEEE

1003.13
PSE54 multi-purpose realtime system profile, defined in IEEE

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

21 of 200

1003.13
PUB publish/publication
RAM random access memory
RF radio frequency
RFM radio frequency module
ROM read-only memory
RT reconfigurable transceiver
RTOS real-time operating system
SCA Software Communications Architecture
SCaN Space Communications and Navigation (new name for

CoNNeCT)
SDR software-defined radio
SEC security module
SEU single-event upset
SPM signal-processing module
SRAM static random access memory
STD standard
STRS Space Telecommunications Radio System
SUB subscribe
SWRADIO software radio
TT&C telemetry, tracking, and command
TCP transmission control protocol
TM technical memorandum
TMR triple-mode redundancy
TP technical publication
UML Unified Modeling Language
UNIX® computer operating system developed by AT&T Bell

Laboratories
USA United States of America
V volt
V&V verification and validation
VDD version description document
VHDL VHSIC hardware description language
VHSIC very-high-speed integrated circuit
VMS Virtual Memory System
Vpp peak-to-peak voltage
Windows NT® Windows operating system—NT, new technology
XML Extensible Markup Language
XPath XML Path Language
XSD XML 1.0 Schema Definition

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

22 of 200

XSL Extensible Stylesheet Language
XSLT Extensible Stylesheet Language Transformation

3.2 Definitions

To improve the understanding of material presented in the STRS documents, new terms and
definitions that are rapidly emerging in the field of SDRs are provided below, as follows:

 Adaptability: Ease with which a system satisfies differing system constraints and user
needs.

 Application: Executable software program that exhibits predetermined functionality and
may contain one or more software modules.

Note: A primary example of an STRS application is the waveform application. An
STRS application is to comply with the architecture.

 Application Program Interface (API): Formalized set of software calls and routines that
can be referenced by the application program in order to access supporting system or network
services.

 Architecture: Organizational structure of a system, the relationships between its
components, and the principles and guidelines governing their design and evolution over time.

 Autonomous Operation: Implementation decision-making algorithm that can be
implemented on a system level (fully autonomous) or at the subsystem level (semi-autonomous)
according to mission requirements.

 Availability: Degree to which a system or component is operational and accessible when
required for use.

 Board Support Package (BSP): Hardware abstraction of the general purpose processing
module (GPM) for the POSIX®-compliant operating system (OS), which contains the boot,
generic and processor-specific drivers required for the specific hardware.

Note: The BSP leverages commercial-off-the-shelf (COTS) device drivers and
other software necessary for applications to access the specific hardware.

 Built-In Test: Internal test to determine whether or not the STRS radio and each
subsystem are working properly.

Note: STRS health management uses BIT to automatically monitor the health of
the system and to pass any identified problem to the fault management. STRS fault
management uses BIT to automatically monitor, diagnose, and isolate system
problems.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

23 of 200

 Component: Hardware or software that makes up a system, which may be subdivided into
other parts or units.

Note: The terms “module,” “component,” and “unit” are often used
interchangeably or defined to be subelements of one another in different ways
depending upon the context. The relationship of these terms is not yet
standardized.

 Configurable Hardware Design: The electronic files used to configure the portion of the
SDR hardware that can be updated after deployment.

Note: Configurable hardware design is often informally—and often
incorrectly—referred to as firmware. Notes: (1) This term is sometimes used to
refer only to the hardware device or only to the computer instructions or data,
but these meanings are deprecated. (2) The confusion surrounding this term
has led some to suggest that it be avoided altogether.”

For this NASA Technical Standard, to avoid confusion the term “firmware” is
not being used. The term “configurable hardware design” was selected
instead. For a configurable hardware device such as an FPGA, it includes the
FPGA source code written in HDL, the image stored in random access
memory (RAM) and used by the FPGA, and supporting hardware
configuration files, if applicable.

 Data Publisher: Software component that transmits data to one or more subscribers.

Note: In the STRS architecture, it may be implemented by waveforms and parts of the
STRS infrastructure.

Data Subscriber: Software component that receives data from the data publisher.

Note: In the STRS architecture, it may be implemented by waveforms and parts of the
STRS infrastructure.

 Deployment: All the processes involved in getting new software or hardware up and
running properly in its environment, including installation, configuration, running, testing, and
making necessary changes.

 Evolvability: Ease with which a system or component can be modified to take advantage
of new software or hardware technologies.

 External Interface: Functional and physical connections at the boundaries of a system that
are designed to interoperate with other systems or components.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

24 of 200

Note: Examples include interfaces to or from the flight computer, power, data sources,
data sinks, antennas, mounting locations, and optical links.

 Fault Management: Set of functions that detect, isolate, and correct malfunctions within
the system or provide notifications.

 Flexibility: Ease with which a system or component can be modified for use in
applications or environments other than those for which it was specifically designed.

 Flight Computer: Separate computer that is used to monitor and control the STRS radio.

Note: The flight computer may be connected to the STRS radio electrically,
electromagnetically, optically, etc. The flight computer may contain the watchdog
timer for the STRS radio.

 General-Purpose Processing Module: Hardware module that contains and executes the
STRS OE and STRS applications and services software.

Note: The GPM usually consists of the general purpose processor (GPP),
appropriate memory (both volatile and nonvolatile), system bus, the spacecraft (or
host) telemetry, tracking, and command (TT&C) interface, ground support telemetry
and test interface, and the components to support the radio configuration. The GPP
may be remote or include a system-on-a-chip, if necessary.

 Guidelines: Nonbinding statements intended to direct the broader and longer-term aspects
of the STRS architecture.

 Handle ID: An identifier used to control access to applications, devices, files, messaging
queues, and other similar resources.

 Hardware Abstraction Layer: Library of functions that provides a software view of the
specialized hardware by abstracting the physical hardware interfaces.

 Hardware Device: Physical entity that is capable of performing a function.

 Hardware Interface Description: Documentation containing information about each
module’s physical and electrical connections, performance, capability, size, weight and power, as
applicable, to enable integration between components of the system.

 Health Management: Monitoring the health and performance of a system, subsystem,
device, or process.

Note: Health management invokes fault management, when corrective action is needed.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

25 of 200

 Hierarchical Structure: Structure that characterizes a system in which components are
contained by other components and/or provide services to the next higher-level components.

Note: Hierarchical structure is a key attribute of an open architecture that enables
system description, design, development, installation, operation, upgrades, and
maintenance to be performed at a given layer or layers. This type of structure allows each
layer to be modified without affecting the other layers.

 Interoperability: (1) Ability of a system to work with or use the parts or equipment of
another system; (2) capability of different radio systems or radio networks to communicate and
exchange information with each other.

Note: Dissimilar systems or networks may achieve interoperability by changing their
operating parameters to a common compatible format or by operating through a bridge
that translates between incompatible formats. An alternate definition is to determine and
adapt all radio parameters required for broadest communication compatibility across all
target networks.

 Legacy Radio: Nonprogrammable radio designed for one fixed configuration that
produces a single waveform at a specified frequency.

Note: The radio may have limited options for tuning, data rate, and so forth or
may even carry multiple types of data, but it is incapable of adapting to new
waveforms.

 Maintainability: Ease with which a software system or component can be modified to
correct faults, improve performance, or other attributes, or adapt to a changed environment.

 Method: Implementation of an operation, which specifies the algorithm or procedure
associated with an operation.

 Module: Self-contained hardware or software component that interacts with a larger
system.

Note: A software module (program module) performs specific tasks within a software
system. A hardware module is a physical grouping of devices capable of implementing
specific functions.

 Open Architecture: Architecture whose functions, interfaces, components, and/or design
rules are defined and published.

 Open Source or Open-Source Software (OSS): Any computer software distributed under
a license that allows users to change and share the software freely.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

26 of 200

Note: OSS has its source code freely available, and end-users have the right to modify
and redistribute the software to others.

 Open System: System that has specified, publicly maintained, and readily available
standards.

 Over-the-Air Programming (OTAP): Method of providing software updates by means of
a communication channel realized by the STRS radio itself.

 Portability: Ease with which a system application or service can be transferred from one
hardware or software environment to another.

 Portable Operating System Interface: Family of The Institute of Electrical and Electronics
Engineers (IEEE) standards 1003.n that describes the fundamental operating system (OS) services
and functions necessary to provide a UNIX®-like kernel interface to applications.

Note: POSIX® is not an OS but ensures that programming interfaces are available to the
application programmer.

 Queue: List in which items are appended to the last position in the list and retrieved from
the first position in the list; that is, the next item to be retrieved is the item that has been in the list
for the longest time.

 Radio Frequency Module (RFM): Module that converts to and from carrier frequencies
and provides the signal-processing module with baseband or intermediate frequency (IF) signals
and provides the transmission and reception equipment with radio frequency (RF) signals.

Note: RFM-associated components may include filters, RF switches, diplexers, low
noise amplifiers (LNAs), power amplifiers, analog-to-digital converters (ADC), and
digital-to-analog converters (DAC). This module handles the interfaces that control
the final stage of the transmission or first stage of the reception of the wireless
signals, including antennas.

 Real-Time Operating System (RTOS): OS that guarantees a certain capability within a
specified time constraint.

 Reconfigurability: Ability to modify functionality of a radio by changing the operational
parameters without requiring a software update.

 Reconfigurable Radio: Radio whose functionality can be changed either through manual
reconfiguration of radio modules or under software control.

Note: Software reconfiguration control of such radios may involve any element of the
radio-communication network. SDRs are a subset of reconfigurable radios.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

27 of 200

 Reconfigurable Transceiver (RT): Radio with limited processing and selectable remote
reconfiguration (e.g., filter parameters and modulations).

 Reconfiguration: Act of modifying the functionality of a radio by changing the
operational parameters without updating the software.

 Reentrant Function: Function that can be entered before completion of a prior execution
of that same function and execute correctly.

Note: A function that is reentrant is automatically thread-safe, but not necessarily the
reverse.

 Reliability: Ability of a system or component to perform a required function under stated
conditions for a specified period of time.

 Reprogrammability: Ability to modify functionality of a radio by changing the
operational software or configurable hardware design either wholly or partially.

 Reusability: Degree to which a software module or other work product can be used in
more than one computing program or software system.

 Scalability: Degree to which components or functions in an implementation can be sized
in systematic proportions for varying capacities.

 Selectable: Ability to choose from a range of choices.

Note: For example, a selectable parameter may be modified to change system
characteristics at runtime.

 Services: Software programs that provide functionality available for use by other
applications.

 Signal-Processing Module (SPM): Module that contains the implementations of the
signal processing used to handle the transformation of received digitally formatted signals into
data packets and/or the conversion of data packets into digitally formatted signals to be
transmitted.

Note: The SPM may include the spacecraft data interface, application specific integrated
circuits (ASICs), FPGAs, digital signal processors (DSPs), memory, and connection
fabric or bus.

Slice: A physical hardware form factor like a circuit board.

 Software: Computer programs, procedures, and possibly associated documentation and
data pertaining to the operation of a computer system.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

28 of 200

Note: In certain contexts in this NASA Technical Standard, the term “software”
also encompasses configurable hardware design. For example, in the term
“software defined radio,” the word “software” includes configurable hardware
design. In other contexts, the word “software” is meant to imply code running on a
processor, especially in the Software Architecture section. In this case, even if the
processor is embedded within configurable hardware, the software that executes on
the processor is not “configurable hardware design.”

 Software-Defined Radio: Radio in which some or all of the physical layer functions are
implemented in software and/or configurable hardware design.

 Software-Defined Radio Architecture: Comprehensive, consistent set of functions,
components, and design rules according to which radio communications systems may be
organized, designed, constructed, deployed, operated, and evolved over time.

Note: A useful architecture partitions functions and components such that (1) functions
are assigned to components clearly, and (2) physical interfaces among components
correspond to logical interfaces among functions.

 Software Device: A software abstraction of a hardware device or group (aggregate) of
hardware devices.

Note: An STRS device is a software device that is part of the STRS infrastructure, having
a well-defined and portable API that may use the HAL to read, write, and control
hardware devices.

 Software Radio: Extension of an SDR with more functionality implemented in GPPs as
opposed to ASICs and FPGAs. A software radio implements communications functions primarily
through software in conjunction with minimal hardware.

Note: Software radios are the ideal SDR in which digitization occurs at the
antenna.

 Space Telecommunications Radio System: Project that defines and maintains the SDR
architecture for NASA.

 Specialized Hardware: Separate hardware that can be initialized or controlled using
software.

 Standards: Technical specifications that are widely used, consensus-based, published, and
maintained by recognized industry standards organizations.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

29 of 200

 STRS Command: Source that abstracts the command functionality usually found in the
interface to the flight computer.

 STRS Device: An extension of an STRS Service to provide additional functionality
beyond what is allowed for an STRS application such as communicating with specialized
hardware.

 STRS Infrastructure: Part of the STRS OE that configures and controls STRS
applications and services as well as specialized hardware via the HAL.

Note: Additional functionality may be required for radio robustness and mission-
dependent requirements.

 STRS Operating Environment: Portion of the STRS radio that contains the STRS
Infrastructure, the POSIX®-conformant RTOS, the HAL, and optional middleware software.

 Note: The STRS OE executes STRS services and waveform applications.

 STRS Platform: Combination of hardware and software components, including the STRS
OE, capable of executing software applications.

 STRS Radio: SDR that is compliant with this NASA Technical Standard and that runs
one or more waveforms.

STRS Service: An STRS application encapsulating some functionality that may be used
by other applications in a portable way.

 System: Collection of components organized to accomplish a specific function or a set of
functions.

 System Architecture: Abstract description of the entities of a system, and the relationship
between the entities.

 Thread-Safe: Function that works correctly during simultaneous execution by multiple
threads, without unwanted interaction between the threads. A thread is a part of a program that
can execute independently of other parts. A thread is the smallest sequence of programmed
instructions that can be managed independently by an OS scheduler.

Note: A function that is reentrant is automatically thread-safe, but the reverse is not
necessarily true.

 Upgradeability: Ability to make changes to a portion of the system easier by limiting the
changes, as much as possible, to the updated part.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

30 of 200

 Note: It is clear that greater upgradeability is greater ability.

 Usability: Ease with which a user can learn to operate, prepare input for, and interpret the
output of a system or component.

 Use Cases: Situations that capture the requirements of a system by describing how the
system should interact with the users or other systems (the actors) to achieve specific goals.

 Watchdog Timer: Software and/or hardware that monitor the health of a system and, if a
problem is detected within a certain time period, take the appropriate action to restore the system
back to health.

 Waveform: Set of transformations applied to information (e.g., voice or data) that is
transmitted over the air and the corresponding set of transformations to convert received signals
back to their information contents.

Note: Traditionally, a waveform was simply an electromagnetic signal whose amplitude
varies with time.

 Waveform Application: Code that implements all the functions and algorithms necessary
to realize a waveform.

Note: The waveform application can be distributed among various processing elements,
including specialized hardware (e.g., FPGAs and DSPs). In STRS, if the waveform
application requires run-time support for functions that it cannot provide directly, it is to
use the STRS APIs in the infrastructure to access the desired functions whether or not they
are provided by the infrastructure directly or by other waveforms or services.

4. HARDWARE ARCHITECTURE

In addition to providing benefits by defining a standard software infrastructure for NASA’s
radios, this NASA Technical Standard also defines standards for the hardware portion of the
radio. Hardware technologies usually change more rapidly than software, and each radio
implementation generally has very specific spacecraft dependencies and requirements.
Therefore, the STRS hardware architecture is specified at a functional level rather than at the
physical implementation level. Also, a functional-level architecture will remain applicable over a
longer time frame. It should be noted that programs have the latitude to standardize hardware
requirements at the implementation level for multiple radio procurements.

The STRS hardware architecture was developed with consideration of several key constraints
and conditions for operating space SDRs. One major issue driving the hardware architecture
formulation was the need for flexibility, so that a single architecture is capable of addressing the
range of different mission classes. The mission classes have radio requirements that range from
requiring small radios that are highly optimized to meet severe size, weight, and power
constraints, to missions requiring complex radios with multiple operating frequencies and higher

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

31 of 200

data rates. This implies that the hardware architecture accommodates a range of reconfigurable
processing technologies, including GPPs, DSP, and FPGAs, as well as ASICs with selectable
parameters. Currently, reconfigurable signal processing is primarily performed in specialized
signal-processing hardware for the frequencies and data rates used in NASA space missions, and
this is expected to continue for some time. In addition to providing capability, specialized signal
processing is generally more power efficient than general purpose processing. In almost all
cases, a DSP-based implementation is a lower power option than FPGA-based. The needs for
specialized processing are supplemented by the software infrastructure, which is more suited for
execution in a GPP. The architecture also enables technology infusion over time,
accommodating the rapidly evolving capabilities of processor speeds and signal processing. In
addition, the conversion point, where the signal is digitized, is moving closer to the antenna.
Considering these points, the architecture provides a flexible framework, emphasizing common
terminology for hardware functions and interfaces, common documentation, and common
formats and requirements for waveform and service STRS application developers to utilize a
platform’s capabilities. The architecture does not prescribe a specific hardware implementation
approach.

An STRS platform is to be delivered with a complete HID, which is described in section 5.3. The
HID specifies the electrical interfaces, connector requirements, and physical requirements for
the delivered radio. Each module’s HID abstracts and defines the module functionality and
performance.

(STRS-1) An STRS platform shall have a known state after completion of the power-up process.

4.1 Generalized Hardware Architecture and Specification

Figure 2, Hardware Architecture Diagram Key, illustrates the symbols and terminology used
within the hardware architecture diagrams. The hardware diagram illustrates the radio
functions and the interconnects for each module. The modules are a logical and functional
division of common radio functions that comprise an STRS platform. Modules are not intended
to represent physical entities of the platform. As developers choose how to distribute and
implement the radio functions among hardware elements, the specification provides the guidance
on the interfaces and abstractions that are to be provided to comply with the architecture. The
module and function connections provided in the diagrams are data path, control, signal clock,
and external interfaces.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

32 of 200

Data

Clock

Control

Modules

General
Purpose

Processing
Module (GPM)

Specialized
Processing

Module (SPM)

Radio
Frequency

Module (RFM)

Ground Test

External Connections

Data

Control

Internal Connections

Clock

Radio
Function

System Bus

External Interface

Figure 2—Hardware Architecture Diagram Key

Figure 3, Notional STRS Hardware Architecture Implementation, shows the high-level STRS
hardware architecture. The figure illustrates the functional attributes and interfaces for each
module. A module is a combination of logical and functional representations of platform and
applications implemented in a radio. The modules are divided into their typical functions to
provide a common description and terminology reference. Each STRS platform provider has the
flexibility to combine these modules and their functionality as necessary during the radio design
process to meet the specific mission requirements. Additional modules can be added for
increased capability.

The hardware architecture does not specify a physical implementation internally on each
module, nor does it mandate the standards or ratings of the hardware used to construct the
radios. Thus, the radio supplier can encapsulate company proprietary circuit or software
designs, provided the modules meet the specific architecture rules and expose the interfaces
defined for each module. There is flexibility to physically combine or split these modules as
necessary during the radio design process to meet the specific mission requirements or to
optimize the design. For example, all RF and signal-processing components or functions may be
integrated onto a single printed circuit board, easing footprint, interface, and integration issues,
or an approach with multiple boards and enclosures could be used. Similarly, an FPGA could
potentially contain both the SPM functions and the GPP, or the SPM functions could be split
between an FPGA and the GPM.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

33 of 200

Each mission, or class of missions, may choose to standardize certain interfaces and physical
packaging. This approach provides NASA with the flexibility to adopt different implementation
standards for various mission classes. Thus, if a series of radios are required with common
operating requirements, physical construction details, such as bus chassis or card slice, can be
part of the acquisition strategy for cost-effective modularity at a lower level to match the life
cycle of the hardware. Another example of the flexibility is where a large mission class program
may choose to standardize the details of the RF-to-signal-processing interface. This might be
done to facilitate the use of different RF modules, but the same signal processing module, for
radios used for several similar missions.

Figure 3 depicts radio functions, or elements, expected for each module in a notional sense. It
should be noted that not all the elements shown in each module are necessarily required for
implementation. This architecture specifies the functionality of each module, but it does not
necessarily specify how they are implemented. Mission requirements will dictate the
implementation approach to each module, and the modules required in each radio.

Figure 3—Notional STRS Hardware Architecture Implementation

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

34 of 200

4.1.1 Components

The approach taken in the STRS is to describe the radio hardware architecture in a modular
fashion. The generic hardware architecture diagram identifies three main functional components
or modules of the STRS radio. Although not shown in Figure 3, additional modules (e.g., optical,
networking, and security) can be added for increased capability and will be included in the
specification as it matures. The hardware architecture currently consists of the following
modules:

General-Purpose Processing Module: Consists of the GPP, appropriate memory (both volatile
and nonvolatile), system bus, the spacecraft (or host) TT&C interface, ground test interface, and
the components to support the radio configuration.

Signal-Processing Module: This module contains the implementations of the signal processing
used to handle the transformation of received digitally formatted signals into data packets
and/or the conversion of data packets into digitally formatted signals to be transmitted. Also
included is the spacecraft data interface. Components include ASICs, FPGAs, DSPs, memory,
and connection fabric or bus.

Radio Frequency Module: This module handles the RF functionality to provide the SPM with
the filtered, amplified, and digitally formatted signal. In the case of transmission, the module
formats, filters, and amplifies the output signal. Its associated components include filters, RF
switches, diplexer, LNAs, power amplifiers, ADCs, and DACs. This module handles the
interfaces that control the final stage of transmission or the first stage of reception of the
wireless signals, including antennas.

Security Module (SEC): Though not directly identified in the generic hardware diagram, an
SEC is also being proposed to allow STRS radios to support future security requirements. The
details of this module will be defined in later revisions of the architecture.

Network Module (NM): The architecture supports Consultative Committee for Space Data
Systems (CCSDS) and Internet Property (IPs) and networking functions. However, the Network
Module (NM) may be realized as a combination of both the GPM and SPM.

Optical Module (OM): This module supports the integration of optical equipment when used.
The detail of this module will be defined in later revisions of the architecture. (It has many
similarities to RFM, but these are for optical carriers.)

4.1.2 Functions

Test and status, fault monitoring and recovery, and radio and TT&C data-handling functions are
to be implemented on all modules to some level. The details are mission specific and are stated
as part of the radio acquisition. The related control and interface requirements for the shared
module functions are stated in the corresponding module section.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

35 of 200

Test and Status: Each module (or combination of modules) should provide a means to query the
current health of the module and run diagnostics.

Fault Monitoring and Recovery: Each module (or combination of modules) should incorporate
detection of operational errors, upsets, and major component failures. These may be caused by
the radiation environment (e.g., single-event upsets (SEUs)), temperature fluctuations, or power
supply anomalies. In addition to detection, mitigation and fail-safe techniques should be
employed. Each module should have a default power-up mode to provide the minimal
functionality required by the mission. This fail-safe mode should have minimal software and/or
configurable hardware design dependency.

Radio Data Path: SDRs can be implemented with or without the GPM in the data path. The
STRS architecture supports the separation of the RFM and SPM data paths from the GPM.
Giving the GPM access to the data path as an optional capability rather than a required
capability allows for a more efficient implementation for medium and small mission classes and
improves the overall performance for near-term implementations. If space-qualified GPM
components mature with the performance capabilities required for signal processing, the GPM
can exist within the data path and take on more signal-processing functionality, increasing
flexibility.

STRS Radio Startup Process: The startup of the STRS infrastructure is expected to be initiated
by the STRS platform boot process, so that it can receive and send external commands and
instantiate applications. The startup process might include built-in tests for self-diagnostics to
verify nominal system functionality. In order to control an STRS platform at power-up and to
recover from error conditions, an STRS platform is to have a known power-up condition that sets
the state of all modules. To support upgrades to the OE, an STRS platform requires the ability to
alter the state (boot parameters) and/or select a boot image. The exact mechanisms and
procedures used will be platform and mission specific but need to be sufficient to support
upgrades to OE components, such as the OS, BSP, and STRS infrastructure.

4.1.3 Interfaces

4.1.3.1 External Interfaces

There are several key external interfaces in this architecture:

• Host TT&C.
• Ground Test.
• Data.
• Clock.
• Antenna.
• Operating power.
• Mission defined.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

36 of 200

The host TT&C interface represents the typically low-latency, low-rate interface for the
spacecraft (or other host) to communicate with the radio. The host telemetry typically carries all
information sourced within the radio. This type of information traditionally is called the
telemetry data and includes health, status, and performance parameters of the radio as well as
the link in use. In addition, this telemetry often includes radiometric tracking and navigation
data. The command portion of this interface contains the information that has the radio itself as
the destination of the information. Configuration parameters, configuration data files, new
software data files, and operational commands are the typical types of information found on this
interface.

The Ground Test Interface provides a “development-level” view of the radio and is exclusively
used for ground-based integration and testing functions. It typically provides low-level access to
internal parameters not typically available to the Spacecraft TT&C Interface. It can also provide
access when the GPM is not functioning (i.e., during boot).

The Data Interface is the primary interface for data that are sourced from the other end of the
link and for data that are sunk to the other end of the link. This interface is separate from the
TT&C interface because it typically has a different set of transfer parameters (protocol, speeds,
volumes, etc.) than the TT&C information. A common interface point in the spacecraft for this
type of interface is the spacecraft solid-state recorder rather than the spacecraft command and
data-handling (C&DH) subsystem. This interface is also characterized by medium to high
latency and high data rates.

The Clock Interface is used to input to the radio the frequency reference sufficient for supporting
navigation and tracking. This type of input frequency reference is essential to the operation of
the radio and provides references to the SPM and RFM. There does not have to be an external
clock interface if the SPM or RFM contains an oscillator that performs this function

The Antenna Interface is used to connect the electromagnetic signal (input or output) to the
radiating element or elements of the spacecraft. It also includes the necessary capability for
switching among the elements if required by the mission. Steering the elements, if a function of
the overall telecommunications system, is possible through this interface, but it is not typically
employed because of overall operational constraints.

The Power Interface, which is not included on the diagram, is described as part of this
specification at the highest levels. The Power Interface defines the types and conditions of the
input energy to power the radio.

The Mission-defined Interface, which is not included in the diagram, could monitor conditions
that the radio encounters such as external temperature, solar radiation, magnetic field strength,
attitude, etc. The mission would assign what to do with these values. A thermal interface that
monitors temperature could be used to activate a heating element or adjust dynamic factors
dependent on temperature in a known way.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

37 of 200

4.1.3.2 Networking

A networking interface does not necessarily map directly to the SPM, GPM, or RFM. The
networking interface might handle only spacecraft TT&C data or both spacecraft TT&C data
and radio data. This architecture allows for those capabilities.

4.1.3.3 Internal Interfaces

To support the overall goals of the architecture, the internal interfaces (GPM system bus, GPM
RFM control, SPM-to-GPM test, frequency reference, and data path) should be well documented
and available without restriction.

The GPM system bus (orange lines in Figure 3) provides the primary interconnect between
elements of the GPM. The GPM system bus may provide an interface between the
microprocessor, the memory elements, and the external interfaces (TT&C and Test) of the GPM.
The GPM system bus is the primary interface between the GPM and the SPM, as shown in the
interconnection with the major SPM processing elements. Finally, the GPM system bus provides
the interface by which the reprogrammable and reconfigurable elements of the SDR are
modified. It supports both the read and write access to the SPM elements, as well as the
reloading of hardware configuration files to the FPGAs.

The interface between the GPM and the RFM is primarily a control/status interface. Various
RFM elements are controlled by the set of GPM RFM control lines (blue lines in Figure 3).
Coming from the System Control block in the GPM, this control bus can be either fixed by the
System Control function or programmed by the GPM software and validated and routed by the
System Control function. It is important to have a hardware-based confirmation and limit-check
on the software controlling any RFM elements. The System Control module of the GPM provides
this functionality, thus keeping the GPM RFM Control bus within operational limits.

The Ground Test Interface (green line in Figure 3) provides specific control and status signals
from different modules or functions to the Ground Test Interface block. This interface is used
during development and testing to validate the operation of the various radio functions. This
interface is very specific to the implementation and realization of the different modules.

The Frequency Reference Interface provides an important interface between the RFM and the
SPM functions. It ties the two modules together in a way that allows for the SDR to implement
tracking and navigation functions. The characteristics of this interface are defined by the various
amounts of tracking accuracy required by the mission for the SPM to accomplish. This interface
can be as simple as a single, common frequency reference that is conditioned from an outside
source and distributed in the least degrading fashion possible to the SPM.

Finally, the data paths are the various streams of bits, symbols, and RF waves connecting the
major blocks of the primary data path. For any particular implementation, the data path or
bitstreams are defined by the particular application implemented in the functional blocks. The

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

38 of 200

interface between the RFM and SPM should be well defined and have characteristics suitable for
that level of conversion between the analog and digital domains.

The hardware architecture can be further specified in a manner that is important for
implementers to consider and follow, if the implementation dictates the necessity of particular
components. Details of the GPM, SPM, and RFM are provided in subsequent sections.

4.2 Module Type Specification

4.2.1 General Purpose Processing Module

Figure 4, GPM Architecture Details, provides a closeup of the GPM detail. The GPM consists of
one or more general purpose or digital signal-processing elements and support hardware
components, embedded OS, software applications and interfaces to support the configuration,
control, and status of the radio. The number of processing elements and the extent of support
hardware will vary depending on the mission-class processing and data-handling requirements
from a single system on a chip implementation for smaller mission classes to multiple logical
replaceable units (LRUs) for the largest mission classes. In addition, fault tolerance
requirements can also increase the number of hardware processing elements, support hardware
components, and interface points required to meet the range of mission classes. The majority of
processing functions of the GPM will be under software control and supported by an OS.
Mission-specific data handling speeds may require the use of separate specialized support
hardware (FPGA or ASIC chips) to alleviate the burden on the processing elements. Such
specialized support hardware could include encryption, packet routing, and network processing-
type functions.

Figure 4—GPM Architecture Details

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

39 of 200

4.2.1.1 GPM Components

The GPM contains, as necessary, a GPP and various memory elements as shown in Figure 4.
Depending on the particular mission class, not all memory elements are required. The GPP will
typically be implemented as a microprocessor, but it could take many forms, depending on the
mission class. Because the GPM is the primary control component of the radio, it is a required
module for an STRS radio. A description of each element follows.

The GPP functions include the OE, the Hardware Abstraction Layer (HAL), and potentially
application functions. The OE contains the STRS infrastructure, which provides the functionality
for the interfaces defined by the STRS APIs specification. The OE also contains the OS and the
POSIX® abstraction layer. The HAL is the library of software functions in the STRS OE that
provides a platform-vendor-specific view of the specialized hardware by abstracting the
underlying physical hardware interfaces. The HAL allows specialized hardware to be integrated
with the GPM so that the STRS OE can access functions implemented on the specialized
hardware of the STRS platform.

The Persistent Memory Storage element holds both the permanent (e.g., programmable read-
only memory (PROM)) and reprogrammable code for the GPP element. In today’s technology,
this code is implemented using a reprogrammable technology, such as electrically erasable,
programmable read-only memory (EEPROM). It is also possible, but not typically qualifiable, to
implement this code storage in Flash memory.

The Persistent Memory also provides the reprogrammable storage for the SPM FPGA elements
(i.e., configurable hardware design). The GPM may be responsible for programming and
scrubbing the SPM FPGAs and, if so, would have access to the appropriate “code” for the
FPGAs. This memory block is typically implemented using a nonvolatile memory technology,
such as EEPROM, but could, in particular implementations, be implemented with PROM
technology.

The Work Area Memory element is provided as operational, scratch memory for the GPP
element. This memory element is implemented in concert with the GPP element and may contain
both data and code, as appropriate for the execution of the radio application running in the
GPM.

Finally, the GPM contains a System Control element to control and moderate the GPM system
bus. This element provides the necessary control for the System Bus, including the various
memory and SPM elements interfaced by the System Bus. In addition, the System Control
element provides a validated interface to the RFM hardware via the GPM RFM Control
Interface. As the software running on the GPP element commands the RFM elements into certain
states, those commands are interpreted by the System Control element and validated in a manner
that will prevent damaging configurations of the RFM; for example, tying the transmit amplifier
directly to the receive amplifier, bypassing the diplexer element. This level of validation in the
GPM-to-RFM interfaces would prevent damage to the radio from a software bug. The System

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

40 of 200

Control element is typically implemented by a non-reprogrammable (in-flight) FPGA allowing
for flexibility between instantiations of a particular implementation.

4.2.1.2 GPM Functions

The GPM will provide the overall configuration and control of the STRS architecture and may
include any or all of the following functions:

a. Management and Control.
(1) Module discovery.
(2) Configuration control.
(3) Command, control, and status.
(4) Fault recovery.
(5) Encryption.

b. STRS infrastructure, radio configuration and control.
(1) Radio control.
(2) System management.
(3) Application upload management.
(4) Device control.
(5) Message center.

c. External network interface processing.
d. Internal data routing.
e. Waveform data link layer.

(1) Media Access Control (MAC) and Logical Link Control (LLC) layer.
(2) Physical layer processing.

f. Onboard data switch.

4.2.1.3 GPM Interfaces

a. TT&C Interface.
b. Ground Test Interface.
c. Provides programmable general-purpose input output (GPIO) to support.

(1) Interrupt source/sink.
(2) Application data transfer.

d. Provides control/configuration interfaces.
(1) RFM, antenna, power amplifier, and SPM.

e. System Bus interface.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

41 of 200

4.2.1.4 GPM Requirements

(STRS-2) A module’s diagnostic information shall be available via the STRS APIs.

(STRS-109) An STRS platform shall have a GPM that contains and executes the STRS OE and
the control portions of the STRS applications and services software.

4.2.2 Signal-Processing Module

An SPM is optional for an STRS platform. The SPM may implement the signal processing used to
transform received digital signals into data packets and/or the conversion of data packets into
digital signals to transmit. The complexity of this module is based on the applications and data
rates selected for a mission. The SPM modules contain components and capabilities to
manipulate and manage digital signals that need higher processing capabilities than that
supplied by the GPM. The configurable hardware design architecture describes a common
interface for the application on the SPM, as described in section 6. Figure 5, SPM Architecture
Details, illustrates the SPM module details.

Figure 5—SPM Architecture Details

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

42 of 200

4.2.2.1 SPM Components

The SPM will initially be implemented primarily with FPGAs, DSPs, reconfigurable processors,
ASICs, and other integrated circuits. However, technologies will change over time, so the
specific implementation is left to the STRS platform provider.

It is also anticipated that STRS platforms may use dedicated SPM physical hardware slices (e.g.,
separate circuit boards) for specific applications and technologies. For example, a dedicated
global positioning system (GPS) receiver slice can complement the existence of reconfigurable
SPM slices in the same radio. The dedicated slice offloads demand on the less specific SPM. If
an STRS platform contains an SPM slice, the slice should meet the module interface
specifications for control and configuration and have an interface with the GPM via the GPM
system bus and the SPM-to-GPM test interface. These two interfaces work in concert to provide
a control and reprogramming path to the SPM from the GPM and the application running on the
GPM.

4.2.2.2 SPM Functions

The SPM performs the digital signal-processing functions, which are used to convert symbols to
bits (and vice versa). These functions are typically implemented on FPGAs, DSPs, or ASICs. It is
recommended that reconfigurable and reprogrammable devices be used because this allows for
new applications to be implemented on the SDR in the future without a hardware redesign.
However, mission-specific requirements may dictate that the application be implemented on a
non-reprogrammable hardware device.

In addition to the digital signal-processing functions, a data-formatting function is typically
provided to convert blocks of data stored in the data storage element into bitstreams appropriate
for encoding into symbols (and vice versa). In many cases, it is possible to implement the data-
formatting function in the same device as the digital signal-processing function, but that is an
implementation detail dependent on the mission class.

A data storage element is used to provide a queuing buffer between the data interface and the
bitstream coders and decoders. This data storage function can be implemented in either volatile
or nonvolatile memory, depending on the requirements of the mission implementation.

An SPM may implement any or all of the following digital communication functions depending
upon the mission waveforms:

• Digital up conversion—interpolation, filtering, and “local oscillator” multiplication
of baseband samples to obtain an IF or RF output sample stream, appropriate for
digital-to-analog conversion. This is typically the last transmit function implemented
in the SPM, and the output samples are sent to the RFM.

• Digital down conversion—multiplication with “local oscillator,” downsampling, and
filtering IF or RF samples to obtain a baseband output sample stream. This is

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

43 of 200

typically the first receive function implemented in the SPM, with input samples
coming from the analog-to-digital conversion in the RFM.

• Digital filtering—averaging, low-pass, high-pass, band-pass, polyphase, and other
filters used for pulse shaping, matched filter, etc. This may overlap with some of the
functionality in the Up and Down Conversion.

• Carrier recovery and tracking—retrieval of the waveform carrier within the receive
sample stream. Typical SPM functions for carrier recovery include shifting the
recovered carrier frequency to compensate for local oscillator variations and
Doppler shifts in the link.

• Synchronization (data, symbol, etc.)—alignment of received samples with symbol and
data boundaries. There may be some integration with the Digital Down Conversion
and Carrier Recovery and Tracking functions.

• Forward error correction coding—encoding transmit data so that receive data errors
may be corrected to some level, enhancing the waveform performance.

• Digital automatic gain control (AGC)—scaling of the receive samples to optimize
downstream operations.

• Symbol mapping (modulation)—translating transmit data bits to modulation symbol
samples.

• Data detection (demodulation)—translating receive symbol samples to data bits.
• Spreading and despreading—a form of encoding data to obtain certain energy

dispersion in the frequency domain.
• Scrambling and descrambling—a form of encoding data to ensure a certain level of

randomness in the digital data stream, usually for synchronization of the receiver.
• Encryption and decryption—a form of encoding data for security purposes.
• Data Input/Output (I/O) (high-speed direct from or to source or sink)—interface for

transmit and/or receive data to come in or out of the module. This may involve
buffering and some protocol handling.

4.2.2.3 SPM Interfaces

The SPM’s functions and external interfaces are shown in Figure 5. Interfaces shown include
those common to all module types as well as those specific for the SPM. These SPM-specific
interfaces may not all be required for some missions. Note that the implementation of these
interfaces may combine two or more on one physical transport. For example, the Data Interface
and Control and Configuration Interfaces may both use the same physical Serial Rapid I/O
connection.

• Data I/O to or from RFM—This is the digital sample stream going to the RFM’s
DACs for transmission, and the digital samples from the RFM’s ADCs. However, if
the DACs and ADCs are preferred to be a part of the SPM, then this interface is
replaced with analog baseband or IF signals.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

44 of 200

• Waveform control and feedback to RFM—This interface will be waveform dependent.
It may be used, for example, to send feedback to an AGC or control frequency
hopping.

• Data interface external to the radio—High-data-rate waveforms may need a direct
interface to the SPM if the GPM is not designed to handle the data.

• System bus—Data to or from GPM—This interface exchanges the packetized data for
transmission and reception.

• Control and configuration from GPM—Waveform loads and reconfigurable
parameters are managed through this interface.

• Test and status to GPM—Tests are initiated through this interface by the GPM, and
results are returned. This is a more basic interface (electrically and protocol-wise)
than the Control and Configuration interface.

• Radiometric tracking.

The HID is to contain the characteristics of each reconfigurable device. Reconfigurable capacity
is usually measured by the number of FPGA gates, slices, logic elements, or bytes. This
information can be used by future STRS application developers to determine the waveforms that
can be implemented on a given platform.

4.2.3 Radio Frequency Module

The RFM handles the conversion to and from the carrier frequency, providing the SPM and/or
the GPM with digital baseband or IF signals, and the transmission and reception equipment with
RF to support the SPM and GPM functions. Its components typically include DACs, ADCs, RF
switches, up converters, down converters, diplexer, filters, LNAs, power amplifiers, etc. Current
and near-term RF technologies cannot be expected to allow multiband operation using a single
channel RFM, and thus multiband radios will need to use multiple RFM slices. The RFM
provides a band of frequency tunability on each slice. This tunability can be software controlled
through the provided interfaces.

The RF module handles the interfaces that control the final stage of transmission or first stage of
reception of the wireless signals, including antennas, optical telescopes, steerable antennas,
external power amplifiers, diplexers, triplexers, RF switches, etc. These external radio
equipment components would otherwise be integrated with the RFM except for the physical size
and location constraints for transmission and reception. The interfaces are primarily the
associated control interfaces for these components. The RFM HID encompasses the control and
interface mechanism to the external components. The focus of the RF HID is to provide a
standardized interface to the control of each of these devices, to synchronize the operation of the
radio with any of these devices.

The other primary capability of the RFM is the conditioning and distribution of the frequency
reference as defined by the Frequency Reference Interface. This provides a common reference

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

45 of 200

for the RFM and SPM modules to enable the tracking and navigation functionality typically
provided by SDRs. Figure 6, RFM Architecture Details, illustrates the RFM module details.

Figure 6—RFM Architecture Details

4.2.3.1 RFM Functions

The RFM transforms the antenna signal to or from a signal usable to the radio. The RFM
functions are likely to include the following:

a. Frequency conversion and gain control.
b. Analog filtering.
c. Analog-to-digital and digital-to-analog conversion.
d. Radiometric tracking.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

46 of 200

4.2.3.2 RFM Components

The RFM can be implemented with a variety of integrated circuits. The control of these circuits
can be implemented with a variety of different component technologies, including ASICs,
discrete electronics, programmable logic devices including FPGAs and DSPs, or even
microprocessors. The choice of technologies is left up to the developer of the particular
implementation. It is expected that the control of the devices will become more sophisticated
over time and that the level of control will increase, resulting in more complex control circuitry
and logic devices being used.

4.2.3.3 RFM Interface

a. External RF interface(s) to the radio.
b. Provides read and write access to interface registers to monitor and perform control,

status, and failure and fault-recovery functions (e.g., via RS-422 or SpaceWire).
(1) Control (power level tunability, frequency tunability, antenna parameter

tunability, etc.).
(2) Status (report status of components and system operation).
(3) Failure and fault-recovery functions (detect component or system failure and

determine appropriate action).
c. Provides diagnostic test registers.
d. Provides I/O for exchanging digitized waveform signal data.

4.2.3.4 RFM Requirements

(STRS-6) The STRS platform provider shall describe, in the HID document, the behavior and
performance of the RF modular component(s).

The behavior and performance of the RF modular components should be sufficiently described
such that future waveform developments may take advantage of the RF capability and/or account
for its performance. Information in the HID may include such items as center frequency, IF and
RF frequency(s), bandwidth(s), IF and RF input/output level(s), dynamic range, sensitivity,
overall noise figure, AGC, frequency accuracy and stability, and frequency-tuning resolution.

4.2.4 Security Module

The STRS architecture has been designed to address security concerns as part of the
architecture. Although this section is currently not complete, the goal is to address the security
services required from an SDR. This approach supports the evolutionary nature of the STRS
architecture. It is expected that this section will be expanded as new technologies and
operational modes are developed or extended.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

47 of 200

The architecture will support selectable data-protection services for those users needing them,
including both confidentiality and authentication. Missions may select security options provided
by the infrastructure or may develop their own.

The authentication of commands sent to SDRs is supported, including changing the
configuration or uploading new programs for either the infrastructure or new applications. The
security section of the architecture will include support for key management, encryption
standards, and mitigating threats other than the information and communication security threats
currently identified.

4.2.5 Networking Module

The STRS architecture has been structured such that networks can be implemented in an SDR;
that is, an SDR can be a node in a network. The SDR may be connected to another node using
the appropriate logical and physical interfaces that may be wired and/or wireless. The STRS
architecture can accommodate network protocols as services that can be made available to
applications and devices. STRS supports the ability to upload new software and dynamic
hardware images. Therefore, advancements and replacement of existing protocols can be
accomplished without affecting a spacecraft’s mission resources.

4.2.6 Optical Module

The STRS architecture supports the use of optical communications in SDRs. The use of optical
communications techniques poses challenges in many areas, but optical communications also
have the potential for great benefit. STRS interfacing to optical communication equipment
follows the same techniques shown in integration with high-data-rate hardware. The OM would
be controlled through the STRS HAL interface that allows configuration and control of the
digital components in the module, which abstracts the optical functionality.

4.3 Hardware Interface Description

The STRS platform provider is to provide an HID document, which describes the physical
interfaces, functionality, and performance of the entire platform and each platform module. The
HID specifies the electrical interfaces, connector requirements, and all physical requirements
for the delivered radio. The HID abstracts and describes the functionality and performance of
each module. In this manner, STRS application developers can know the features and limitations
of the platform for their applications. The information in the HID provides the knowledge for
NASA and others to integrate and test the hardware interfaces. The information in the HID may
allow future module replacement or additions without the design of a completely new platform.
For example, a Security Module could be added that was not originally planned, or a follow-on
mission could use a different frequency band and only an RFM change would be needed. Include
all waveform interfaces and any other interfaces that could be important to a waveform
developer or a hardware integrator.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

48 of 200

In addition to the GPM, SPM, and RFM HID descriptions and requirements stated within each
module section, the following interface descriptions and requirements are also specified for an
STRS platform.

(STRS-4) The STRS platform provider shall describe, in the HID document, the behavior and
capability of each major module or component available for use by a waveform, service, or other
application (e.g., FPGA, GPP, DSP, or memory), noting any operational limitations.

(STRS-5) The STRS platform provider shall describe, in the HID document, the
reconfigurability behavior and capability of each reconfigurable component.

The description of the behavior and capability of modules or components available to STRS
application developers or reconfigurable components may include device type, processing
capability, clock speeds, memory size(s), types(s), and speed(s), noting any constraints, as well
as any limitation on the number of configurable hardware design reloads, as applicable, partial
reload ability, built-in functionality, and any corresponding restriction on the number of gates.

(STRS-7) The STRS platform provider shall describe, in the HID document, the interfaces that
are provided to and from each modular component of the STRS platform.

The specific modular components or hardware slices of an STRS platform will vary among
different implementations. The STRS platform provider or STRS integrator is expected to
describe each modular component and their respective physical and logical interfaces as
described in this section. Table 1, STRS Module Interface Characterization, provides typical
interface characteristics that should be included when identifying external interfaces or internal
interfaces between modules for STRS.

Table 1—STRS Module Interface Characterization
STRS Module Interface Characterization Table
Parameter Description and Comments

Name Interface name (data, control, operating power, RF,
security, etc.).

Interface type Point to point, point-multipoint, multipoint, serial, bus,
other.

Implementation level Component, module, board, chassis, remote node.
Reference documents and
standards

Applicable documents for interface standards or
description of custom interfaces.

Notes and constraints Variances from standards, physical and logical functional
limitations.

Transfer speed Clock speed, throughput speed.
Signal definition Description of functionality and intended use.
Physical Implementation
Technology For example, GPP, DSP, FPGA, ASIC, and description.
Connectors Model number, pin out (including unused pins).

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

49 of 200

STRS Module Interface Characterization Table
Parameter Description and Comments
Data plane Width, speed, timing, data encoding, protocols.

Control plane Control signals, control messages or commanding,
interrupts, message protocol.

Functional Implementation
Models Data plane model, control plane model, test bench model.

Power Voltages, currents, noise, conducted immunity,
susceptibility.

APIs Custom or standard, particular to OS environment.
Software Device drivers, development environment, and tool chain.
Logical Implementation
Addressing Method, schemes.
Channels Open, close.
Connection type Forward, terminate, test.

4.3.1 Control and Data Interface

The control and data communications buses and links between modules within the radio are to
be described by the STRS platform provider to the level of detail necessary to facilitate
integration of another vendor’s module. If modules communicate using the IEEE 1394, A High-
Performance Serial Bus, interface, for example, this will be specified in the HID with
appropriate connector and pinout information. Any nonstandard protocols used should also be
specified. In some cases, this may be handled by the software HAL. Module interfaces will be
completely described, including any unused pins.

(STRS-8) The STRS platform provider shall describe, in the HID document, the control,
telemetry, and data mechanisms of each modular component (i.e., how to program or control
each modular component of the platform, and how to use or access each device or software
component, noting any proprietary and nonstandard aspects).

Besides the interface descriptions already provided for each modular component, developers
should provide specific information necessary for future STRS application developers to know
how to interact with the command and control aspects of the platform. The description of the
control, telemetry, and data mechanism of each modular component should facilitate the porting
of the application software to the platform.

4.3.2 Operating Power Interface

The operating power interface description for the radio has two parts: (1) the platform as a
supplier to the various modules; and (2) the power consumption of the different modules, if
multiple modules are provided.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

50 of 200

Table 2, Example—Operating Power Interface (Platform Supplied), shows an example listing of
a platform operating power interface. There are four distinct sets of power requirements for the
platform shown. For each module delivered with the radio, as well as those built by other
vendors, the HID is to specify the needed voltages, currents, and connections. Voltages are to be
specified with a maximum and minimum tolerance, and associated currents are to be specified
with nominal and maximum values. Connectors for operating power are to be specified,
including pinouts. If power is routed through a multipurpose connector such as a backplane
connector, then the pins actually used are to be documented. Power is a limited commodity for
most missions, and understanding the STRS platform power needs is critical.

Table 2—Example—Operating Power Interface (Platform Supplied)
Parameter Values
Voltage available –15 V +2.5 V +5 V +15 V
Maximum current/chassis
(platform)

2 A 1.7 A 3 A 2 A

Maximum current/slot (module) 1 A 1 A 1 A 1 A
Backplane supply pins 17, 19 59, 61 44, 46, 48 21, 23
Backplane return pins 18, 20 60, 62 43, 45, 47 22, 24
Connector type --------- --------- --------- ---------
Voltage ripple 100 mVpp 1 mVpp 5 mVpp 100 mVpp
Notes Slot 1 and 2 only --------- --------- Slot 1 and 2 only

(STRS-9) The STRS platform provider shall describe, in the HID document, the behavior and
performance of any power supply or power converter modular component(s).

4.3.3 Thermal Interface and Power Consumption

The power consumption and resulting heat generation of a reprogrammable FPGA will vary
according to the amount of logic used, the switching rate of the waveform logic, and the clock
frequency(s). The power consumption may not be constant for each possible waveform that can
be loaded on the platform. The STRS platform provider should document the maximum allowable
power available and thermal dissipation of the FPGA(s) on the basis of the maximum allowable
thermal constraints of FPGA(s) of the platform. For human spaceflight environments, touch
temperature requirements may limit dissipation further; therefore, these reductions are to be
factored into the given dissipation limits.

(STRS-108) The STRS platform provider shall describe, in the HID document, the thermal and
power limits of the hardware at the smallest modular level to which power is controlled.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

51 of 200

5. APPLICATIONS

5.1 Application Implementation

As shown in Figure 7, Waveform Component Instantiation, an example STRS platform consists
of one or more GPMs with GPPs, and optionally one or more SPMs containing DSPs, FPGAs,
and ASICs. Application (waveform and service) components loaded and executed on these
modules provide the signal-processing algorithms necessary to generate or receive RF signals.
To aid portability and reusability, the applications are to use the appropriate infrastructure APIs
to access platform services. Using “direct to hardware” access instead would increase the effort
to port the application to a platform with different hardware. The STRS infrastructure provides
the APIs and services necessary to load, verify, execute, change parameters, terminate, or
unload an application. The STRS infrastructure utilizes the HAL to abstract communications
with the specialized hardware, whereas the HID identifies the hardware interfaces and how
modules are physically integrated on a platform.

H
I
D

Operating Environment with
POSIX Compliant RTOS

General-purpose Processing Module

Signal
Data

Signal Processing Module

Signal

H I D

H I D

HAL

Board
Support
Package

STRS APIs
Waveform

Control and
Services

STRS
Infrastructure

STRS APIs
Waveform

Component
A

Signal Processing Module

Signal
DataWaveform

Component
C

Waveform
Component

D

Waveform
Component

B

Drivers

Figure 7—Waveform Component Instantiation

(STRS-10) An STRS application shall use the STRS infrastructure-provided APIs and POSIX®
API for access to platform resources.

(STRS-11) The STRS infrastructure shall use the STRS platform HAL APIs to communicate
with application components on the platform specialized hardware via the physical interface
defined by the STRS platform provider.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

52 of 200

5.2 Application Selection

STRS platform providers have the option of providing telemetry values to indicate what types of
applications are installed. The method for selecting the application will be a combination of the
platform’s capabilities as well as the specification defined by the STRS Command and Telemetry
interfaces in section 8.

STRS allows two types of configuration files: a platform-specific component, and an
application-specific component. An application-specific configuration file specifies information
used to initialize an STRS application. It is up to the project manager/platform provider to
decide whether either of these is defined and, if so, what the format is. Suggestions are discussed
in the STRS Handbook, NASA-HDBK-4009A.

5.3 Application Repository Submissions

The STRS architecture facilitates the use of reusable and highly reliable applications. Highly
reliable and reusable applications require good coding practices, good documentation, and
thorough testing. The documentation and application artifacts are to be submitted to the NASA
STRS Application Repository, https://strs.grc.nasa.gov/repository/. The use of the artifacts in the
NASA STRS Application Repository will be subject to the appropriate license agreements.
Therefore, the agreements defining the release, distribution, and ownership of the artifacts are to
be submitted to the repository including license agreements, type of release, and any restrictions.
Types of releases are discussed in NPR 2210.1, Release of NASA Software. NASA will provide
the STRS application developer information on the requests and distribution of items and lessons
learned using the application. If the STRS application developer receives independent requests
for the application, this request should be forwarded to the NASA STRS Application Repository
manager to assure process consistency.

The goal of the NASA STRS Application Repository is to reduce future application development
time and porting time since STRS application developers will have access to validated code. The
STRS Application Repository is an archive of the developed configurable hardware design and
software for the various applications. The repository allows STRS application developers access
to existing STRS application artifacts that have been populated by NASA and STRS application
developers. The documentation of STRS application behavior should include the STRS
application developer’s implementation of the STRS Application-provided Application Control
API methods as described in section 7.3.1.

The documentation can also include a Design Description Document, HID, HAL, Verification
and Validation (V&V) Plan, V&V Procedure, and V&V Results, OE-Specific Developer’s Guide
and User’s Guide.

(STRS-12) The following application or OE development artifacts shall be submitted to the
NASA STRS Application Repository:

https://strs.grc.nasa.gov/repository/

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

53 of 200

(1) Application (or OE) or system component software and configurable hardware
design simulation model(s) and/or documentation. (Design Description
Document)

(2) Documentation of external interfaces for STRS application, devices, or
configurable hardware design (e.g., signal names, descriptions, polarity, format,
data type, and timing constraints). (HID)

(3) Documentation of STRS application or OE behavior and adaptability (e.g.,
configurable and queryable data items). (Design Description Document, User’s
Guide)

(4) Application or OE function sources (e.g., C, C++, header files, very-high-speed
integrated circuit HDL (VHDL), and Verilog). (Artifacts)

(5) Application or OE libraries, if applicable (e.g., electronic design interchange
format (EDIF), dynamic link library (DLL)). (Artifacts)

(6) Documentation of application (or OE) development environment and/or tool
suite as follows: (Design Description Document)
A. Include the development environment and/or tool suite name, purpose,

developer, version, and configuration specifics (e.g., ISE Design Suite
System, Xilinx, 14.4, EDK and SDK; MATLAB®, Model base design
support automatic code generation, MathWorks, R2016a).

B. Include a description of the hardware on which the development
environment and/or tool suite is executed, its OS, OS developer, OS version,
and OS configuration specifics (e.g., Microsoft® Windows 7, Service pack
2; Linux® Ubuntu, (Xenial Xerus) 16.04).

C. Include a description of the output of the development environment and/or
tool suite, its STRS infrastructure/OE description, developer, version, and
unique implementation items (e.g., Type of file, .mdl, .slx; GRC's STRS
Reference Implementation; IP generated from Xilinx).

D. Include a description of licensing agreements for development environment
and/or tool suite.

(7) Test plans, procedures, and results documentation. (V&V Plan, V&V Procedure,
and V&V Results)

(8) Identification of software development standards used. (Version Description
Document (VDD)/Metadata)

(9) Version of this NASA Technical Standard used. (VDD/Metadata)
(10) Information, along with supporting documentation, required to make the

appropriate decisions regarding ownership, distribution rights, and release
(technology transfer) of the application or OE and associated artifacts. (Transfer
Rights/Agreements)

(11) Version Description Document, if available, or other document containing the
version number of each separable artifact in the release, defined down to the
lowest level components. (VDD)

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

54 of 200

(12) Documentation of the platform component hardware used by the application or
OE, its function and the interconnections. If the component executes an
operating system, document the OS, OS developer, OS version, and OS
configuration. (HID)

(13) Documentation when an OE is submitted to the STRS Application Repository,
providing guidelines to aid a waveform/application developer and integrator in
the task of developing an STRS compliant waveform/application. (OE-Specific
Developer’s Guide)

6. CONFIGURABLE HARDWARE DESIGN ARCHITECTURE

Configurable hardware design is embedded in a hardware device, such as an FPGA.
Configurable hardware design is distinguished from software residing in a GPP, ease depends
on OS/OE. This section addresses the use of configurable hardware design from design and
development through testing and verification and operations. It addresses aspects of model-
based design techniques and design for space environment applications.

Proper testing of configurable hardware design is critical in the development of reliable and
reusable code. Development tools that enable early development and testing should be used so
that problems can be identified and resolved early in the SDR life cycle. Many real-world signal
degradations and SEUs can be simulated to identify potential issues with the waveform and
waveform functions early in development, even before hardware is available. Applications
implemented in configurable hardware should be modular with clear interfaces to enable
individual application component simulations and incremental testing.

The configurable hardware design architecture supports the modeling of STRS applications
implemented in configurable hardware at the system, subsystem, and function levels. Model-
based design techniques aid in the development of modular application functions. Application
development models done in a platform (or target) independent manner aid in application
testing, reuse, and portability. A platform-independent model (PIM) design can be used to target
different platforms. PIM design flows might include high level models combined with manual
code writing. On resource-constrained platforms, optimized code would be written. On non-
resource-constrained platforms, PIMs may be used to auto generate code. These design flows
can be employed to significantly reduce the porting effort.

Application portability and reusability should be considered in all facets of the design process
from concept to implementation to testing. The coding technique of the application is also
essential to reduce the application porting effort. Having defined syntax standards for HDLs
(e.g., Verilog or VHDL) makes them appear to be easily portable across devices and software
synthesizers, but this is an incorrect assumption. There are many things that can make hardware
description languages hard to port. For example, the use of device-specific fixed hardware logic
on the FPGA will decrease the portability. The use of specialized hardware may be necessary to
meet the timing constraints of the application; however, the STRS application developer should
document any application function that uses the specialized hardware so that the effort to port

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

55 of 200

the application function(s) can be determined. Non-boolean-type logic such as clock generation
can also reduce portability. One method to decrease the porting effort would be to create a
module that does the clock generation from which the rest of the application functions receive
the necessary clock(s).

Development of configurable hardware design for STRS radios should include provisions for
mitigating space environmental effects such as SEUs. Near-term application of static random
access memory (SRAM)-based FPGAs may require triple-mode redundancy (TMR),
configuration memory scrubbing, and other mitigation techniques, depending on the intended
mission environment and desired reliability. Commercial design tools are becoming available to
aid in this process and some newer FPGAs have versions available with embedded TMR.

A key feature of SDRs is that they can be reconfigured after deployment. The ability to load new
applications and services will benefit missions in several ways, including using one SDR (instead
of several separate radios) to handle different applications for various phases of a mission, some
planned and some unplanned. An STRS platform should receive STRS application software and
configurable hardware design updates after deployment.

6.1 Specialized Hardware Interfaces

Standardizing and documenting the interface from the waveform applications on the GPP to the
portion of the waveform in the specialized processing hardware, such as FPGAs, is intended to
provide commonality among different STRS platforms and to aid portability of application
functional components implemented in configurable hardware design. Figure 8, Notional High-
Level Software and Configurable Hardware Design Waveform Application Interfaces, depicts
the high-level interface relationship between GPM, SPM, and RFM modules in an STRS radio.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

56 of 200

Figure 8—Notional High-Level Software and Configurable Hardware Design

Waveform Application Interfaces

The STRS architecture provides a common mechanism for the software to instantiate, configure,
and execute the software and configurable hardware design applications on various platforms
using different hardware devices. Reconfiguration may include changing the parameters of
installed applications and uploading new applications after deployment.

The application accepts configuration and control commands from the GPM and uses STRS
APIs or POSIX® APIs that interface to the device drivers associated with the SPM and RFM
modules. The device drivers communicate via the HAL on the GPM that abstracts the physical
interface specification described in the HID in transferring command and data information
between the modules.

For FPGAs, the interface to the application is through a platform-specific wrapper. The
platform-specific wrapper accepts command and data information from the GPM and provides
them to the application. The platform-specific wrapper also abstracts details of the platform
from the STRS application developer, such as pinout information. The platform-specific wrapper
should also provide clock generation, signal registering, and synchronization functions, and any
other non-waveform-specific functions that the platform requires.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

57 of 200

Documentation of the platform-specific wrapper is necessary so that STRS application
developers can interface applications to the platform. This documentation should include
detailed timing constraints, such as signal hold times, minimum pulse widths, and duty cycles.
The signal timing constraints refer to the protocol of a particular interface describing events
happening on a particular clock cycle. For clock generation, one should document what clock
domains are in the design, how each clock is generated, and the resources that are involved.
Signal synchronization describes any additional logic needed when clock domains are changed
across the interface. The signal registering methods refer to any configurable hardware design
interfaces between modules and if the input and output were registered, latched, or neither.

(STRS-13) If the STRS application has a component resident outside the GPM (e.g., in
configurable hardware design), then the component shall be controllable from the STRS OE.

(STRS-14) The STRS SPM developer shall provide a platform-specific wrapper for each user-
programmable FPGA, which performs the following functions:

(1) Provides an interface for command and data from the GPM to the waveform
application.

(2) Provides the platform-specific pinout for the STRS application developer. This
may be a complete abstraction of the actual FPGA pinouts with only waveform
application signal names provided.

(STRS-15) The STRS SPM developer shall provide documentation on the configurable hardware
design interfaces of the platform-specific wrapper for each user-programmable FPGA, which
describes the following:

(1) Signal names and descriptions.
(2) Signal polarity, format, and data type.
(3) Signal direction.
(4) Signal-timing constraints.
(5) Clock generation and synchronization methods.
(6) Signal-registering methods.
(7) Identification of development tool set used.
(8) Any included noninterface functionality.

7. SOFTWARE ARCHITECTURE

7.1 Software Layer Interfaces

The STRS architecture is predicated on the need to provide a consistent and extensible
development environment on which to construct NASA space applications. The breadth of this
goal implies that the specification be based on the following: (1) Core interfaces that allow
flexibility in the development of application software; and (2) HIDs that enable technology
infusion.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

58 of 200

The software architecture model shows the relationship between the software layers expected in
an STRS-compliant radio. The model illustrates the different software elements used in the
software execution and defines the software interface layers between applications and the OE
and the interface between the OE and the hardware platform.

Figure 9, STRS Software Execution Model, represents the software architecture execution model.
The software model achieves the following objectives:

a. Abstracts the application from the underlying OE software to promote portability and

reusability of the application.

b. Within the abstraction layer, minimizes custom routines by using commercial

software standard interfaces such as POSIX®.

c. Depicts the STRS software components as layers to specify their relationship to each

other and their separation from each other which enables developers to implement the layers
differently according to their needs while still complying with the architecture.

d. Introduces a lower-level abstraction layer between the OE and the platform

hardware.

Note that although software abstraction for general processors is typically accomplished with
board support packages and device drivers, the abstraction of hardware languages or
configurable hardware design is less defined. The model represents the software and
configurable hardware design abstraction in this layer.

e. Indicates the relationship between the OE software and the different hardware
processing elements (e.g., processor and specialized hardware).

The OE adheres to the interface descriptions provided in Figure 9. This NASA Technical
Standard provides two primary interface definitions, as follows: (1) The STRS APIs; and (2) The
STRS HAL specification, each with a control and data plane specification for interchanging
configuration and run-time data. The STRS APIs provide the interfaces that allow applications to
be instantiated and use platform services. These APIs also enable communication between
application components. The HAL specification describes the physical and logical interfaces for
intermodule and intramodule integration.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

59 of 200

Figure 9—STRS Software Execution Model

The STRS software architecture presents a consistent set of APIs to allow waveform
applications, services, and communication equipment to interoperate in meeting an application
specification. Figure 10, STRS Layered Structure in UML, represents a view of the platform OE
that depicts the boundaries between the STRS infrastructure provided by the STRS platform
provider and the components that can be developed by third-party vendors (e.g., waveform
applications and services).

A key enabler of application portability and reusability is the removal of application
dependencies on the infrastructure that take advantage of explicit knowledge of the
infrastructure implementation. When waveforms and services conform to the API specification,
they are easier to port to other STRS platform implementations.

Figure 10 extends the view of the software architecture from the diagram introduced in Figure 9
to include additional detail of the infrastructure, POSIX®-conformant OS, and hardware
platform. The STRS Software Execution Model (Figure 9) was transformed using the Unified
Modeling Language (UML). The UML supports the description of the software systems using an
object-oriented style. This approach clarifies the interfaces between components, adding
additional detail. Table 3, STRS Architecture Subsystem Key, provides a key that describes the
interaction between elements of the architecture.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

60 of 200

Figure 10—STRS Layered Structure in UML

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

61 of 200

Table 3—STRS Architecture Subsystem Key
Diagram Element Name Explanation

Composition A contains X items of type B. B is a part of the
aggregate A. B does not exist independently from A.
X may be a number or a range from m to n depicted
by “m...n” where n may be an asterisk to indicate no
upper limit.

Generalization
or

Inheritance

B is derived from A. B is a kind of A. B inherits all
the properties of A. A is a more general case of B.
Since B is more specialized, it frequently contains
some additional attributes and/or more functionality
than A.

Interface C is an interface provided by B; that is, C contains the

means to invoke behavior that resides in B. A uses
interface C to access B.

Association A is associated with B. The optional description

“uses” indicates that A is associated with B such that
A “uses” B.

Association D acts upon A, and A responds to D, or possibly vice
versa. D is normally an actor outside the system.

Figure 11, STRS Operating Environment, describes the elements of the detailed OE depicted in
Figure 9. In the case that the OS does not support the POSIX® subset, the missing functionality
is to be implemented in the STRS infrastructure. Figure 11 also illustrates the inclusion of a
POSIX® abstraction layer in the infrastructure. As a note, this abstraction is not only for a non-
POSIX® OS, but the POSIX® abstraction layer would implement any POSIX® functions
required but not implemented by the OS.

In Figure 11 the arrows identify interface dependencies and isolations. The waveform
applications will not directly call the driver API but use the provided STRS APIs, thus providing
the “abstraction layer” that helps isolate the application from the platform.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

62 of 200

Waveform Application

Could call STRS OS Abstraction Layer
functions as well as POSIX Calls

Communicates with STRS API

STRS Infrastructure

STRS API

 HAL

Radio Services (Radio Control, RF)

OS

HW Drivers/BSP

Communication
Equipment

GPM Platform Hardware

Application Level

Kernel Level

Direct Driver Service Support

Driver APIRegistered OS Services

HW IO Interface

Physical Level

POSIX

POSIX Abstraction
Layer

BSP

Figure 11—STRS Operating Environment

In Table 4, STRS Software Component Descriptions, the different layers of the STRS software
model are described.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

63 of 200

Table 4—STRS Software Component Descriptions

Layer Description
Waveform application
and services

Waveform application and services provide the radio GPP
functionality using the STRS infrastructure.

STRS infrastructure The STRS infrastructure implements the behavior and functionality
identified by the STRS APIs as well as other required radio
functionality.

STRS API The STRS APIs provides consistent interfaces for the STRS
infrastructure to control applications and services, and for the
applications and services to access STRS infrastructure services.

APP API The APP API is the interface implemented by waveforms and
services whose functions are used by the STRS infrastructure.

POSIX® Abstraction
Layer

This optional interface (see Figure 12, POSIX®-Compliant Versus
POSIX®-Conformant OS) provides POSIX® OS services to the
waveform application and services on platforms with an OS that does
not provide POSIX® interfaces.

Radio control services These services are responsible for handling the radio commands and
telemetry for the STRS. Applications use the STRS interface to
communicate telemetry and receive commands from flight computer.

HAL The HAL provides the device control interfaces that are responsible
for all access to the hardware devices in the STRS radio. The HAL
API is the interface to the software drivers and BSP that
communicates with the hardware.

POSIX® API The STRS defines a minimum POSIX® application environment
profile (AEP) for the allowed OS services. The POSIX® AEP can be
implemented by either a POSIX®-conformant OS or by a POSIX®
Abstraction Layer in conjunction with a nonconformant OS.

OS This is the operating system that supports the POSIX® API and other
OS services. The POSIX® Abstraction Layer will provide
applications with a consistent AEP interface that is mapped into the
chosen OS functions.

POSIX® OS This is the STRS POSIX® AEP-conformant portion of the OS.
Direct service support This layer identifies the ability for the STRS infrastructure to have a

direct interface to the hardware drivers on the platform.
HW drivers/BSP The hardware drivers provide the platform independence to the

software and infrastructure by abstracting the physical hardware
interfaces into a consistent device control API.

Registered OS
services

These are services that are integrated with the chosen OS to provide
services such as MAC-layer interface to physical Ethernet hardware.

Driver API OS-supplied APIs are abstracted from applications via the device
control API.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

64 of 200

Layer Description
BSP The BSP is the software that implements the device drivers and parts

of the kernel for a specific piece of hardware. It provides the
hardware abstraction of the GPM module for the POSIX®-compliant
OS. A BSP contains source files, binary files, or both. A BSP
contains an original equipment manufacturer (OEM) adaptation layer
(OAL), which includes a boot loader for initializing the hardware and
loading the OS image. Essentially, the OAL is all of the software that
is hardware specific. The OAL is actually compiled and linked into
the embedded OS.

HW I/O interfaces Device drivers have been created for these physical interfaces.
GPM This is the general-purpose processing module on which the STRS

infrastructure executes.
Specialized hardware This is the physical layer of the hardware modules existing on the

STRS platform.

Figure 12 illustrates the difference between a POSIX®-conformant OS and a nonconformant
OS. On the left side, the POSIX® AEP is provided entirely by the OS. The POSIX® APIs are
included in those for the OS. On the right side, the OS is not POSIX® AEP conformant but is
partially compliant. The POSIX® AEP is shown in two parts. One part shows the POSIX® APIs
that are included in the OS. The other part shows the part of the POSIX® AEP that is not
provided by the OS but is to be provided as the POSIX® abstraction layer. The STRS OE
includes a POSIX® PSE51-conformant OS or POSIX® abstraction layer for missing APIs.

Figure 12—POSIX®-Compliant Versus POSIX®-Conformant OS

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

65 of 200

7.2 Infrastructure

The STRS infrastructure is part of the OE and provides the functionality for the interfaces
defined by the STRS APIs specification. The infrastructure exposes a standard set of method
names to the applications to facilitate portability. Although the STRS infrastructure may use any
combination of POSIX®, OS, BSP functions, or other infrastructure methods to implement a
radio function, which may vary on different platforms, the STRS APIs will be the same to allow
portability. The STRS APIs are the well-defined set of interfaces used by STRS applications to
access specific radio functions or used by the infrastructure to control the applications.

The infrastructure is composed of multiple subsystems that interoperate to provide the
functionality to operate the radio. The components shown in Figure 13, STRS Infrastructure,
represent the high-level subsystems and services needed to control STRS applications within the
STRS platform. These services are provided by the platform infrastructure and support
applications as they execute within the STRS platform. The infrastructure functions will include
fault management techniques, which are necessary to increase radio robustness and support
mission-dependent requirements. In order to support one of the primary objectives of the STRS
(upgradeability), an STRS platform should be able to receive updated versions of the OE to
support applications developed for newer versions of this NASA Technical Standard, after
deployment.

Figure 13—STRS Infrastructure

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

66 of 200

7.3 STRS APIs

The STRS APIs provide an open software specification so that the application engineers can
develop STRS applications. The goal is to have a standard API available to cover all application
program requirements so that the application programs can be reused on other hardware
systems with minimal porting effort and cost for the application implemented in software and/or
configurable hardware design with increased reliability. Size, weight, and power constraints
may limit the functionality of the radio by imposing a tradeoff among the following: (1) The size
of the API implementation; (2) The size of other internal operations; and (3) The size of the
waveforms and services. The size of the selected GPP should be sufficient to contain the OS, the
STRS infrastructure, and the appropriate portion of the waveforms and services to implement the
required mission functionality, along with sufficient margin to support software upgrades. The
STRS APIs are defined to support internal radio commands. The external interface commands,
described in section 9, often use the internal commands defined by the STRS APIs to accomplish
normal radio operations.

The API layer specification decouples the intellectual property rights of platform, application,
and module developers. The API layer allows development and interoperability of different radio
aspects while protecting the investment of the developers. The definitions of the APIs are based
on a set of sequence diagrams derived from the use cases identified in Appendix A of the
NASA/TP-2008-214813, STRS Software Architecture Concepts and Analysis, document.

The APIs are defined in the following sections. The APIs are grouped by type to simplify the
description of the APIs while providing the detail for each requirement in tabular form. The
table contains the name, description, calling sequence, return type, any preconditions, any post
conditions, and examples. The examples shown in the table for each requirement are written
from the point of view of the STRS application developer. The calling sequences for the
infrastructure-provided APIs are callable from C language implementations of the STRS
applications. If coding is done in C++, the infrastructure-provided API methods do not belong
to any class and should be defined using extern “C.”

The same handle name refers to the same application, device, file, queue, timer, or service
across all applications. For information about errors, see section 7.3.12.

(STRS-105) The STRS infrastructure APIs shall have an ISO/IEC C language compatible
interface.

7.3.1 STRS Application-Provided Application Control API

A key aspect of a software-architecture is the definition of the APIs that are used to facilitate
software configuration and control of the target platform. The philosophy on which the STRS
architecture is based avoids the conflict between open architecture and proprietary
implementations by specifying a minimum set of APIs that are used to execute waveform
applications and to deliver data and control messages to installed hardware components. The
following APIs exhibit similar functionality to a resource interface in the Object Management

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

67 of 200

Group (OMG)/software radio (SWRADIO) or Software Communications Architecture (SCA
2.2.2).

As shown in Figure 14, STRS Application and Device Structure, an STRS application
implementation (e.g., waveform) is derived from the STRS_ApplicationControl API, the
STRS_Source API when implementing APP_Read, and the STRS_Sink API when implementing
APP_Write. The interfaces are implemented in groups so that STRS_ApplicationControl is
derived from the STRS_LifeCycle, STRS_PropertySet, STRS_TestableObject,
STRS_ControllableComponent, and STRS_ComponentIdentifier interfaces.

Figure 14—STRS Application and Device Structure

STRS requires a C and C++ standard based on ISO/IEC 9899, Information technology—
Programming languages—C, and ISO/IEC 14882, Information technology—Programming
languages—C++, respectively. In the USA, this is INCITS/ISO/IEC 9899:year and
INCITS/ISO/IEC 14882:year, respectively, where the year will change periodically. The year is

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

68 of 200

not included in the requirement so that obsolete compilers are not mandated. In the USA, the
InterNational Committee for Information Technology Standards (INCITS) coordinates technical
standards activity between American National Standards Institute (ANSI) in the USA and joint
ISO/IEC committees worldwide. INCITS is not included in the requirement so that the country of
implementation may use its compilers.

(STRS-16) The STRS Application-provided Application Control API shall be implemented
using ISO/IEC C or C++.

(STRS-17) The STRS infrastructure shall use the STRS Application-provided Application
Control API to control STRS applications.

An OE may support applications written in either C, C++, or both. An application written for an
OE that supports only C++ will entail extra effort to port it to an OE that supports only C and
vice versa.

(STRS-18) The STRS OE shall support ISO/IEC C or C++, or both, language interfaces for the
STRS Application-provided Application Control API at compile-time.

(STRS-19) The STRS OE shall support ISO/IEC C or C++, or both, language interfaces for the
STRS Application-provided Application Control API at run-time.

The same include files are used for either C or C++ to access the appropriate prototypes.

(STRS-20) Each STRS application shall contain
 #include "STRS_ApplicationControl.h"

(STRS-21) The STRS platform provider shall provide an “STRS_ApplicationControl.h” that
contains the method prototypes for each STRS application and, for C++, the class definition for
the base class STRS_ApplicationControl.

(STRS-22) If the STRS Application-provided Application Control API is implemented in C++,
the STRS application class shall be derived from the STRS_ApplicationControl base class.

For example, the MyWaveform.h file should contain a class definition of the form class
MyWaveform: public STRS_ApplicationControl {…};

A sink is used for a push model of passing data, that is, to write data to the waveform, device,
file, or queue.

(STRS-23) If the STRS application provides the APP_Write method, the STRS application shall
contain
 #include "STRS_Sink.h"

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

69 of 200

(STRS-24) The STRS platform provider shall provide an “STRS_Sink.h” that contains the
method prototypes for APP_Write and, for C++, the class definition for the base class
STRS_Sink.

(STRS-25) If the STRS Application-provided Application Control API is implemented in C++
and the STRS application provides the APP_Write method, the STRS application class shall be
derived from the STRS_Sink base class.

For example, the MyWaveform.h file should contain a class definition of the form
 class MyWaveform: public STRS_ApplicationControl,
 public STRS_Sink
 {…};

A source is used for a pull model of passing data: to read data from the waveform, device, file,
or queue.

(STRS-26) If the STRS application provides the APP_Read method, the STRS application shall
contain
 #include "STRS_Source.h"

(STRS-27) The STRS platform provider shall provide an “STRS_Source.h” that contains the
method prototypes for APP_Read and, for C++, the class definition for the base class
STRS_Source.

(STRS-110) The STRS platform provider shall provide an “STRS_APIs.h” that contains the
method prototypes for the STRS infrastructure APIs.

(STRS-28) If the STRS Application-provided Application Control API is implemented in C++
and the STRS application provides the APP_Read method, the STRS application class shall be
derived from the STRS_Source base class.

For example, the MyWaveform.h file should contain a class definition of the form
 class MyWaveform: public STRS_ApplicationControl,
 public STRS_Source
 {…};

If both APP_Read and APP_Write are provided in the same waveform, the C++ class will be
derived from all three base classes named in requirements (STRS-22, STRS-25, and STRS-28).
For example, the MyWaveform.h file should contain a class definition of the form
 class MyWaveform: public STRS_ApplicationControl,
 public STRS_Sink,
 public STRS_Source
 {…};

(STRS-111) Each STRS Device shall contain

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

70 of 200

 #include "STRS_DeviceControl.h"

(STRS-112) The STRS platform provider shall provide an “STRS_DeviceControl.h” that
contains the method prototypes for each STRS Device and, for C++, the class definition for the
base class STRS_DeviceControl, which inherits from the base class STRS_ApplicationControl.

(STRS-113) If the STRS Device-provided Device Control API is implemented in C++, the
STRS Device class shall be derived from the STRS_DeviceControl base class.

For example, the MyDevice.h file should contain a class definition of the form

class MyDevice: public STRS_DeviceControl
[, public STRS_Source]
[, public STRS_Sink]

{…};
 Note: [] indicates optional.

The following are the STRS Application-provided Application Control APIs:

(STRS-29) Each STRS application shall contain a callable APP_Configure method as described
in Table 5, APP_Configure().

Table 5—APP_Configure()
APP_Configure()
Description Set value for one property in the target component (application, device). It is

the responsibility of the target component to determine which properties can be
changed in which internal states. The API is defined in STRS_PropertySet.

Parameters • inst – (STRS_Instance *) instance pointer, only for C.
• name – (in STRS_Property_Name) name or other identification of data to

be obtained
• value – (in STRS_Property_Value *) location of data to process/store in

application corresponding to name
• lenValue – (in STRS_Buffer_Size) actual length of data in value

Return status (STRS_Result) actual size stored unless error
Precondition None
Postcondition The appropriately named value is configured. When an error is returned, see

the logs for more information.
Applicable to Application developer

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

71 of 200

(STRS-114) Each STRS application shall contain a callable APP_Destroy method as described
in Table 6, APP_Destroy().

Table 6—APP_Destroy()
APP_Destroy()
Description Call the destructor for the specified target component. APP_Destroy is not a

class method.
Parameters • pApp – (STRS_Instance *) pointer to application instance.
Return None
Precondition Application must be stopped and resources released.
Postcondition STRS instance object is no longer valid.
Applicable to Application developer

(STRS-115) The STRS infrastructure shall define a callable APP_GetHandleID method in each
application as described in Table 7, APP_GetHandleID().

Table 7—APP_GetHandleID()
APP_GetHandleID()
Description Obtain the handle ID for the application, stored by the OE.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return handle ID of the current application (STRS_HandleID)
Precondition Application is instantiated.
Postcondition None
Applicable to OE developer: usually platform provider

(STRS-116) The STRS infrastructure shall define a callable APP_GetHandleName method in
each application as described in Table 8, APP_GetHandleName().

Table 8—APP_GetHandleName()
APP_GetHandleName()
Description Obtain the handle name for the application, stored by the OE.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return handle name of the current application (char *)
Precondition Application is instantiated.
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

72 of 200

(STRS-30) Each STRS application shall contain a callable APP_GroundTest method as
described in Table 9, APP_GroundTest().

Table 9—APP_GroundTest()
APP_GroundTest()
Description Perform unit and system testing, which is usually done before deployment. The

testing may include calibration. The tests aid in isolating faults within the
target component. A responding component may be in any internal state, but
certain tests may be restricted to specific states. If the application is not in the
appropriate internal state, then nothing is done and an error is returned.
Property values may be used, if needed. The API is defined in
STRS_TestableObject. The method is similar to APP_RunTest except that it
contains more extensive testing used especially before deployment to satisfy
any additional project requirements. This method may be invalid upon
deployment and if so, it may be eliminated.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
• testID – (in STRS_TestID) number of the test to be performed

Return status (STRS_Result)
Precondition None
Postcondition The test is performed. The state is unchanged unless specifically required by

mission.
Applicable to Application developer

(STRS-31) Each STRS application shall contain a callable APP_Initialize method as described in
Table 10, APP_Initialize().

Table 10—APP_Initialize()
APP_Initialize()
Description Initialize the target component (application, device). The API is defined in

STRS_LifeCycle. The purpose is to set or reset the component to a known
initial state. If no fault is detected, this method changes the internal state as
appropriate.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to Application developer

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

73 of 200

(STRS-32) Each STRS application shall contain a callable APP_Instance method as described in
Table 11, APP_Instance().

Table 11—APP_Instance()
APP_Instance()
Description Store the two parameters passed in the calling sequence, so that they are

available to the constructor. In C++, APP_Instance is a static method used to
call the class constructor for C++. If no fault is detected, this method returns an
instance pointer and initializes the internal state.

Parameters • id – (in STRS_HandleID) handle ID of this STRS application.
• name – (in STRS_HandleName *) handle name of this STRS application.

Return Pointer to STRS_Instance, instance of class, in C or C++.
Precondition None
Postcondition None
Applicable to Application developer

(STRS-33) Each STRS application shall contain a callable APP_Query method as described in
Table 12, APP_Query().

Table 12—APP_Query()
APP_Query()
Description Obtain values for one or more properties in the target component (application,

device). It is the responsibility of the target component to determine which
properties can be interrogated in which internal states. The API is defined in
STRS_PropertySet.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
• name – (in STRS_Property_Name) name or other identification of data to

be obtained
• value – (in STRS_Property_Value *) location to store data corresponding

to name
• lenValue – (in STRS_Buffer_Size) maximum length of data in to be stored

in value
Return status (STRS_Result) actual size unless error
Precondition The value is to have space allotted for the maximum size of the property

whose value is to be returned (not bigger than lenValue).
Postcondition Value is populated with data, as appropriate. When an error is returned, see the

logs for more information.
Applicable to Application developer

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

74 of 200

(STRS-34) If the STRS application provides data to the infrastructure, then the STRS application
shall contain a callable APP_Read method as described in Table 13, APP_Read().

Table 13—APP_Read()
APP_Read()
Description Method used to obtain data from the target component (application, device).

This is optional. The API is defined in STRS_Source. The caller manages the
buffer area, preallocating the buffer before calling APP_Read and processing
the returned data without any effects on the data source application. The
character data type (STRS_Message) does not have to contain valid characters.
If the application is not in the appropriate internal state, then nothing is done
and an error is returned.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
• buffer – (out STRS_Message) a pointer to an area in which the

application stores the requested data
• nb – (in STRS_Buffer_Size) number of bytes requested

Return Error status (negative) or actual number of bytes (non-negative) obtained
(STRS_Result)

Precondition Storage for the buffer with space for nb bytes is allocated before calling
APP_Read. If used for a C-style character string, the size should include space
for a final '\0'.

Postcondition The data from the application is stored in the buffer area.
Applicable to Application developer

(STRS-35) Each STRS application shall contain a callable APP_ReleaseObject method as
described in Table 14, APP_ReleaseObject().

Table 14—APP_ReleaseObject()
APP_ReleaseObject()
Description Free any resources that the target component (application, device) has

acquired. An example would be to allow the target component to close any
open files or devices. It is the responsibility of the target component to
determine whether any release is done in which internal states. The API is
defined in STRS_LifeCycle. The purpose of APP_ReleaseObject is to prepare
the target component for removal.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition All resources acquired by the target component are released. The application

may not be usable unless reinstantiated or reinitialized.
Applicable to Application developer

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

75 of 200

(STRS-36) Each STRS application shall contain a callable APP_RunTest method as described in
Table 15, APP_RunTest().

Table 15—APP_RunTest()
APP_RunTest()
Description Test specific functionality within the target component (application, device).

The tests provide aid in isolating faults within the application. Application may
be in any internal state, but certain tests may be restricted to specific states. If
the application is not in the appropriate internal state, then nothing is done and
an error is returned. Property values may be used, if needed. The API is
defined in STRS_TestableObject.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
• testID – (in STRS_TestID) number of the test to be performed. Values of

testID are mission dependent.
Return status (STRS_Result)
Precondition None
Postcondition The test is performed.
Applicable to Application developer

(STRS-37) Each STRS application shall contain a callable APP_Start method as described in
Table 16, APP_Start().

Table 16—APP_Start()
APP_Start()
Description Begin normal target component (application, device) processing. If the

application is not in the appropriate internal state, then nothing is done and an
error is returned. The API is defined in STRS_ControllableComponent.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to Application developer

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

76 of 200

(STRS-38) Each STRS application shall contain a callable APP_Stop method as described in
Table 17, APP_Stop().

Table 17—APP_Stop()
APP_Stop()
Description End normal target component (application, device) processing. If the

application is not in the appropriate internal state, then nothing is done and an
error is returned. The API is defined in STRS_ControllableComponent.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to Application developer

(STRS-39) If the STRS application receives data from the infrastructure, then the STRS
application shall contain a callable APP_Write method as described in Table 18, APP_Write().

Table 18—APP_Write()
APP_Write()
Description Method used to send data to the target component (application, device). This is

optional. The API is defined in STRS_Sink. The caller manages the buffer
area, preallocating and filling the buffer before calling APP_Write. The
character data type (STRS_Message) does not have to contain valid characters.
If the application is not in the appropriate internal state, then nothing is done
and an error is returned.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
• buffer – (in STRS_Message) pointer to the data for the application to

process
• nb – (in STRS_Buffer_Size) number of bytes in buffer

Return Error status (negative) or number of bytes (non-negative) written
(STRS_Result)

Precondition Storage for the buffer with space for nb bytes is allocated before calling
APP_Write. If used for a C-style character string, the size should include space
for a final '\0'.

Postcondition The data has been captured by the application for its processing.
Applicable to Application developer

7.3.2 STRS Infrastructure-Provided Application Control API

The STRS infrastructure provides the STRS Infrastructure-provided Application Control API to
support application operation using the STRS Application-provided Application Control API in
section 7.3.1. These STRS Infrastructure-provided Application Control API methods (section
7.3.2 beginning with “STRS_” correspond to the STRS Application-provided Application
Control API (section 7.3.1) beginning with “APP_”, and are used to access those STRS

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

77 of 200

Application-provided Application Control API methods. The STRS infrastructure implements
these STRS Infrastructure-provided Application Control API methods for use by any STRS
application, or any part of the infrastructure that is desired to be implemented in a portable way.

A property structure contains a list of the name and value pairs used to set or get execution
parameters (section 7.3.10).

(STRS-40) The STRS infrastructure shall contain a callable STRS_Configure method as
described in Table 19, STRS_Configure().

Table 19—STRS_Configure()

STRS_Configure()
Description Set value for one property in the target component (application, device). It is

the responsibility of the target component to determine which properties can be
changed in which internal states.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• toWF – (in STRS_HandleID) handle ID of target component that should
respond to the request.

• name – (in STRS_Property_Name) name or other identification of data to
be obtained

• value – (in STRS_Property_Value *) location of data to process/store in
application corresponding to name

• lenValue – (in STRS_Buffer_Size) actual length of data in value
Return status (STRS_Result) actual size stored unless error
Precondition None
Postcondition The appropriate named value is configured. When an error is returned, see the

logs for more information.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

78 of 200

(STRS-41) The STRS infrastructure shall contain a callable STRS_GroundTest method as
described in Table 20, STRS_GroundTest().

Table 20—STRS_GroundTest()
STRS_GroundTest()
Description Perform unit and system testing—usually done before deployment. The testing

may include calibration. The tests aid in isolating faults within the target
component. This method provides more exhaustive testing to satisfy any
additional project requirements. A responding component may be in any
internal state, but certain tests may be restricted to specific states. If the
application is not in the appropriate internal state, then nothing is done and an
error is returned. Property values may be used, if needed. This method may be
invalid upon deployment.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• toWF – (in STRS_HandleID) handle ID of target component that should
respond to the request.

• testID – (in STRS_TestID) number of the test to be performed. Values are
mission dependent.

Return status (STRS_Result)
Precondition None
Postcondition The test is performed.
Applicable to OE developer: usually platform provider

(STRS-42) The STRS infrastructure shall contain a callable STRS_Initialize method as described
in Table 21, STRS_Initialize().

Table 21—STRS_Initialize()
STRS_Initialize()
Description Initialize the target component (application, device). The purpose is to set or

reset the component to a known initial state.
Parameters • fromWF – (in STRS_HandleID) handle ID of current component making

the request.
• toWF – (in STRS_HandleID) handle ID of target component that should

respond to the request.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

79 of 200

(STRS-43) The STRS infrastructure shall contain a callable STRS_Query method as described in
Table 22, STRS_Query().

Table 22—STRS_Query()
STRS_Query()
Description Obtain values for one or more properties in the target component (application,

device).
Parameters • fromWF – (in STRS_HandleID) handle ID of current component making

the request.
• toWF – (in STRS_HandleID) handle ID of target component that should

respond to the request.
• name – (in STRS_Property_Name) name or other identification of data to

be obtained
• value – (in STRS_Property_Value *) location to store data corresponding

to name
• lenValue – (in STRS_Buffer_Size) maximum length of data in to be stored

in value
Return status (STRS_Result) actual size unless error
Precondition The value is to have space allotted for the maximum size of the property

whose value is to be returned (not bigger than lenValue).
Postcondition Value is populated with data as appropriate. When an error is returned, see the

logs for more information.
Applicable to OE developer: usually platform provider

(STRS-44) The STRS infrastructure shall contain a callable STRS_ReleaseObject method as
described in Table 23, STRS_ReleaseObject().

Table 23—STRS_ReleaseObject()
STRS_ReleaseObject()
Description Free any resources that the target component (application, device) has

acquired. An example would be to allow the target component to close any
open files or devices. It is the responsibility of the target component to
determine whether any release is done in which internal states. The purpose of
STRS_ReleaseObject is to prepare the target component for removal.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• toWF – (in STRS_HandleID) handle ID of target component that should
respond to the request.

Return status (STRS_Result)
Precondition None
Postcondition All resources acquired by the target component are released. The target

component may not be usable unless reinstantiated or reinitialized.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

80 of 200

(STRS-45) The STRS infrastructure shall contain a callable STRS_RunTest method as described
in Table 24, STRS_RunTest().

Table 24—STRS_RunTest()
STRS_RunTest()
Description Test specific functionality within the target component (application, device).

The tests provide aid in isolating faults within the target component. A
responding application may be in any internal state, but certain tests may be
restricted to specific states. If the application is not in the appropriate internal
state, then nothing is done and an error is returned. Property values may be
used, if needed.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• toWF – (in STRS_HandleID) handle ID of target component that should
respond to the request.

• testID – (in STRS_TestID) number of the test to be performed. Values of
testID are mission-dependent.

Return status (STRS_Result)
Precondition None
Postcondition The test is performed.
Applicable to OE developer: usually platform provider

(STRS-46) The STRS infrastructure shall contain a callable STRS_Start method as described in
Table 25, STRS_Start().

Table 25—STRS_Start()
STRS_Start()
Description Begin normal target component (application, device) processing. Nothing is

done if the application (or device) is not in the appropriate internal state.
Parameters • fromWF – (in STRS_HandleID) handle ID of current component making

the request.
• toWF – (in STRS_HandleID) handle ID of target component that should

respond to the request.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

81 of 200

(STRS-47) The STRS infrastructure shall contain a callable STRS_Stop method as described in
Table 26, STRS_Stop().

Table 26—STRS_Stop()
STRS_Stop()
Description End target component (application, device) processing. Nothing is done unless

the application (or device) is in the appropriate internal state.
Parameters • fromWF – in STRS_HandleID) handle ID of current component making

the request.
• toWF – in STRS_HandleID) handle ID of target component that should

respond to the request.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.3 STRS Infrastructure Application Setup API

The STRS infrastructure Application Setup methods are general methods or are used to control
one application from another.

(STRS-48) The STRS infrastructure shall contain a callable STRS_AbortApp method as
described in Table 27, STRS_AbortApp().

Table 27—STRS_AbortApp()
STRS_AbortApp()
Description Abort an application or service.
Parameters • fromWF – (in STRS_HandleID) handle ID of current component making

the request.
• toWF – (in STRS_HandleID) handle ID of target component that should

respond to the request
Return Status (STRS_Result)
Precondition None
Postcondition The target component is aborted, and application is stopped, resources

released, and unloaded, if allowed by OE.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

82 of 200

(STRS-49) The STRS infrastructure shall contain a callable STRS_GetErrorQueue method as
described in Table 28, STRS_GetErrorQueue().

Table 28—STRS_GetErrorQueue()
STRS_GetErrorQueue()
Description Transform an error status into an error queue.
Parameters • result – (in STRS_Result) return value of previous call.
Return Handle ID (STRS_HandleID) corresponding to invalid STRS_Result; that is,

return STRS_ERROR_QUEUE for STRS_ERROR,
STRS_WARNING_QUEUE for STRS_WARNING, and
STRS_FATAL_QUEUE for STRS_FATAL; otherwise, implementation
defined.

Precondition None
Postcondition The corresponding error queue handle ID is returned.
Applicable to OE developer: usually platform provider

(STRS-117) The STRS infrastructure shall contain a callable STRS_GetHandleName method as
described in Table 29, STRS_GetHandleName().

Table 29—STRS_GetHandleName()
STRS_GetHandleName()
Description The handle name is obtained for the given handle ID. The handle ID of the

current component (fromWF) is used for any error message. Using
STRS_GetHandleName to determine the handle name of the current
component while it is being instantiated gives undefined results.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• toID – (in STRS_HandleID) handle ID of the resource (application,
device, file, queue) for which the handle name is to be obtained.

• toResourceName – (out char *) handle name of the desired resource.
Return status (STRS_Result)
Precondition Space must be allocated for handle name.
Postcondition Handle name is filled in. On error, the first character of the handle name is

filled with a zero unless the toResourceName variable is NULL.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

83 of 200

(STRS-50) The STRS infrastructure shall contain a callable STRS_HandleRequest method as
described in Table 30, STRS_HandleRequest().

Table 30—STRS_HandleRequest()
STRS_HandleRequest()
Description The handle ID is obtained for the given handle name. The handle ID of the

current component (fromWF) is used for any error message. Using
STRS_HandleRequest to determine the handle ID of the current component
while it is being instantiated gives undefined results.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• toResourceName – (in char *) name of desired resource (application,
device, file, queue).

Return Handle ID of the entity or error status. (STRS_HandleID)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

(STRS-51) The STRS infrastructure shall contain a callable STRS_InstantiateApp method as
described in Table 31, STRS_InstantiateApp().

Table 31—STRS_InstantiateApp()
STRS_InstantiateApp()
Description Instantiate an application, service, or device. The handle name specified for

the application, service, or device is to be unique. The OE-specific name is
used to identify the application for instantiation and may impose additional
operations to be performed as documented by the platform provider. It is up to
the OE to determine whether any resources are to be loaded to accomplish the
instantiation.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• handleName – (in char *) unique handle name for the application (or
device) that should be instantiated.

• startName – (in char *) OE-specific name used to instantiate and configure
the application (or device) into a known state.

Return handle ID (STRS_HandleID) of the application (or device) instantiated or the
error status

Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

84 of 200

(STRS-52) The STRS infrastructure shall contain a callable STRS_IsOK method as described in
Table 32, STRS_IsOK().

Table 32—STRS_IsOK()
STRS_IsOK()
Description Return true, if return value of argument obtained from previous call is not an

error status.
Parameters • result – (in STRS_Result) return value of previous call.
Return true, if STRS_Result is not STRS_WARNING, STRS_ERROR, or

STRS_FATAL: that is, non-negative (bool)
Precondition Previous call returns a status result.
Postcondition None
Applicable to OE developer: usually platform provider

(STRS-53) The STRS infrastructure shall contain a callable STRS_Log method as described in
Table 33, STRS_Log().

(STRS-54) When an STRS application has a nonfatal error, the STRS application shall use the
callable STRS_Log method as described in Table 33, STRS_Log(), with a target handle ID of
constant STRS_ERROR_QUEUE.

(STRS-55) When an STRS application has a fatal error, the STRS application shall use the
callable STRS_Log method as described in Table 33, STRS_Log(), with a target handle ID of
constant STRS_FATAL_QUEUE.

(STRS-56) When an STRS application has a warning condition, the STRS application shall use
the callable STRS_Log method as described in Table 33, STRS_Log(), with a target handle ID
of constant STRS_WARNING_QUEUE.

(STRS-57) When an STRS application needs to send telemetry, the STRS application shall use
the callable STRS_Log method as described in Table 33, STRS_Log(), with a target handle ID
of constant STRS_TELEMETRY_QUEUE.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

85 of 200

Table 33—STRS_Log()
STRS_Log()
Description Send log message for distribution as appropriate. The time stamp and an

indication of the from and target handles are added automatically. STRS_Log
may be used to inform the infrastructure that the STRS component is in the
FAULT state when a target handle ID of STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE is used. The
character data type (STRS_Message) does not have to contain valid characters.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• logTarget – (in STRS_HandleID) handle ID of target (e.g.,
STRS_TELEMETRY_QUEUE, STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE). The last three
special-purpose handle IDs may be used to log errors.

• msg – (in STRS_Message) a pointer to the data to process
• nb – (in STRS_Buffer_Size) number of bytes in buffer

Return status (STRS_Result)
Precondition None
Postcondition Log message is distributed.
Applicable to OE developer: usually platform provider

(STRS-118) The STRS infrastructure shall contain a callable STRS_ValidateHandleID method
as described in Table 34, STRS_ValidateHandleID().

Table 34—STRS_ValidateHandleID()
STRS_ValidateHandleID()
Description Determines if a handle ID is STRS_OK or in error. After calling any STRS

method that returns a handle ID, it is recommended that
STRS_ValidateHandleID be called before any other STRS method.

Parameters • tstID – (in STRS_HandleID) the STRS_HandleID object from which the
handle ID is extracted.

Return (STRS_Result) STRS_OK when successful; otherwise, for error,
STRS_WARNING, STRS_ERROR, or STRS_FATAL.

Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

86 of 200

(STRS-119) The STRS infrastructure shall contain a callable STRS_ ValidateSize method as
described in Table 35, STRS_ValidateSize().

Table 35—STRS_ValidateSize()

STRS_ValidateSize()
Description Determines if an STRS_File_Size is STRS_OK or in error.

STRS_FileGetFreeSpace and STRS_FileGetSize return a type
STRS_File_Size number. After calling any STRS method that returns an
STRS_File_Size, it is recommended that STRS_ValidateSize be called before
calling any other STRS method.

Parameters • tstSize – (in STRS_File_Size) the file size object from which the file size
is extracted.

Return (STRS_Result) STRS_OK when successful; otherwise, for error,
STRS_WARNING, STRS_ERROR, or STRS_FATAL.

Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.4 STRS Infrastructure Data Sink

The STRS Infrastructure Data Sink method, STRS_Write, is used to push data to any
implemented data sink, such as an STRS application or STRS Device implementing APP_Write,
a queue, a Pub/Sub, a file opened for writing, etc.

(STRS-58) The STRS infrastructure shall contain a callable STRS_Write method as described in
Table 36, STRS_Write().

Table 36—STRS_Write()
STRS_Write()
Description Method used to send data to a target component (application, device, file, or

queue) acting as a sink. The caller manages the buffer area, preallocating and
filling the buffer before calling STRS_Write. The character data type
(STRS_Message) does not have to contain valid characters.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• toID – (in STRS_HandleID) handle ID of target component that should
respond to the request and that implemented STRS_Sink.

• buffer – (in STRS_Message) a pointer to the data to process
• nb – (in STRS_Buffer_Size) number of bytes in buffer

Return Error status (negative) or number of bytes (non-negative) written
(STRS_Result)

Precondition Storage for the buffer is allocated before calling STRS_Write having space for
at least nb bytes. If used for a C-style character string, the size should include
space for a final '\0'.

Postcondition The data has been captured by the target component for its processing.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

87 of 200

7.3.5 STRS Infrastructure Data Source

The STRS Infrastructure Data Source method, STRS_Read, is used to pull data from any
implemented data source or supplier. A data source may be an STRS application or STRS Device
implementing APP_Read, a queue, or a file opened for reading.

(STRS-59) The STRS infrastructure shall contain a callable STRS_Read method as described in
Table 37, STRS_Read().

Table 37—STRS_Read()
STRS_Read()
Description Method used to obtain data from a target component (application, device, file,

or queue) acting as a source or supplier. The caller manages the buffer area,
preallocating the buffer before calling STRS_Read and processing the
returned data without any effects on the data source application. The character
data type (STRS_Message) does not have to contain valid characters.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• pullID – (in STRS_HandleID) handle ID of target component that should
respond to the request and that implemented STRS_Source.

• buffer – (out STRS_Message) a pointer to an area in which to store the
data requested

• nb – (in STRS_Buffer_Size) number of bytes requested
Return Error status (negative) or actual number of bytes (non-negative) obtained

(STRS_Result)
Precondition Storage for the buffer is allocated before calling STRS_Read, having space

for at least nb bytes. If used for a C-style character string, the size should
include space for a final '\0'.

Postcondition The data from the target component is stored in the buffer area.
Applicable to OE developer: usually platform provider

7.3.6 STRS Infrastructure-Provided Device Control API

An STRS Device is a proxy for the data and/or control path to the actual hardware. An STRS
Device is a “bridge” used to “decouple an abstraction from its implementation so that the two
can vary independently.” An STRS Device is called using the methods in the STRS
Infrastructure-Provided Device Control API (as described in the tables below), STRS
Infrastructure-Provided Application Control API (section 7.3.2), Infrastructure Data Source API
(section 7.3.5, if appropriate), and Infrastructure Data Sink API (section 7.3.4, if appropriate) to
control the STRS Devices. The STRS Device may be implemented using any available platform-
specific HAL to communicate with and control the specialized hardware. An STRS Device may
also be used to hide the details of networking from the application. The purpose of abstracting
the hardware interfaces in a standard manner is to make the applications more portable and
reusable.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

88 of 200

(STRS-61) The STRS infrastructure shall contain a callable STRS_DeviceClose method as
described in Table 38, STRS_DeviceClose().

Table 38—STRS_DeviceClose()
STRS_DeviceClose()

Description Close the open device.
Parameters • fromWF – (in STRS_HandleID) handle ID of current component making

the request.
• toDev – (in STRS_HandleID) handle ID of device that should respond to

the request.
Return status (STRS_Result)
Precondition None
Postcondition The device is closed.
Applicable to OE developer: usually platform provider

(STRS-62) The STRS infrastructure shall contain a callable STRS_DeviceFlush method as
described in Table 39, STRS_DeviceFlush().

Table 39—STRS_DeviceFlush()
STRS_DeviceFlush()
Description Used the opened device to send any buffered data immediately to the underlying

hardware and clear the buffers.
Parameters • fromWF – (in STRS_HandleID) handle ID of current component making

the request.
• toDev – (in STRS_HandleID) handle ID of device that should respond to

the request.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

89 of 200

(STRS-63) The STRS infrastructure shall contain a callable STRS_DeviceLoad method as
described in Table 40, STRS_DeviceLoad().

Table 40—STRS_DeviceLoad()

STRS_DeviceLoad()
Description Load a binary image to the open device.
Parameters • fromWF – (in STRS_HandleID) handle ID of current component making

the request.
• toDev – (in STRS_HandleID) handle ID of device that should respond to

the request.
• filename – (in char *) storage area name or fully qualified file name of the

binary image to load onto the hardware device.
Return status (STRS_Result)
Precondition None
Postcondition The binary image is stored in the target device.
Applicable to OE developer: usually platform provider

(STRS-64) The STRS infrastructure shall contain a callable STRS_DeviceOpen method as
described in Table 41, STRS_DeviceOpen().

Table 41—STRS_DeviceOpen()
STRS_DeviceOpen()
Description Open the device.
Parameters • fromWF – (in STRS_HandleID) handle ID of current component

making the request.
• toDev – (in STRS_HandleID) handle ID of device that should respond

to the request.
Return status (STRS_Result)
Precondition None
Postcondition The device is opened.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

90 of 200

(STRS-65) The STRS infrastructure shall contain a callable STRS_DeviceReset method as
described in Table 42, STRS_DeviceReset().

Table 42—STRS_DeviceReset()
STRS_DeviceReset()
Description Reinitialize the device, if possible. Reset is normally used after the

corresponding device has been started and stopped, and before the device is
started again to bring the hardware device to its power-on state.

Parameters • fromWF – (in STRS_HandleID) handle ID of current component making
the request.

• toDev – (in STRS_HandleID) handle ID of device that should respond to
the request.

Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

(STRS-68) The STRS infrastructure shall contain a callable STRS_DeviceUnload method as
described in Table 43, STRS_DeviceUnload().

Table 43—STRS_DeviceUnload()
STRS_DeviceUnload()
Description Unload the open device.
Parameters • fromWF – (in STRS_HandleID) handle ID of current component making

the request.
• toDev – (in STRS_HandleID) handle ID of device that should respond to

the request.
Return status (STRS_Result)
Precondition None
Postcondition The device is unloaded.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

91 of 200

(STRS-69) The STRS infrastructure shall contain a callable STRS_SetISR method as described
in Table 44, STRS_SetISR().

Table 44—STRS_SetISR()
STRS_SetISR()
Description Set the Interrupt Service Routine for the device.
Parameters • fromWF – (in STRS_HandleID) handle ID of the current component

making the request.
• toDev – (in STRS_HandleID) handle ID of the device that should respond

to the request.
• pfun – (in STRS_ISR_Function) function pointer to a static or non-class

function to be called to service the interrupt
Return status (STRS_Result)
Precondition None
Postcondition ISR function is activated.
Applicable to OE developer: usually platform provider

7.3.7 STRS Device-Provided Device Control API

An STRS Device is a proxy for the data and/or control path to the actual hardware. An STRS
Device is a “bridge” used to “decouple an abstraction from its implementation so that the two
can vary independently.” An STRS Device is called using the methods in the STRS
Infrastructure-Provided Device Control API (section 7.3.6), STRS Infrastructure-Provided
Application Control API (section 7.3.2), Infrastructure Data Source API (section 7.3.5, if
appropriate), and Infrastructure Data Sink API (section 7.3.4, if appropriate) to control the
STRS Devices. The STRS Device may be implemented using any available platform-specific HAL
to communicate with and control the specialized hardware. An STRS Device may also be used to
hide the details of networking from the application. The purpose of abstracting the hardware
interfaces in a standard manner is to make the applications more portable and reusable. A
portable STRS Device is an STRS application that implements the STRS Application-Provided
Application Control API (section 7.3.1) calls and the STRS Device-Provided Device Control
calls shown below. The STRS Device implementation with the STRS_DeviceControl interface is
shown in Figure 14.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

92 of 200

(STRS-120) If the hardware is to be loaded by the STRS Device, the STRS Device shall contain
a callable DEV_Close method as described in Table 45, DEV_Close().

Table 45—DEV_Close()
DEV_Close()
Description Close the open device.
Parameters inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition The device is closed.
Applicable to Device developer: usually platform provider

(STRS-121) If the hardware is to be flushed by the STRS Device, the STRS Device shall contain
a callable DEV_Flush method as described in Table 46, DEV_Flush().

Table 46—DEV_Flush()
DEV_Flush()
Description Use the opened device to send any buffered data immediately to the underlying

hardware and clear the buffers.
Parameters inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition The device’s buffered data is flushed.
Applicable to Device developer: usually platform provider

(STRS-122) If the hardware is to be loaded by the STRS Device, the STRS Device shall contain
a callable DEV_Load method as described in Table 47, DEV_Load().

Table 47—DEV_Load()
DEV_Load()
Description Load a binary image to the open device.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.

• fileName - (in char *) storage area name or fully qualified file name of the
binary image to load onto the hardware device.

Return status (STRS_Result)
Precondition None
Postcondition The binary image is stored in the target device.
Applicable to Device developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

93 of 200

(STRS-123) If the hardware is to be loaded by the STRS Device, the STRS Device shall contain
a callable DEV_Open method as described in Table 48, DEV_Open().

Table 48—DEV_Open()

DEV_Open()
Description Open the device.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition The device is opened.
Applicable to Device developer: usually platform provider

(STRS-124) If the hardware is to be reset by the STRS Device, the STRS Device shall contain a
callable DEV_Reset method as described in Table 49, DEV_Reset().

Table 49—DEV_Reset()
DEV_Reset()
Description Reinitialize the device, if possible. Reset is normally used after the

corresponding device has been started and stopped, and before the device is
started again to bring the hardware device to its power-on state.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition The device is reset to an initial state.
Applicable to Device developer: usually platform provider

(STRS-125) If the hardware is to be loaded by the STRS Device, the STRS Device shall contain
a callable DEV_Unload method as described in Table 50, DEV_Unload().

Table 50—DEV_Unload()

DEV_Unload()
Description Unload the open device.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition The device is unloaded.
Applicable to Device developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

94 of 200

7.3.8 STRS Infrastructure File Control API

The STRS Infrastructure File Control methods, along with STRS_Read and/or STRS_Write,
provide a portable means for the applications to use storage, the duration of which is mission-
dependent. The word “file” is used to mean a named storage area regardless of the existence of
a file system. The file control methods in POSIX® PSE51 are not sufficient for the needs of STRS
because an application strictly conforming to PSE51 can use the open(), fopen(), or freopen()
functions only to open existing files, not to create new files. In addition, the PSE51 profile lacks
functions to remove files or to provide information regarding available storage. For more
information about POSIX®, see section 7.4. The STRS Infrastructure File Control methods use a
handle ID to access storage.

(STRS-70) The STRS infrastructure shall contain a callable STRS_FileClose method as
described in Table 51, STRS_FileClose().

Table 51—STRS_FileClose()
STRS_FileClose()
Description Close the open file. STRS_FileClose is used to close a file that has been

opened by STRS_FileOpen.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toFile - (in STRS_HandleID) handle ID of file to be closed.

Return status (STRS_Result)
Precondition None
Postcondition The file is closed and the handle ID is released.
Applicable to OE developer: usually platform provider

(STRS-71) The STRS infrastructure shall contain a callable STRS_FileGetFreeSpace method as
described in Table 52, STRS_FileGetFreeSpace().

Table 52—STRS_FileGetFreeSpace()
STRS_FileGetFreeSpace()
Description Get total size of free space available for file storage.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• fileSystem - (in char *) used when more than one file system exists.

Return Total size in bytes (STRS_File_Size).
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

95 of 200

(STRS-72) The STRS infrastructure shall contain a callable STRS_FileGetSize method as
described in Table 53, STRS_FileGetSize().

Table 53—STRS_FileGetSize()
STRS_FileGetSize()
Description Get the size of the specified file.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• fileName - (in char *) storage area name or fully qualified file name of the

file for which the size is obtained.
Return File size in bytes (STRS_File_Size).
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

(STRS-73) The STRS infrastructure shall contain a callable STRS_FileGetStreamPointer method
as described in Table 54, STRS_FileGetStreamPointer().

Table 54—STRS_FileGetStreamPointer()

STRS_FileGetStreamPointer()
Description Get the file stream pointer for the open file associated with the STRS handle

ID. This is normally not used because either the common functions are built
into the STRS architecture or the entire file manipulation is local to one
application or device. This method may be needed for certain file operations
not built into the STRS architecture and distributed over more than one
application or device or the STRS infrastructure. For example, the file stream
pointer may be used when multiple applications write to the same file using a
queue or need features not found in STRS_Write. Having a file system is
optional; if no file system is present, NULL will be returned. A NULL will
also be returned if another error condition is detected.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toFile - (in STRS_HandleID) file handle ID.
Return File stream pointer (FILE *) or NULL for error condition.
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

96 of 200

(STRS-74) The STRS infrastructure shall contain a callable STRS_FileOpen method as
described in Table 55, STRS_FileOpen().

Table 55—STRS_FileOpen()
STRS_FileOpen()
Description Open the file. This method is used to obtain an STRS handle ID when the

file manipulation is either built into the STRS architecture or distributed
over more than one application or device or the STRS infrastructure.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component
making the request.

• filename - (in char *) file name of the file to be opened.
• file access - (in STRS_Access) indicates if file is to be opened for

reading, writing, both, or appending.
• file type - (in STRS_Type) indicator whether file is text or binary.

Return a handle ID used to read or write data from or to the file
(STRS_HandleID). Handle ID should be validated with
STRS_ValidateHandleID to determine if successful.

Precondition None
Postcondition The file is open unless an error occurs. On error, the return value should

contain an error indication that can be tested by STRS_ValidateHandleID.
Applicable to OE developer: usually platform provider

(STRS-75) The STRS infrastructure shall contain a callable STRS_FileRemove method as
described in Table 56, STRS_FileRemove().

Table 56—STRS_FileRemove()
STRS_FileRemove()
Description Remove the closed file.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• oldName - (in char *) name of file to be removed.

Return status (STRS_Result)
Precondition None
Postcondition The file is no longer available, and the space where it was stored becomes

available.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

97 of 200

(STRS-76) The STRS infrastructure shall contain a callable STRS_FileRename method as
described in Table 57, STRS_FileRename().

Table 57—STRS_FileRename()
STRS_FileRename()
Description Rename the closed file where the new file name does not exist prior to the

call.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• oldName - (in char *) current name of file.
• newName - (in char *) new name of file after rename.

Return status (STRS_Result)
Precondition None
Postcondition The contents of the old file are now associated with the new file name.
Applicable to OE developer: usually platform provider

7.3.9 STRS Infrastructure Messaging API

The STRS applications use the STRS Infrastructure Messaging methods to establish messages
passing facilities to send messages between components using a single handle ID. The ability for
applications, services, devices, or files to communicate with other STRS applications, services,
devices, or files is crucial for the separation of radio functionality among independent
asynchronous components. For example, the receive and transmit telecommunication
functionalities can be separated between two applications. Another example is when commands
or log messages come from several independent sources and have to be merged appropriately.
Some examples of independent components that probably need to interact with others could be
for navigation, GPS, file upload, file download, and computations (even nonradio). The STRS
radio is essentially a computer, and it has capabilities that make the whole spacecraft system
more robust. The final destination of a message is not necessarily known to the producer of the
message.

There are two models for passing messages: STRS queue and Pub/Sub. In an STRS queue,
messages are written to a First-In First_Out (FIFO) queue by one entity and read from the FIFO
queue by another entity. In a Pub/Sub, messages written to the message passing facility by one
application are delivered to all subscribers of that publisher. Therefore, the Pub/Sub messaging
API should be implemented using a form of the Publish-Subscribe design pattern. To read from a
queue, STRS_Read is used. To write to a message passing facility, STRS_Write is used.
STRS_Read and STRS_Write provide a portable means for the applications to use message
passing facility.

Specific predefined message passing facility handle identification/identifiers (IDs) denoted by
STRS_ERROR_QUEUE, STRS_FATAL_QUEUE, and STRS_WARNING_QUEUE are required.
The STRS_Log method uses these special-purpose handle IDs to log errors.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

98 of 200

The message passing facility names are global so that the ones with the same name refer to the
same target across all applications. The same handle name refers to the same application,
device, file, queue, Pub/Sub, timer, or service across all applications. For information about
errors, see section 7.3.12.

(STRS-77) The STRS applications shall use the STRS Infrastructure Messaging, STRS
Infrastructure Data Source, and STRS Infrastructure Data Sink methods to send messages
between components.

(STRS-126) The STRS infrastructure shall contain a callable STRS_MessageQueueCreate
method as described in Table 58, STRS_MessageQueueCreate().

Table 58—STRS_MessageQueueCreate()

STRS_MessageQueueCreate()
Description Create a FIFO message queue if a handle does not already exist having the

given name
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• queueName - (in char *) unique name of the queue.
• nb – (STRS_Buffer_Size) maximum size of buffer containing messages.
• nmax – (STRS_Queue_Max_Messages) maximum number of messages

in queue.
Return handle ID of queue or error status (STRS_HandleID)
Precondition None
Postcondition Queue is created unless an error occurs.
Applicable to OE developer: usually platform provider

(STRS-127) The STRS infrastructure shall contain a callable STRS_MessageQueueDelete
method as described in Table 59, STRS_MessageQueueDelete().

Table 59—STRS_MessageQueueDelete()

STRS_MessageQueueDelete()
Description Delete a queue if it exists.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toQueue - (inout STRS_HandleID) handle ID of queue to delete.

Return status (STRS_Result)
Precondition None
Postcondition Queue is deleted.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

99 of 200

(STRS-128) The STRS infrastructure shall contain a callable STRS_PubSubCreate method as
described in Table 60, STRS_PubSubCreate().

Table 60—STRS_PubSubCreate()

STRS_PubSubCreate()
Description Create a Pub/Sub handle ID that is a proxy used to receive and redistribute

messages using STRS_Write unless the handle name already is used
somewhere else.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• pubsubName - (in char *) unique name of the Pub/Sub.
Return handle ID of Pub/Sub or error status (STRS_HandleID)
Precondition None
Postcondition Pub/Sub is created unless an error occurs.
Applicable to OE developer: usually platform provider

(STRS-129) The STRS infrastructure shall contain a callable STRS_PubSubDelete method as
described in Table 61, STRS_PubSubDelete().

Table 61—STRS_PubSubDelete()
STRS_PubSubDelete()
Description Delete a Pub/Sub if it exists. Any association between a publisher and

subscriber that references the Pub/Sub is removed.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toPubSub - (inout STRS_HandleID) handle ID of Pub/Sub to delete.

Return status (STRS_Result)
Precondition None
Postcondition Specified Pub/Sub is deleted and any associations are removed.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

100 of 200

(STRS-80) The STRS infrastructure shall contain a callable STRS_Register method as described
in Table 62, STRS_Register().

Table 62—STRS_Register()
STRS_Register()
Description Register an association between a publisher and subscriber where both exist.

Disallow duplicates between the same publisher and subscriber.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• useQID - (in STRS_HandleID) handle ID of Pub/Sub that will be used as

a sink; the publisher.
• actQID - (in STRS_HandleID) handle ID of Pub/Sub, file, device, or

target component that should respond to the request as a sink; the
subscriber.

Return status (STRS_Result)
Precondition None
Postcondition Association between publisher and subscriber is registered, if allowed.
Applicable to OE developer: usually platform provider

(STRS-81) The STRS infrastructure shall contain a callable STRS_Unregister method as
described in Table 63, STRS_Unregister().

Table 63—STRS_Unregister()
STRS_Unregister()

Description Remove an association between a publisher and subscriber, if the association
exists.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• useQID - (in STRS_HandleID) handle ID of Pub/Sub that was used as a
sink; the publisher.

• actQID - (in STRS_HandleID) handle ID of Pub/Sub, file, device, or
target component that should no longer respond to the request as a sink;
usually the subscriber.

Return status (STRS_Result)
Precondition None
Postcondition Association between publisher and subscriber is removed.
Applicable to OE developer: usually platform provider

7.3.10 STRS Infrastructure Time Control API

The STRS Infrastructure Time Control methods are used to access the hardware and software
timers. If timers require synchronization with external clocks, a dedicated service should handle
the communication between the STRS radio and the external clock source, adjusting the time or
offset for distance and velocity, before using these methods to adjust a corresponding internal

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

101 of 200

timer. These methods also include conversion of time between seconds and nanoseconds, taken
individually, and some implementation-specific object containing both. Although nanoseconds
are the units obtained by STRS_GetNanoseconds, that does not imply that the resolution is
nanoseconds or that the underlying STRS_TimeWarp object contains its data in nanoseconds.
For example, the underlying STRS_TimeWarp object could count ticks from some epoch and
then STRS_GetSeconds and STRS_GetNanoseconds compute the seconds and nanoseconds from
the same or a different epoch. These timers are expected to be used for relatively low accuracy
timing such as time stamps, timed events, and time constraints. The timers are expected to be
used for signal processing in the GPP if the GPP becomes fast enough.

(STRS-82) Any portion of the STRS Applications on the GPP needing time control shall use the
STRS Infrastructure Time Control methods to access the hardware and software timers.

(STRS-130) The implementer of an STRS clock/timer software component for use with
STRS_GetTime shall document it to include handle name, kind, epoch, resolution, use of leap
seconds, and whether it should match a time somewhere else, as described further in Table 64,
Document STRS Clock/Timer.

Table 64—Document STRS Clock/Timer

Applicable to STRS clock/timer developer, which may be platform provider or application
developer.

(STRS-83) The STRS infrastructure shall contain a callable STRS_GetNanoseconds method as
described in Table 65, STRS_GetNanoseconds().

Table 65—STRS_GetNanoseconds()
STRS_GetNanoseconds()
Description Get the number of nanoseconds from the STRS_TimeWarp object.
Parameters • twObj - (in STRS_TimeWarp) the STRS_TimeWarp object from which

the nanoseconds portion of the time increment is extracted.
Return Integer number of nanoseconds in the STRS_TimeWarp object representing a

time interval. (STRS_Nanoseconds)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

102 of 200

(STRS-84) The STRS infrastructure shall contain a callable STRS_GetSeconds method as
described in Table 66, STRS_GetSeconds().

Table 66—STRS_GetSeconds()
STRS_GetSeconds()
Description Get the number of seconds from the STRS_TimeWarp object.
Parameters • twObj - (in STRS_TimeWarp) the STRS_TimeWarp object from which

the nanoseconds portion of the time increment is extracted.
Return integer number of seconds in the STRS_TimeWarp object representing a time

interval. (STRS_Seconds)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

(STRS-85) The STRS infrastructure shall contain a callable STRS_GetTime method as described
in Table 67, STRS_GetTime().

Table 67—STRS_GetTime()
STRS_GetTime()
Description Get the current base time and the corresponding time of a specified type

(kind). The base clock/timer is usually a hardware timer. The variable kind is
used to obtain a nonbase time at a specified offset from the base time. An
offset is usually specified to ensure that the clock is monotonically increasing
after a power reset or synchronized with another clock/timer. To compute the
time interval between two nonbase times of different kinds, the function is
called twice and the interval is modified by the difference between the two
base times.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toDev - (in STRS_HandleID) handle ID of device that should respond to
the request.

• baseTime - (inout STRS_TimeWarp) current time of the base timer.
• kind - (in STRS_Clock_Kind) type of clock/timer.
• kindTime - (inout STRS_TimeWarp) current time of the specified timer.

Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

103 of 200

(STRS-131) The STRS infrastructure shall contain a callable STRS_GetTimeAdjust method as
described in Table 68, STRS_GetTimeAdjust().

Table 68—STRS_GetTimeAdjust()
STRS_GetTimeAdjust()
Description Get the current time rate for the specified clock/timer which, when applied

to the clock specified by its handle ID, will more closely synchronize it
with another.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component
making the request.

• toDev - (in STRS_HandleID) handle ID of device that should respond
to the request.

Return iRate (STRS_TimeRate) an integer time rate. Units are specific to the
clock/timer.

Precondition None
Postcondition Time rate is obtained or computed.
Applicable to OE developer: usually platform provider

(STRS-86) The STRS infrastructure shall contain a callable STRS_GetTimeWarp method as
described in Table 69, STRS_GetTimeWarp().

Table 69—STRS_GetTimeWarp()
STRS_GetTimeWarp()
Description Get the STRS_TimeWarp object containing the number of seconds and

nanoseconds in the time interval.
Parameters • isec - (in STRS_Seconds) number of seconds in the time interval

• nsec - (in STRS_Nanoseconds) number of nanoseconds in the
fractional portion of the time interval

Return STRS_TimeWarp object representing the time interval.
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

104 of 200

(STRS-87) The STRS infrastructure shall contain a callable STRS_SetTime method as described
in Table 70, STRS_SetTime().

Table 70—STRS_SetTime()
STRS_SetTime()
Description Set the current time in the specified clock/timer by adjusting the time offset.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.
• kind - (in STRS_Clock_Kind) type of clock/timer.
• delta - (in STRS_TimeWarp) increment to add to specified clock/timer.

Return status (STRS_Result)
Precondition None
Postcondition Time is adjusted.
Applicable to OE developer: usually platform provider

(STRS-132) The STRS infrastructure shall contain a callable STRS_SetTimeAdjust method as
described in Table 71, STRS_SetTimeAdjust().

Table 71—STRS_SetTimeAdjust()
STRS_SetTimeAdjust()
Description Set the current time rate in the specified clock/timer.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component

making the request.
• toDev - (in STRS_HandleID) handle ID of device that should respond

to the request.
• iRate - (in STRS_TimeRate) a rate applied to the specified clock/timer

to set the clock/timer relative time. Units are specific to the clock/timer.
Return status (STRS_Result)
Precondition None
Postcondition Time rate is adjusted.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

105 of 200

(STRS-133) The STRS infrastructure shall contain a callable STRS_Sleep method as described
in Table 72, STRS_Sleep().

Table 72—STRS_Sleep()
STRS_Sleep()
Description Delays the execution of the application for at least the time specified in the

STRS_TimeWarp argument that contains the number of seconds and
nanoseconds in the time interval. The time interval may still not be accurate
depending on the underlying timer resolution and thread interaction.

Parameters • clockID – (STRS_HandleID) the handle ID of the timer/clock.
• twObj - (in STRS_TimeWarp) the STRS_TimeWarp object from which

the time is extracted.
• absOrRel- (Boolean) true, if absolute time is specified; false, if relative

time is specified.
Return (STRS_Result) STRS_OK when successful. STRS_ERROR for error.

STRS_WARNING if interrupted.
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

(STRS-88) The STRS infrastructure shall contain a callable STRS_TimeSynch method as
described in Table 73, STRS_TimeSynch().

Table 73—STRS_TimeSynch()
STRS_TimeSynch()
Description Synchronize clocks. The action depends on whether the clocks to be

synchronized are internal or external, or whether the clocks differ by amounts
that exceed the maximum step size allowed.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• refDev - (in STRS_HandleID) handle ID of reference device containing
the reference clock/timer.

• ref - (in STRS_Clock_Kind) type of reference clock/timer.
• targetDev - (in STRS_HandleID) handle ID of target device to

synchronize.
• target - (in STRS_Clock_Kind) type of clock/timer to synchronize with

reference clock/timer.
• stepMax – (in STRS_TimeWarp) maximum step size to allow at a time,

which can be used for gradual time adjustment. Zero implies no limit in
step size.

Return status (STRS_Result) where a positive value indicates the number of steps
left to adjust at the maximum step size.

Precondition None
Postcondition Clocks are more synchronized.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

106 of 200

7.3.11 STRS Predefined Data

For portability, standard names are defined for various constants and data types, but the
implementation of these definitions is mission dependent. The common symbols and data types
defined to support the STRS infrastructure APIs are shown in Table 74, STRS Predefined Data.

(STRS-89) The STRS platform provider shall provide an STRS.h file containing the STRS
predefined data shown in Table 74, STRS Predefined Data.

(STRS-106) An STRS application shall use the appropriate constant, typedef, or struct defined in
Table 74, STRS Predefined Data, when the data are used to interact with the STRS APIs.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

107 of 200

Table 74—STRS Predefined Data

Typedefs

Name Type Description

STRS_Access A number Used to indicate how reading and/or writing of a
file or queue is done. See also constants
STRS_ACCESS_APPEND,
STRS_ACCESS_BOTH,
STRS_ACCESS_READ, and
STRS_ACCESS_WRITE.

STRS_Buffer_Size A number Used to represent a buffer size in bytes. The
type of the number is to be long enough to
contain the maximum number of bytes to
reserve or to transfer with a read or write.

STRS_Clock_Kind A number Used to represent a kind of clock or timer. The
type of the number is to be long enough to
contain the maximum number of kinds of clocks
and timers.

STRS_File_Size A number Used to represent a size in bytes. The type of the
number is to be long enough to contain the
number of bytes in GPP storage. Specific
negative error values returned indicate an error.

STRS_HandleID A number Used to represent an STRS application, device,
file, or queue. Specific error value(s) returned
indicate an error.

STRS_int8 A number Used for an 8-bit signed integer

STRS_int16 A number Used for a 16-bit signed integer

STRS_int32 A number Used for a 32-bit signed integer

STRS_int64 A number Used for a 64-bit signed integer

STRS_ISR_Function A static C-style
function pointer

Used to define static C-style function pointers
passed to the STRS SetISR() method. The
function passed to the STRS_SetISR() method
is defined with any arguments needed by the OE
for its underlying system calls. The OE-specific
documentation contains the description of any
arguments.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

108 of 200

Typedefs

Name Type Description

STRS_Message A char array pointer Used for messages.

STRS_Nanoseconds* A number Used to hold the number of nanoseconds in the
STRS_TimeWarp object, at least 32 bits for a
signed integer. Using 32 bits would allow a
maximum of 2,147,483,647 nanoseconds =
2.147483647 seconds that would allow the
sum/difference of the nanosecond counter in 2
normalized STRS_TimeWarp objects. Each
additional bit multiplies the 2.1475 seconds in
the nanosecond counter by 2.

STRS_Property_Name Used to hold a property name, usually a set of
characters (char).

STRS_Property_Value Used to hold a property value, usually a set of
characters (char).

STRS_Queue_Max_Messages A number Used to represent the maximum number of
messages allowed in the queue.

STRS_Result A number Used to represent a return value, where there are
specific values that indicate an error.

STRS_Seconds* A number Used to hold the number of seconds in the
STRS_TimeWarp object, at least 32 bit signed
integer. Using 32 bits would allow a maximum
of 2,147,483,647 seconds = 68.05 years. For an
epoch of 1970, the 32-bit second counter runs
out in 2038. Each additional bit multiplies the
68.05 years in the second counter by 2.

STRS_TestID A number Used to represent the built-in test or ground test
to be performed by APP_RunTest or
APP_GroundTest, respectively. See also
STRS_TEST_STATUS and
STRS_TEST_USER_BASE.

STRS_TimeWarp A representation of a
time delay

The representation of a time delay able to hold
the number of seconds and nanoseconds in the
time delay so that the corresponding macros can
extract them. The time delay is meant to be used
for recurrent processes such as in health
management. The implementation is mission
and/or platform specific and is most likely a

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

109 of 200

Typedefs

Name Type Description

struct. The maximum number of seconds in a
time delay cannot be greater than 2(no. of bits in

STRS_Seconds - 1) seconds. Divide the maximum
number of seconds by 31557600
(60*60*24*365.25) to get the approximate
number of years.

STRS_TimeRate A number Integer indicating time rate factor used to adjust
time relative to clock accuracy defined by
STRS_TimeRatePPS.

STRS_Type A number Used to indicate whether a file is text or binary.
See also constants STRS_TYPE_BINARY and
STRS_TYPE_TEXT.

STRS_uint8 A number Used for an 8-bit unsigned integer

STRS_uint16 A number Used for a 16-bit unsigned integer

STRS_uint32 A number Used for a 32-bit unsigned integer

STRS_uint64 A number Used for a 64-bit unsigned integer

Constants

Name Type Description

STRS_ACCESS_APPEND STRS_Access Indicates that writing is allowed such
that previous data written are preserved
and new data are written following any
previous data. Corresponds to ISO C
fopen mode “a”.

STRS_ACCESS_BOTH STRS_Access Indicates that both reading and writing
are allowed. Corresponds to ISO C
fopen mode “r+” used for update.

STRS_ACCESS_READ STRS_Access Indicates that reading is allowed.
Corresponds to ISO C fopen mode “r”.

STRS_ACCESS_WRITE STRS_Access Indicates that writing is allowed.
Corresponds to ISO C fopen mode “w”.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

110 of 200

Constants

Name Type Description

STRS_OK STRS_Result Indicates that the STRS_Result is valid.
See also STRS_IsOK().

STRS_ERROR STRS_Result Indicates that the STRS_Result is
invalid. Specific value indicating an
error such that the application or other
component is still usable. See also
STRS_IsOK() and
STRS_GetErrorQueue().

STRS_ERROR_QUEUE STRS_HandleID Indicates that the log queue is for error
messages. See also
STRS_GetErrorQueue().

STRS_FATAL STRS_Result Indicates that the STRS_Result is
invalid. Specific value indicating a
serious error such that the application or
other component is not usable. See also
STRS_IsOK() and
STRS_GetErrorQueue().

STRS_FATAL_QUEUE STRS_HandleID Indicates that the log queue is for fatal
messages. The fatal queue is used for
messages that the fault monitoring and
recovery functions are to deal with
immediately. The messages are sent to
the Flight Computer for further
handling. See also
STRS_GetErrorQueue().

STRS_TELEMETRY_QUEUE STRS_HandleID Indicates that the log queue is for
telemetry data.

STRS_TYPE_BINARY STRS_Type Indicates that a file is a binary file.

STRS_TYPE_TEXT STRS_Type Indicates that a file is a text file.

STRS_WARNING STRS_Result Indicates that the STRS_Result is
invalid. Specific value indicating an
error such that there may be little or no
effect on the operation of the
application or other component. See
also STRS_IsOK() and
STRS_GetErrorQueue().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

111 of 200

Constants

Name Type Description

STRS_WARNING_QUEUE STRS_HandleID Indicates that the log queue is for
warning messages. See also
STRS_GetErrorQueue().

STRS_OE_HANDLE_NAME char * A handle name used to find handle ID
that may be used to query the OE.

OEClockAppName char * The handle name used to find handle ID
that may be used to access time using
STRS_GetTime used in a timestamp.

OEClockKind STRS_Clock_Kind The number used to indicate the type of
clock/timer used in a timestamp.

STRS_TimeRatePPS STRS_TimeRate Integer accuracy of time rate in number
of parts per second.

STRS_MAX_PROPERTY_NAME_SIZE #define The maximum number of characters in
the name in a Property object, not
including the final ‘\0’. Any use of this
as a dimension should be increased by
one.

STRS_MAX_PROPERTY_VALUE_SIZE #define The maximum number of characters in
the value in a Property object, not
including the final ‘\0’. Any use of this
as a dimension should be increased by
one.

STRS_MAX_PATH_NAME_SIZE #define The maximum number of characters in
a path name for the OE, not including
the final ‘\0’. Any use of this as a
dimension should be increased by one.

STRS_MAX_HANDLE_NAME_SIZE #define The maximum number of characters in
a handle name for the OE, not including
the final ‘\0’. Any use of this as a
dimension should be increased by one.

STRS_MAX_LOG_MESSAGE_SIZE #define The maximum number of characters in
each message submitted to the log, not
including the final ‘\0’. Any use of this
as a dimension should be increased by
one.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

112 of 200

Constants

Name Type Description

STRS_MAX_QUEUE_MESSAGES STRS_Queue_Max
_Messages

The maximum number of messages that
can be stored in a queue. Not normally
used except for testing.

The STRS Predefined Data is used internally and the STRS Queryable Data is used externally.
The STRS Queryable Data may be used to verify the version of the Application or OE, and to be
able to notice when it changes.

(STRS-134) The STRS infrastructure shall have the queryable parameter names in Table 75,
Queryable Platform Parameter Names, for which values may be obtained using STRS_Query
with the handle ID corresponding to the handle name STRS_OE_HANDLE_NAME.

Table 75—Queryable Platform Parameter Names
Parameter Name Description Notes
PLATFORM_PROVIDER Unique name of STRS

platform provider
This is usually a company name or
university, followed by a subsidiary,
division, or department name.

PLATFORM_OE_VERSION Unique version number for
platform STRS
infrastructure software

(STRS-135) An STRS application shall have the queryable parameter names in Table 76,
Queryable Application Parameter Names, for which values may be obtained using STRS_Query
with the handle ID of the application.

Table 76—Queryable Application Parameter Names
Parameter Name Description Notes
WAVEFORM_DEVELOPER Unique name of application

developer
This is usually a company name or
university, followed by a subsidiary,
division, or department name.

WAVEFORM_VERSION Unique version number for
STRS application software

WAVEFORM_STATE Current application state Documented per STRS-12(3)

7.3.12 Error Handling

Special-purpose handle IDs for errors include the following: STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, and STRS_FATAL_QUEUE. The STRS_Log method uses these
special-purpose handle IDs to log errors. A nonfatal error is a correctable condition such that
the application is usable when the error is corrected. This nonfatal error is denoted by the STRS
return value of STRS_ERROR and is logged using the STRS handle ID of

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

113 of 200

STRS_ERROR_QUEUE. A warning is an indication of an impending error that is correctable if
action is taken. This warning is denoted by the STRS return value of STRS_WARNING and is
logged using the STRS handle ID of STRS_WARNING_QUEUE. A fatal error is a condition
where the application is subsequently not usable and a reboot or reload is often necessary. This
fatal error is denoted by the STRS return value of STRS_FATAL and is logged using the STRS
handle ID of STRS_FATAL_QUEUE.

7.4 Portable Operating System Interface

STRS applications and services can use a subset of the POSIX® API as shown in Figure 9 and
discussed in more detail in this section. POSIX® refers to a family of IEEE standards 1003.n
that describe the fundamental services and functions necessary to provide a UNIX®-like kernel
interface to applications. POSIX® itself is not an OS but is instead the guaranteed programming
interfaces available to the application programmer.

POSIX® specifies a set of OS interfaces and services. POSIX® is not specifically bound to a
specific OS, and has in fact been implemented on top of OS such as Digital Equipment
Corporation’s (DEC’s) OpenVMS™ (Virtual Memory System) and Microsoft Windows NT®.
However, the creation of POSIX® is closely coupled to the UNIX® OS and its evolution. The
goal was to create a standard set of interfaces that all of the UNIX® flavors would support in
order to facilitate software portability. Even though POSIX® technically refers to the family of
specifications, it is more commonly used to refer specifically to IEEE 1003.1, Information
Technology - Portable Operating System Interface (POSIX®), which is the core POSIX®
specification.

Characteristics of POSIX® include the following:

a. Application-oriented.
b. Interface, not implementation.
c. Source, not object, portability.
d. The C-language/system interfaces written in terms of the ISO C standard.
e. No superuser, no system administration.
f. Minimal interface, minimally defined—core facilities of this NASA Technical

Standard have been kept as minimal as possible.
g. Broadly implementable.
h. Minimal changes to historical implementations.
i. Minimal changes to existing application code.

The original POSIX® specification was based on a general purpose computing platform, but a
series of amendments addressed the unique requirements of real-time computing. These
amendments follow:

a. IEEE 1003.1B-Realtime Extension.
b. IEEE 1003.1C-Threads Extension.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

114 of 200

c. IEEE 1003.1D-Additional Realtime Extensions.
d. IEEE 1003.1J-Advanced Realtime Extensions.
e. IEEE 1003.1Q-Tracing.

These amendments were rolled into the base specification in version IEEE 1003.1-1996. IEEE
1003.13 provides a standards-based option for an STRS AEP.

7.4.1 STRS Application Environment Profile

The subset of the POSIX® API described below is used by STRS applications to access platform
services when no STRS Infrastructure-provided API is available. POSIX® was chosen as part of
this NASA Technical Standard because it defines an open-standard OS interface and
environment to support application portability. However, because of the limited resources on a
space-based platform, it was not practical to support the entire IEEE 1003.1 specification.

The IEEE 1003.1 standard provides a means to implement a subset of the interfaces by using
“Subprofiling Option Groups.” These option groups specify “Units of Functionality” that can be
removed from the base POSIX® specification.

IEEE 1003.13 created four AEPs that specified subsets of 1003.1 more suitable to embedded
applications. These profiles follow:

• PSE51—Minimal Realtime Systems Profile.
• PSE52—Realtime Controller System Profile.
• PSE53—Dedicated Realtime System Profile.
• PSE54—Multi-Purpose Realtime System Profile.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

115 of 200

PSE51

PSE52

PSE53

PSE54

Figure 15—Profile Building Blocks

The profiles are each upwardly compatible and consist of the basic building blocks shown in
Figure 15,1 Profile Building Blocks.

Each of these profiles has increasing capabilities, which increase requirements on resources.
Profiles 51 and 52 runs on a single processor with no Memory Management Unit (MMU), and
thus imply a single process containing one or more threads. Profile 52 adds a file system
interface and asynchronous I/O. Profile 53 adds support for multiple processes, thus requiring
an MMU. The last and largest profile 54 adds support for interactive users, and is almost a full-
blown POSIX® 1003.1 environment. The higher numbered profiles are supersets of the lower
numbered profiles, such that PSE52 includes all the features of a PSE51.

Upward portability between profiles is supported by requiring certain APIs, such as memory
locking, for profiles PSE51 and PSE52. Even though there is no MMU support on the PSE51 and
PSE52 profiles, code written as if there is an MMU present will be portable among all four
profiles by requiring such APIs to be defined in all four profiles. The signature of these APIs will
be identical on all profiles, but the functionality will differ according to the capabilities. For
example, calling a memory-locking API on a PSE51 platform with no MMU will always return
success. When this example application is ported to a PSE53 platform, the memory locking will
work as intended without modification to the source code.

Currently, this NASA Technical Standard supports platforms based on profiles PSE51 through
PSE54, although PSE54 will only be used for development platforms and ground stations.

1 IEEE 1003.13-2003

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

116 of 200

Allowing multiple profiles allows the architecture to scale with mission class. Applications
developed for a specific profile are compatible with higher profiles; that is, a profile 52
application could be ported to profile PSE53 and PSE54 platform, but not vice versa. This
upward scalability anticipates that smaller platforms will desire smaller profiles and will not
have the resources to run larger applications that comply with the larger profiles. Appendix A
provides a table comparing the POSIX® profile functionality for subset PSE51 through PSE53.

(STRS-90) The STRS OE shall provide the interfaces described in POSIX® standard IEEE
1003.13 profile PSE51.

For constrained-resource platforms with limited software evolutionary capability, where the
waveform signal processing is implemented in specialized hardware, the supplier may request a
waiver to only implement a subset of POSIX® PSE51 as required by the portion of the
waveforms residing on the GPP. The applications created for this platform are to be upward-
compatible to a larger platform containing POSIX® PSE51. The POSIX® API is grouped into
units of functionality. If none of the applications for a constrained-resource platform use any of
the interfaces in a unit of functionality, then the supplier may request a waiver to eliminate that
entire unit of functionality.

Regardless of the POSIX® profile implemented, applications are not to use any restricted
functions or their equivalent, such as abort(), atexit(), exit(), calloc(), free(), malloc(), or
realloc(). For portability of application code to multithreaded STRS platforms, STRS
applications are to use the thread-safe versions of the POSIX® methods listed in Table 77,
Replacements for Unsafe Functions.

(STRS-91) STRS applications shall use POSIX® methods except for the unsafe functions listed
in Table 77, Replacements for Unsafe Functions.

Table 77—Replacements for Unsafe Functions

Unsafe Function
Do Not Use!

Reentrant Counterpart
OK to Use

abort STRS_AbortApp
asctime asctime_r
atexit -
ctermid ctermid_r
ctime ctime_r
exit STRS_AbortApp
getlogin getlogin_r
gmtime gmtime_r
localtime localtime_r
rand rand_r
readdir readdir_r
strtok strtok_r
tmpnam tmpnam_r

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

117 of 200

7.5 Network Stack

A network stack is the part of the OS used for networking, usually Transmission Control
Protocol/Internet Property (TCP/IP). Communications over a network use a layered network
model. TCP/IP is the protocol that is used to transport information over the Internet, and the
TCP/IP network model consists of five layers: the application layer, the transport layer, the
network layer, the data link layer, and the physical network.

7.6 Operating System

The OS is an integral part of the OE for the STRS software architecture. Modern communication
systems perform simultaneous application processing in dedicated hardware at the very fast
speeds to which users have become accustomed. Any change in this environment is to equal or
exceed previous performance for it to be considered for usage. As such, the proposal to perform
application processing via software modules executing on a GPP involves careful consideration
of both the necessary OS characteristics and the application processing requirements. In a
simplistic sense, a computer OS manages the usage and sharing of resources between competing
users (i.e., tasks) to perform work. In this case, each task is performing a specific instance of
application processing. When the OS decides to stop the execution of one task and start another,
the current context of the machine (register values, instruction pointers, etc.) is to be saved and
then switched to accommodate the requirements of the new task. On a desktop computer system,
context switching between competing tasks is performed on an ad-hoc basis with no guarantee of
task execution. For most missions, this is unacceptable because context switching between
execution threads and deterministic thread execution are the driving characteristics for an OS.

To support these requirements, most STRS platforms will use an RTOS instead of a general-
purpose OS. An RTOS provides the capabilities of fast, low overhead for context switching, and
a deterministic scheduling mechanism so that processing constraints can be achieved when
required.

Fundamental to STRS application development is the existence of an OS kernel that can be
configured and scaled down to fit into the executable image of the STRS system. A modern RTOS
is primarily designed for either performance (monolithic kernel) or extensibility (microkernel).
Monolithic kernels have tightly integrated services and less run-time overhead but are not easily
extensible. Microkernels have somewhat high run-time overheads but are highly extensible. Most
modern RTOSs are microkernels, and although modern microkernels have more overhead than
monolithic kernels, they have less overhead than traditional microkernels. The run-time
overhead of modern RTOSs is decreased by reducing the unnecessary context switch. Important
timings such as context switch time, interrupt latency, and semaphore get and release latency is
to be kept to a minimum.

7.7 Hardware Abstraction Layer

The HAL is the library of software functions in the STRS OE that provides a platform-vendor-
specific view of the specialized hardware by abstracting the underlying physical hardware

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

118 of 200

interfaces. The HAL allows specialized hardware to be integrated with the GPM so that the
STRS OE can access functions implemented on the specialized hardware of the STRS platform.

Two examples of specialized hardware currently in use on SDRs are FPGAs and DSPs.
Examples of functionality that a HAL might need to support include boot code for initializing the
hardware and loading the OS image, context switch code, configuration and access to hardware
resources. The HAL is commonly referred to by platform vendors as drivers or BSPs. Most
companies already provide such libraries to allow use of specialized hardware. This layer
enables the STRS infrastructure to have a direct interface to the hardware drivers on the
platform.

There are two requirements concerning the HAL in the STRS architecture:

a. STRS-11 requires a HAL software API, which defines the physical and logical
interfaces for intermodule and intramodule integration. The HAL is required for communicating
data and control information between the GPP and the specialized hardware. The HAL API is
not currently defined in this NASA Technical Standard but is left for the STRS platform provider
to specify.

b. STRS-92 requires HAL documentation that includes a description of each method, its

calling sequence, the return values, an explanation of the functionality, preconditions for using
the method, postconditions after using the method, and examples where helpful. Note that the
delivery of the HAL source code is not required.

The electrical interfaces, connector requirements, and physical requirements are specified by the
STRS platform provider in the HID. Information on a module’s use of data in the HID will be
made available to STRS application developers, either directly from the manufacturer (for
specific types of components) or from the STRS platform provider (for memory maps based on
electrical connections). The infrastructure or HAL may use this information to appropriately
initialize hardware drivers such that control and data messages are delivered to the module.

Even though there is not a requirement for the STRS OE to be portable, the HAL is expected to
foster portability and reusability of the STRS infrastructure and specialized hardware in different
combinations from that originally designed. It can reduce the design efforts otherwise necessary
to adapt the software to a new hardware platform. The goal with the HAL is to make it easier to
change or add new hardware and to minimize the impact to the software. It does this by
localizing the differences in software so that most of the STRS OE code does not need to be
changed to run on a new platform or a platform with a new module.

Table 78, Sample HAL Documentation, shows an example of the HAL API for the function
OPEN.

(STRS-92) The STRS platform provider shall provide the STRS platform HAL documentation
that includes the following:

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

119 of 200

(1) For each method or function, its calling sequence, return values, an explanation of
its functionality, any preconditions for using the method or function, and the
postconditions after using the method or function.

(2) Information required to address the underlying hardware, including the interrupt
input and output, the memory mapping, and the configuration data necessary to
operate in the STRS platform environment.

Table 78—Sample HAL Documentation

HAL API RESULT OPEN(HANDLE* resourceHandle, RESOURCE_NAME
resourceName)

Description Open a resource by name. If no errors are encountered, use the
resourceHandle to access the resource.

Parameters • resourceHandle - [out] A pointer to place the opened handle into
• resourceName - [in] The name of the resource to open

Return A 32-bit signed integer used to determine whether an error has occurred.
Use TEST_ERROR to obtain a printable message.

• Zero - No errors or warnings.
• Positive – Warning.
• Negative – Error.

Precondition Resource is not open before executing this command.
Postcondition Resource will be open and ready for further access if no error

was encountered.
See Also READ, WRITE, CLOSE, TEST_ERROR
Example #include <HALResources.h>

 …
RESULT result;
HANDLE resourceHandle;
RESOURCE_NAME resourceName = "FPGA";
result = OPEN(&resourceHandle, resourceName)
if (result < 0) {
 cout << "Error: " << TEST_ERROR(result) << endl;
} else if (result > 0) {
 cout << "Warning: " << TEST_ERROR(result) << endl;
}

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

120 of 200

8. EXTERNAL COMMAND AND TELEMETRY INTERFACES

An STRS radio cannot perform the necessary application and platform functions without an
external system providing commands, accepting responses, and monitoring the radio’s health
and status. The STRS radio implements an external interface to receive and act on the commands
from the external system, translates the commands into the format expected by the application,
and provides the information for monitoring the health and status of the radio. If the STRS radio
has the capability for new or modified OE, application software, or configurable hardware
design, the external command and telemetry interfaces should be able to accept and store new
files. The interface in the STRS radio and in the external system, which is to provide the control,
via a command sequence, to the STRS radio and receive responses from an STRS radio, is
referred to as the STRS command and telemetry interfaces. The external STRS command and
telemetry functionality illustrated in Figure 16, Command and Telemetry Interfaces, typically
resides on the spacecraft’s flight computer, and/or it may reside on a ground station or another
spacecraft.

Figure 16—Command and Telemetry Interfaces

This shared capability implies that the STRS radio is capable of performing the interface
functions. Within the STRS radio, if there are data stored on the radio that are to be transferred
to an external system, the capability is to exist to send data using a mission-specific protocol to
the receiver (flight computer, ground station, or other spacecraft) and capability in the receiver
to process those data or write those data to a file or download service or to a storage area that is
accessible from both. The reverse capability for STRS radio control is also necessary: The
external system is capable of sending commands using a mission-specific protocol and the STRS
radio is capable of validating, deciphering, and processing those commands. For example, data
coming over the Flight Computer Interface are interpreted by the Command and Control
Manager as shown in Figure 13 and are processed by the STRS infrastructure.

Within the STRS radio, components of the command and telemetry interfaces are necessary to
provide the interfaces between the STRS OE and the STRS command and telemetry functionality
on the external system. The command and telemetry interfaces may include a standard type of

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

121 of 200

mechanical, electrical, and functional spacecraft bus interface, such as MIL–STD–1553, Digital
Time Division Command/Response Multiplex Data Bus; command and telemetry interpretation;
and translation of the command set to the STRS standard necessary for application control. The
protocol, command set, and telemetry set for the STRS command and telemetry interfaces are
NOT part of the STRS standard but can be unique to each mission. A number of interface and
behavior requirements are part of the standard to support the mission-specific protocols.

The requirements related to the external command and telemetry interfaces follow:

(STRS-94) An STRS platform shall accept, validate, and respond to external commands.

(STRS-95) An STRS platform shall execute external application control commands using the
standardized STRS APIs.

(STRS-107) An STRS platform provider shall document the external commands describing their
format, function, and any STRS methods invoked.

(STRS-96) The STRS infrastructure shall use the STRS_Query method to service external
system requests for information and to provide telemetry data about an STRS application.

The STRS telemetry set will be mission-specific but will likely contain some or all of the
following parameters:

a. Power values.
(1) Voltage, current, and power readings.

b. Environment values.
(1) Temperature.
(2) Pressure.

c. Power on reset test result status.
(1) RAM test.
(2) Read-only memory (ROM) test.
(3) File management test.
(4) PROM software revision.
(5) Maximum memory configuration.
(6) Individual module self-test status (GO/NO GO).

d. Module configuration.
(1) Module type.
(2) Module location.
(3) Hardware revision.

e. Application-specific parameters.
f. Language support (C and/or C++).

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

122 of 200

g. STRS Architecture Standard version.
h. STRS OE release version.
i. Available memory and free space for data and files.

A suggested set of services that may be implemented by the STRS command and telemetry
interfaces on the external system (flight computer, ground station, or other spacecraft) is shown
in Table 79, Suggested Services Implemented by the STRS Command and Telemetry Interfaces.
These services are NOT required for the STRS Architecture Standard at this time, but are likely
needed for commanding and controlling an SDR and are expected to be part of the external
system set of required functions.

Table 79—Suggested Services Implemented by the
STRS Command and Telemetry Interfaces

Function Description
Application Control

Application Selection

This command requests that the STRS radio instantiate the application
and facilitate the installation of devices and resources requested by the
application. This service should not impact existing applications. The
command arguments will include the application ASCII handle name and
string used to identify the application for instantiation.

Application Configuration This command requests a customization of the application by specifying
parameters the application will use.

Application Query This command requests the current parameters and operational values of
the application.

Application Start
This command requests that an initialized application begin processing
application data. If the application has not been selected or completed
initialization, the command will be rejected.

Application Stop This command requests that a running application halt processing of
application data. The application resources are not deallocated.

Application Unload This command requests that the STRS infrastructure unload the identified
application and release all resources associated with the application.

File Control Interface

Upload File Request
This request will initiate an upload of a file to the STRS radio and place
it in a specified location. If the command gets an error, the reason will be
made available.

Delete File Request This is a request for the deletion of a specified file from an STRS
platform.

Download File Request
This request is complementary to the Upload File Request. This
command will initiate a download of a specified file from the STRS
platform.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

123 of 200

Radio Control Interface

Built-in-test This request will perform a commanded built-in-test used to monitor the
health of the radio and diagnose any problems.

Telemetry Control Interface

Telemetry Control

Several different telemetry structure definitions may exist for different
classes of STRS radios. Many systems will employ a polling technique
where the data are provided only upon request. Other systems may desire
a grouping of telemetry that can be identified to be sent at some periodic
rate.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

124 of 200

APPENDIX A

POSIX® API PROFILE

Appendix A provides a list of the POSIX® profile recommended as part of the application
abstraction.

Table 80, POSIX® Subset Profiles PSE51, PSE52, and PSE53 provides the POSIX® subset in
profiles PSE51, PSE52, and PSE53.

Table 80—POSIX® Subset Profiles PSE51, PSE52, and PSE53
Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_JUMP longjmp(), setjmp() X X X

POSIX_C_LANG_MATH

acos(), acosf(), acosh(), acoshf(),
acoshl(), acosl(),asin(), asinf(),
asinh(), asinhf(), asinhl(), asinl(),
catan(), atan2(), atan2f(), atan2l(),
atanf(), atanh(),atanhf(), atanhl(),
atanl(), cabs(), cabsf(), cabsl(),
cacos(), cacosf(), cacosh(),
cacoshf(), cacoshl(),cacosl(), carg(),
cargf(), cargl(), casin(), casinf(),
casinh(), casinhf(), casinhl(),
casinl(), catan(), catanf(), catanh(),
catanhf(), catanhl(), catanl(),cbrt(),
cbrtf(), cbrtl(), ccos(), ccosf(),
ccosh(), ccoshf(),ccoshl(),

 X X

POSIX_C_LANG_MATH

ccosl(), ceil(), ceilf(), ceill(),cexp(),
cexpf(),cexpl(), cimag(), cimagf(),
cimagl(), clog(), clogf(),clogl(),
conj(), conjf(), conjl(), copysign(),
copysignf(),copysignl(), cos(),
cosf(), cosh(), coshf(), coshl(),
cosl(),cpow(), cpowf(), cpowl(),
cproj(), cprojf(), cprojl(),creal(),
crealf(), creall(), csin(), csinf(),
csinh(),csinhf(), csinhl(), csinl(),
csqrt(), csqrtf(), csqrtl(),ctan(),
ctanf(), ctanh(), ctanhf(), ctanhl(),
ctanl(),erf(), erfc(), erfcf(), erfcl(),
erff(), erfl(), exp(), exp2(),exp2f(),
exp2l(), expf(), expl(), expm1(),
expm1f(), expm1l(), fabs(), fabsf(),
fabsl(), fdim(), fdimf(),fdiml(),
floor(), floorf(), floorl(), fma(),
fmaf(), fmal(),

 X X

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

125 of 200

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_MATH

fmax(), fmaxf(), fmaxl(), fmin(),
fminf(), fminl(),fmod(), fmodf(),
fmodl(), fpclassify(), frexp(),
frexpf(),frexpl(), hypot(), hypotf(),
hypotl(), ilogb(), ilogbf(),ilogbl(),
isfinite(), isgreater(),
isgreaterequal(), isinf(),isless(),
islessequal(), islessgreater(),
isnan(),isnormal(), isunordered(),
ldexp(), ldexpf(), ldexpl(),
lgamma(), lgammaf(), lgammal(),
llrint(), llrintf(),llrintl(), llround(),
llroundf(), llroundl(), log(),log10(),
log10f(), log10l(), log1p(), log1pf(),
log1pl(),log2(), log2f(), log2l(),
logb(), logbf(), logbl(), logf(),logl(),
lrint(), lrintf(), lrintl(), lround(),
lroundf(),lroundl(), modf(), modff(),
modfl(), nan(), nanf(),nanl(),
nearbyint(), nearbyintf(),
nearbyintl(),
nextafter(), nextafterf(), nextafterl(),
nexttoward(),
nexttowardf(), nexttowardl(), pow(),
powf(), powl(),remainder(),
remainderf(), remainderl(),
remquo(),remquof(), remquol(),
rint(), rintf(), rintl(), round(),
roundf(), roundl(), scalbln(),
scalblnf(), scalblnl(),scalbn(),
scalbnf(), scalbnl(), signbit(), sin(),
sinf(),sinh(), sinhf(), sinhl(), sinl(),
sqrt(), sqrtf(), sqrtl(),tan(), tanf(),
tanh(), tanhf(), tanhl(),tanl(),
tgamma(),tgammaf(),tgammal(),
trunc(), truncf(), truncl()

 X X

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

126 of 200

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_SUPPORT

abs(), asctime(), asctime_r(), atof(),
atoi(), atol(),atoll(), bsearch(),
calloc(), ctime(),
ctime_r(),difftime(), div(),
feclearexcept(), fegetenv(),
fegetexceptflag(), fegetround(),
feholdexcept(),feraiseexcept(),
fesetenv(), fesetexceptflag(),
fesetround(), fetestexcept(),
feupdateenv(), free(),gmtime(),
gmtime_r(), imaxabs(), imaxdiv(),
isalnum(), isalpha(), isblank(),
iscntrl(), isdigit(),isgraph(),
islower(), isprint(), ispunct(),
isspace(),isupper(), isxdigit(), labs(),
ldiv(), llabs(), lldiv(),
localeconv(), localtime(),
localtime_r(), malloc(),memchr(),
memcmp(), memcpy(),
memmove(),memset(), mktime(),
qsort(), rand(), rand_r(),
realloc(), setlocale(), snprintf(),
sprintf(), srand(),sscanf(), strcat(),
strchr(), strcmp(), strcoll(),
strcpy(),strcspn(), strerror(),
strerror_r(), strftime(), strlen(),
strncat(), strncmp(), strncpy(),
strpbrk(), strrchr(),
strspn(), strstr(), strtod(), strtof(),
strtoimax(),strtok(), strtok_r(),
strtol(), strtold(), strtoll(),
strtoul(), strtoull(), strtoumax(),
strxfrm(), time(),tolower(),
toupper(), tzname, tzset(),
va_arg(),va_copy(), va_end(),
va_start(), vsnprintf(), vsprintf(),
vsscanf()

X X X

POSIX_DEVICE_IO

clearerr(), close(), fclose(), fdopen(),
feof(), ferror(),fflush(), fgetc(),
fgets(), fileno(), fopen(), fprintf(),
fputc(), fputs(), fread(), freopen(),
fscanf(), fwrite(),getc(), getchar(),
gets(), open(), perror(), printf(),
putc(), putchar(), puts(), read(),
scanf(), setbuf(),setvbuf(), stderr,
stdin, stdout, ungetc(), vfprintf(),
vfscanf(), vprintf(), vscanf(), write()

X X X

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

127 of 200

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_EVENT_MGMT
FD_CLR(), FD_ISSET(),
FD_SET(), FD_ZERO(),
pselect(), select()

 X

POSIX_FD_MGMT

dup(), dup2(), fcntl(), fgetpos(),
fseek(), fseeko(),
fsetpos(), ftell(), ftello(), ftruncate(),
lseek(), rewind()

 X X

POSIX_FILE_LOCKING

flockfile(), ftrylockfile(),
funlockfile(), getc_unlocked(),
getchar_unlocked(),
putc_unlocked(),
putchar_unlocked()

X X X

POSIX_FILE_SYSTEM

access(), chdir(), closedir(), creat(),
fpathconf(), fstat(),
getcwd(), link(), mkdir(), opendir(),
pathconf(), readdir(), readdir_r(),
remove(), rename(), rewinddir(),
rmdir(), stat(), tmpfile(), tmpnam(),
unlink(), utime()

 X X

POSIX_MULTI_PROCESS

_Exit(), _exit(), assert(), atexit(),
clock(), execl(), execle(), execlp(),
execv(), execve(), execvp(), exit(),
fork(), getpgrp(), getpid(), getppid(),
setsid(), sleep(), times(), wait(),
waitpid()

 X

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

128 of 200

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_NETWORKING

accept(), bind(), connect(),
endhostent(), endnetent(),
endprotoent(), endservent(),
freeaddrinfo(),
gai_strerror(), getaddrinfo(),
gethostbyaddr(),
gethostbyname(), gethostent(),
gethostname(),
getnameinfo(), getnetbyaddr(),
getnetbyname(),
getnetent(), getpeername(),
getprotobyname(),
getprotobynumber(), getprotoent(),
getservbyname(),
getservbyport(), getservent(),
getsockname(),
getsockopt(), h_errno, htonl(),
htons(),
if_freenameindex(),
if_indextoname(),
if_nameindex(), if_nametoindex(),
inet_addr(),inet_ntoa(), inet_ntop(),
inet_pton(), listen(), ntohl(), ntohs(),
recv(), recvfrom(), recvmsg(),
send(), sendmsg(), sendto(),
sethostent(), setnetent(),
setprotoent(), setservent(),
setsockopt(), shutdown(), socket(),
sockatmark(), socketpair()

 X

POSIX_PIPE pipe() X

POSIX_SIGNALS

abort(), alarm(), kill(), pause(),
raise(), sigaction(),
sigaddset(), sigdelset(),
sigemptyset(), sigfillset(),
sigismember(), signal(),
sigpending(), sigprocmask(),
sigsuspend(), sigwait()

X X X

POSIX_SIGNAL_JUMP siglongjmp(), sigsetjmp() X

POSIX_SINGLE_PROCESS
confstr(), environ, errno, getenv(),
setenv(), sysconf(),
uname(), unsetenv()

X X X

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

129 of 200

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_THREADS_BASE

pthread_atfork(),
pthread_attr_destroy(),
pthread_attr_getdetachstate(),
pthread_attr_getschedparam(),
pthread_attr_init(),
pthread_attr_setdetachstate(),
pthread_attr_setschedparam(),
pthread_cancel(),
pthread_cleanup_pop(),
pthread_cleanup_push(),
pthread_cond_broadcast(),
pthread_cond_destroy(),
pthread_cond_init(),
pthread_cond_signal(),
pthread_cond_timedwait(),
pthread_cond_wait(),
pthread_condattr_destroy(),
pthread_condattr_init(),
pthread_create(), pthread_detach(),
pthread_equal(), pthread_exit(),
pthread_getspecific(),
pthread_join(),
pthread_key_create(),
pthread_key_delete(),
pthread_kill(),
pthread_mutex_destroy(),
pthread_mutex_init(),
pthread_mutex_lock(),
pthread_mutex_trylock(),
pthread_mutex_unlock(),
pthread_mutexattr_destroy(),
pthread_mutexattr_init(),
pthread_once(), pthread_self(),
pthread_setcalcelstate(),
pthread_setcanceltype(),
pthread_setspecific(),
pthread_sigmask(),
pthread_testcancel()

X X X

POSIX_THREAD_
MUTEX_EXT

pthread_mutexattr_gettype(),
pthread_mutexattr_settype() X X X

XSI_THREADS_EXT

pthread_attr_getguardsize(),
pthread_attr_getstack(),
pthread_attr_setguardsize(),
pthread_attr_setstack(),
pthread_getconcurrency(),
pthread_setconcurrency()

X X X

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

130 of 200

APPENDIX B

REFERENCE DOCUMENTS

The following reference documents are recommended for further guidance.

 Department of Defense

Document Number Document Title

MIL-STD-1553 Digital Time Division Command/Response Multiplex Data
Bus

SCA Version 2.2.2 Software Communications Architecture Specification
 http://www.wirelessinnovation.org/assets/work_products/sca_version_2_2_2.pdf

National Aeronautics and Space Administration

Document Number Document Title

NASA-HDBK-4009 Space Telecommunications Radio Systems (STRS)
Architecture Standard Rationale

NASA/TM—2007-215042 Space Telecommunications Radio System (STRS)
Architecture Goals/Objectives and Level 1 Requirements

NASA/TP—2008-214813

Space Telecommunications Radio System Software
Architecture Concepts and Analysis

NASA/TM—2008-215445

Space Telecommunications Radio System (STRS)
Definitions and Acronyms

NASA/TM—2010-216809

Space Telecommunications Radio System (STRS)
Architecture Standard. Release 1.02.1

NPR 2210.1 Release of NASA Software

STRS Website Space Telecommunications Radio System (STRS) Website

http://www.wirelessinnovation.org/assets/work_products/sca_version_2_2_2.pdf
http://www.ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%252fObjectives+Level+Requirements+Document&qs=Ntx%253Dmode%2520matchallpartial%2520%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DSpace%2520Telecommunications%25
http://www.ntrs.nasa.gov/search.jsp?R=20080024190&hterms=NASA%252fTP+2008-214813&qs=N%253D0%2526Ntk%253DAll%2526Ntt%253DNASA%252FTP%25E2%2580%25942008-214813%2526Ntx%253Dmode%20matchallpartial
http://ntrs.nasa.gov/search.jsp?R=20090005977&hterms=215445+strs&qs=Ntx%253Dmode%252Bmatchallpartial%257Cmode%20matchall%2526Ntk%253DAll%257CAll%2526N%253D0%2526Ntt%253Dstrs%257C215445
http://www.ntrs.nasa.gov/search.jsp?R=20110002806&hterms=2010-216809&qs=N%253D0%2526Ntk%253DAll%2526Ntt%253D2010-216809%2526Ntx%253Dmode%20matchallpartial
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=2210&s=1C
https://strs.grc.nasa.gov/

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

131 of 200

National Institute of Standards and Technology

Document Number Document Title

FIPS PUB 140–2 Security Requirements for Cryptographic Modules

Non-Government Documents

 Institute of Electrical and Electronics Engineers (IEEE)

Document Number Document Title

IEEE 1003.1™

IEEE Standard for Information Technology—Portable
Operating System Interface (POSIX®)

Use the latest version of IEEE 1003.1 for your platform; the following amendments were
rolled into the base specification in the 1996 version:

IEEE 1003.1B™

IEEE Standard for Information Technology - Portable
Operating System Interfaces (POSIX®) - Part 1: System
Application Program Interface (API) - Amendment 1:
Realtime Extension (C Language)

IEEE 1003.1C™

IEEE Standard for Information Technology - Portable
Operating System Interface (POSIX®) – Part 1: System
Application Program Interface (API) Amendment 2:
Threads Extension (C Language)

IEEE 1003.1D™

IEEE Standard for Information Technology - Portable
Operating System Interface (POSIX®)- Part 1: System
Application Program Interface (API) - Amendment 4:
Additional Realtime Extensions (C Language)

IEEE 1003.1J™

IEEE Standard for Information Technology - Portable
Operating System Interface (POSIX®)- Part 1: System
Application Program Interface (API) - Amendment 5:
Advanced Realtime Extensions (C Language)

IEEE 1003.1Q™

IEEE Standard for Information Technology - Portable
Operating System Interface (POSIX®)- Part 1: System
Application Program Interface (API) - Amendment 7:
Tracing (C Language)

IEEE 1394 A High-Performance Serial Bus

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

132 of 200

Object Management Group (OMG)

Document Number Document Title

ORMSC/14-06-01 Model-Driven Architecture (MDA), Object Management
Group (OMG) Architecture Board

American National Standards Institute (ANSI), International Standards Organization
(ISO), and International Electrotechnical Commission (IEC) Joint Technical Committee
(JTC) 1 Working Group

Document Number Document Title

C99RationaleV5.10 Rationale for International Standard—Programming
Languages—C

ISO/IEC 9899
(In USA this is:
INCITS/ISO/IEC 9899:year)

Information technology—Programming languages—C

ISO 9945 Information technology—Portable Operating System
Interface (POSIX®) Base Specifications

ISO/IEC 14882
(In USA this is:
INCITS/ISO/IEC 14882:year)

Information technology—Programming languages—C++

http://www.omg.org/cgi-bin/doc?ormsc
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

133 of 200

APPENDIX C

ACKNOWLEDGEMENTS
(for Original Version)

Principal Authors

Richard C. Reinhart, Thomas J. Kacpura,
Louis M. Handler, Sandra K. Johnson, Janette
C. Briones, Jennifer M. Nappier, and Joseph
A. Downey
Glenn Research Center, Cleveland, OH

C. Steve Hall
Analex Corporation, Cleveland, OH

James P. Lux
Jet Propulsion Laboratory, Pasadena, CA

Dale J. Mortensen
ASRC Aerospace Corporation, Cleveland, OH

Key Industry Participants

Carl Smith, John Liebetreu
General Dynamics Corporation, C4-I

Vince Kovarik
Harris Corporation, Melbourne, FL

Mark Scoville
L-3 Communications
Salt Lake City, UT

Jerry Bickle
Prism Tech
Woburn, MA

Key Reviewers and Contributors

David J. Israel
Goddard Space Flight Center,
Greenbelt, MD

Andrew L. Benjamin
Johnson Space Center, Houston, TX

Allen Farrington, Yong Chong, Kenneth J. Peters
Jet Propulsion Laboratory, Pasadena, CA

Eric A. Eberly, Terry M. Luttrell
Marshall Space Flight Center, Huntsville, AL

SDR Forum Contributing Member Companies

General Dynamics Harris Corporation
Prism Tech L-3 Communications
Boeing Corporation Lockheed Martin
Cincinnati Electronics

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

134 of 200

APPENDIX D

REQUIREMENTS COMPLIANCE MATRIX

E.1 Purpose

This Appendix provides a listing of requirements contained in this NASA Technical Standard for selection and verification of
requirements by programs and projects. (Note: Enter “Yes” to describe the requirement’s applicability to the program or project; or
enter “No” if the intent is to tailor, and enter how tailoring is to be applied in the “Rationale” column.)

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
2.1.1 Applicable

Documents,
General

[NTS-1] The latest issuances of cited documents shall apply unless specific versions are designated.

2.1.2 Applicable
Documents,
General

[NTS-2] Non-use of specifically designated versions shall be approved by the responsible Technical Authority.

2.4.2 Order of
Precedence

[NTS-3] Conflicts between this NASA Technical Standard and other requirements documents shall be resolved by
the responsible Technical Authority.

4. Hardware Architecture
4. Hardware

Architecture
[STRS-1] An STRS platform shall have a known state after completion of the power-up process.

4.2.1.4 GPM
Requirements

[STRS-2] A module’s diagnostic information shall be available via the STRS APIs.

4.2.1.4 GPM
Requirements

(STRS-109) An STRS platform shall have a GPM that contains and executes the STRS OE and the control portions
of the STRS applications and services software.

4.2.3.4 RFM
Requirements

[STRS-6] The STRS platform provider shall describe, in the HID document, the behavior and performance of the
RF modular component(s).

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

135 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
4.3 Hardware

Interface
Description

[STRS-4] The STRS platform provider shall describe, in the HID document, the behavior and capability of each
major module or component available for use by waveform, service, or other application (e.g., FPGA, GPP, DSP, or
memory), noting any operational limitations.

4.3 Hardware
Interface
Description

[STRS-5] The STRS platform provider shall describe, in the HID document, the reconfigurability behavior and
capability of each reconfigurable component.

4.3 Hardware
Interface
Description

[STRS-7] The STRS platform provider shall describe, in the HID document, the interfaces that are provided to and
from each modular component of the STRS platform.

4.3.1 Control and
Data Interface

[STRS-8] The STRS platform provider shall describe, in the HID document, the control, telemetry, and data
mechanisms of each modular component (i.e., how to program or control each modular component of the platform,
and how to use or access each device or software component, noting any proprietary and nonstandard aspects).

4.3.2 Operating
Power
Interface

[STRS-9] The STRS platform provider shall describe, in the HID document, the behavior and performance of any
power supply or power converter modular component(s).

4.3.3 Thermal
Interface and
Power
Consumption

[STRS-108] The STRS platform provider shall describe, in the HID document, the thermal and power limits of the
hardware at the smallest modular level to which power is controlled.

5. Applications
5.1 Application

Implementation
[STRS-10] An STRS application shall use the STRS infrastructure-provided APIs and POSIX® API for access to
platform resources.

5.1 Application
Implementation

[STRS-11] The STRS infrastructure shall use the STRS platform HAL APIs to communicate with application
components on the platform specialized hardware via the physical interface defined by the STRS platform provider.

5.3 Application
Repository
Submissions

[STRS-12] The following application or OE development artifacts shall be submitted to the NASA STRS
Application Repository:

(1) Application (or OE) or system component software and configurable hardware design simulation
model(s) and/or documentation. (Design Description Document)

(2) Documentation of external interfaces for STRS application, devices, or configurable hardware design
(e.g., signal names, descriptions, polarity, format, data type, and timing constraints). (HID)

(3) Documentation of STRS application or OE behavior and adaptability (e.g., configurable and queryable
data items). (Design Description Document, User’s Guide)

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

136 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
(4) Application or OE function sources (e.g., C, C++, header files, very-high-speed integrated circuit HDL

(VHDL), and Verilog). (Artifacts)
(5) Application or OE libraries, if applicable (e.g., electronic design interchange format (EDIF), dynamic

link library (DLL)). (Artifacts)
(6) Documentation of application (or OE) development environment and/or tool suite as follows: (Design

Description Document)
A. Include the development environment and/or tool suite name, purpose, developer, version,

and configuration specifics (e.g., ISE Design Suite System, Xilinx, 14.4, EDK and SDK;
MATLAB®, Model base design support automatic code generation, MathWorks, R2016a)

B. Include a description of the hardware on which the development environment and/or tool suite
is executed, its OS, OS developer, OS version, and OS configuration specifics (e.g.,
Microsoft® Windows 7, Service pack 2; Linux® Ubuntu, (Xenial Xerus) 16.04)

C. Include a description of the output of the development environment and/or tool suite, its
STRS infrastructure/OE description, developer, version, and unique implementation items
(e.g., Type of file, .mdl, .slx; GRC's STRS Reference Implementation; IP generated from
Xilinx).

D. Include a description of licensing agreements for development environment and/or tool suite.
(7) Test plans, procedures, and results documentation. (V&V Plan, V&V Procedure, and V&V Results)
(8) Identification of software development standards used. (Version Description Document

(VDD)/Metadata)
(9) Version of this NASA Technical Standard used. (VDD/Metadata)
(10) Information, along with supporting documentation, required to make the appropriate decisions

regarding ownership, distribution rights, and release (technology transfer) of the application or OE
and associated artifacts. (Transfer Rights/Agreements)

(11) Version Description Document, if available, or other document containing the version number of each
separable artifact in the release, defined down to the lowest level components. (VDD)

(12) Documentation of the platform component hardware used by the application or OE, its function and
the interconnections. If the component executes an operating system, document the OS, OS
developer, OS version, and OS configuration. (HID)

(13) Documentation when an OE is submitted to the STRS Application Repository, providing guidelines
to aid a waveform/application developer and integrator in the task of developing an STRS compliant

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

137 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
waveform/application. (OE-Specific Developer’s Guide)

6. Configurable Hardware Design Architecture
6.1 Specialized

Hardware
Interfaces

[STRS-13] If the STRS application has a component resident outside the GPM (e.g., in configurable hardware
design), then the component shall be controllable from the STRS OE.

6.1 Specialized
Hardware
Interfaces

[STRS-14] The STRS SPM developer shall provide a platform-specific wrapper for each user-programmable FPGA,
which performs the following functions:

(1) Provides an interface for command and data from the GPM to the waveform application.
(2) Provides the platform-specific pinout for the STRS application developer.

6.1 Specialized
Hardware
Interfaces

[STRS-15] The STRS SPM developer shall provide documentation on the configurable hardware design interfaces
of the platform-specific wrapper for each user-programmable FPGA, which describes the following:

(1) Signal names and descriptions.
(2) Signal polarity, format, and data type.
(3) Signal direction.
(4) Signal-timing constraints.
(5) Clock generation and synchronization methods.
(6) Signal-registering methods.
(7) Identification of development tool set used.
(8) Any included noninterface functionality.

7. Software Architecture
7.3 STRS APIs [STRS-105] The STRS infrastructure APIs shall have an ISO/IEC C language compatible interface.

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-16] The STRS Application-provided Application Control API shall be implemented using ISO/IEC C or
C++.

7.3.1 STRS
Application-

[STRS-17] The STRS infrastructure shall use the STRS Application-provided Application Control API to control
STRS applications.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

138 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Provided
Application
Control API

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-18] The STRS OE shall support ISO/IEC C or C++, or both, language interfaces for the STRS Application-
provided Application Control API at compile-time.

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-19] The STRS OE shall support ISO/IEC C or C++, or both, language interfaces for the STRS Application-
provided Application Control API at run-time.

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-20] Each STRS application shall contain
 #include "STRS_ApplicationControl.h"

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-21] The STRS platform provider shall provide an “STRS_ApplicationControl.h” that contains the method
prototypes for each STRS application and, for C++, the class definition for the base class STRS_ApplicationControl.

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-22] If the STRS Application-provided Application Control API is implemented in C++, the STRS
application class shall be derived from the STRS_ApplicationControl base class.

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-23] If the STRS application provides the APP_Write method, the STRS application shall contain
 #include "STRS_Sink.h"

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

139 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
7.3.1 STRS

Application-
Provided
Application
Control API

[STRS-24] The STRS platform provider shall provide an “STRS_Sink.h” that contains the method prototypes for
APP_Write and, for C++, the class definition for the base class STRS_Sink.

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-25] If the STRS Application-provided Application Control API is implemented in C++ and the STRS
application provides the APP_Write method, the STRS application class shall be derived from the STRS_Sink base
class.

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-26] If the STRS application provides the APP_Read method, the STRS application shall contain
 #include "STRS_Source.h"

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-27] The STRS platform provider shall provide an “STRS_Source.h” that contains the method prototypes for
APP_Read and, for C++, the class definition for the base class STRS_Source.

7.3.1 STRS
Application-
Provided
Application
Control API

(STRS-110) The STRS platform provider shall provide an “STRS_APIs.h” that contains the method prototypes for
the STRS infrastructure APIs.

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-28] If the STRS Application-provided Application Control API is implemented in C++ and the STRS
application provides the APP_Read method, the STRS application class shall be derived from the STRS_Source
base class.

7.3.1 STRS
Application-
Provided

(STRS-111) Each STRS Device shall contain
 #include "STRS_DeviceControl.h"

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

140 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Application
Control API

7.3.1 STRS
Application-
Provided
Application
Control API

(STRS-112) The STRS platform provider shall provide an “STRS_DeviceControl.h” that contains the method
prototypes for each STRS Device and, for C++, the class definition for the base class STRS_DeviceControl, which
inherits from the base class STRS_ApplicationControl.

7.3.1 STRS
Application-
Provided
Application
Control API

(STRS-113) If the STRS Device-provided Device Control API is implemented in C++, the STRS Device class shall
be derived from the STRS_DeviceControl base class.

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-29] Each STRS application shall contain a callable APP_Configure method as described in Table 5,
APP_Configure().

Table 5—APP_Configure()
APP_Configure()
Description Set value for one property in the target component (application, device). It is

the responsibility of the target component to determine which properties can be
changed in which internal states. The API is defined in STRS_PropertySet.

Parameters • inst – (STRS_Instance *) instance pointer, only for C.

• name - (in STRS_Property_Name) name or other identification of data to
be obtained

• value - (in STRS_Property_Value *) location of data to process/store in
application corresponding to name

• lenValue – (in STRS_Buffer_Size) actual length of data in value
Return status (STRS_Result) actual size stored unless error
Precondition None

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

141 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Postcondition The appropriately named value is configured. When an error is returned, see

the logs for more information.
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

(STRS-114) Each STRS application shall contain a callable APP_Destroy method as described in Table 6,
APP_Destroy().

Table 6—APP_Destroy()

APP_Destroy()
Description Call the destructor for the specified target component. APP_Destroy is not a

class method.
Parameters • pApp – (STRS_Instance *) pointer to application instance.
Return None
Precondition Application must be stopped and resources released.
Postcondition STRS instance object is no longer valid.
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

(STRS-115) The STRS infrastructure shall define a callable APP_GetHandleID method in each application as
described in Table 7, APP_GetHandleID().

Table 7—APP_GetHandleID()
APP_GetHandleID()
Description Obtain the handle ID for the application, stored by the OE.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return handle ID of the current application (STRS_HandleID)
Precondition Application is instantiated.
Postcondition None
Applicable to OE developer: usually platform provider

7.3.1 STRS
Application-

(STRS-116) The STRS infrastructure shall define a callable APP_GetHandleName method in each application as
described in Table 8, APP_GetHandleName().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

142 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Provided
Application
Control API

Table 8—APP_GetHandleName()

APP_GetHandleName()
Description Obtain the handle name for the application, stored by the OE.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return handle name of the current application (char *)
Precondition Application is instantiated.
Postcondition None
Applicable to OE developer: usually platform provider

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-30] Each STRS application shall contain a callable APP_GroundTest method as described in Table 9,
APP_GroundTest().

Table 9—APP_GroundTest()
APP_GroundTest()
Description Perform unit and system testing, which is usually done before deployment. The

testing may include calibration. The tests aid in isolating faults within the
target component. A responding component may be in any internal state, but
certain tests may be restricted to specific states. If the application is not in the
appropriate internal state, then nothing is done and an error is returned.
Property values may be used, if needed. The API is defined in
STRS_TestableObject. The method is similar to APP_RunTest except that it
contains more extensive testing used especially before deployment to satisfy
any additional project requirements. This method may be invalid upon
deployment and if so, it may be eliminated.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
• testID - (in STRS_TestID) number of the test to be performed

Return status (STRS_Result)
Precondition None
Postcondition The test is performed. The state is unchanged unless specifically required by

mission.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

143 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-31] Each STRS application shall contain a callable APP_Initialize method as described in Table 10,
APP_Initialize().

Table 10—APP_Initialize()
APP_Initialize()
Description Initialize the target component (application, device). The API is defined in

STRS_LifeCycle. The purpose is to set or reset the component to a known
initial state. If no fault is detected, this method changes the internal state as
appropriate.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-32] Each STRS application shall contain a callable APP_Instance method as described in Table 11,
APP_Instance().

Table 11—APP_Instance()

APP_Instance()
Description Store the two parameters passed in the calling sequence, so that they are

available to the constructor. In C++, APP_Instance is a static method used to
call the class constructor for C++. If no fault is detected, this method returns an
instance pointer and initializes the internal state.

Parameters • id - (in STRS_HandleID) handle ID of this STRS application.
• name – (in STRS_HandleName *) handle name of this STRS application.

Return Pointer to STRS_Instance, instance of class, in C or C++.
Precondition None
Postcondition None

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

144 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-33] Each STRS application shall contain a callable APP_Query method as described in Table 12,
APP_Query().

Table 12—APP_Query()
APP_Query()
Description Obtain values for one or more properties in the target component (application,

device). It is the responsibility of the target component to determine which
properties can be interrogated in which internal states. The API is defined in
STRS_PropertySet.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
• name - (in STRS_Property_Name) name or other identification of data to

be obtained
• value - (in STRS_Property_Value *) location to store data corresponding

to name
• lenValue – (in STRS_Buffer_Size) maximum length of data in to be stored

in value
Return status (STRS_Result) actual size unless error
Precondition The value is to have space allotted for the maximum size of the property

whose value is to be returned (not bigger than lenValue).
Postcondition Value is populated with data, as appropriate. When an error is returned, see the

logs for more information.
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-34] If the STRS application provides data to the infrastructure, then the STRS application shall contain a
callable APP_Read method as described in Table 13, APP_Read().

Table 13—APP_Read()
APP_Read()
Description Method used to obtain data from the target component (application, device).

This is optional. The API is defined in STRS_Source. The caller manages the

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

145 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
buffer area, preallocating the buffer before calling APP_Read and processing
the returned data without any effects on the data source application. The
character data type (STRS_Message) does not have to contain valid characters.

If the application is not in the appropriate internal state, then nothing is done
and an error is returned.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation
• buffer - (out STRS_Message) a pointer to an area in which the

application stores the requested data
• nb - (in STRS_Buffer_Size) number of bytes requested

Return Error status (negative) or actual number of bytes (non-negative) obtained
(STRS_Result)

Precondition Storage for the buffer with space for nb bytes is allocated before calling
APP_Read. If used for a C-style character string, the size should include space
for a final '\0'.

Postcondition The data from the application is stored in the buffer area.
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-35] Each STRS application shall contain a callable APP_ReleaseObject method as described in Table 14,
APP_ReleaseObject().

Table 14—APP_ReleaseObject()
APP_ReleaseObject()
Description Free any resources that the target component (application, device) has

acquired. An example would be to allow the target component to close any
open files or devices. It is the responsibility of the target component to
determine whether any release is done in which internal states. The API is
defined in STRS_LifeCycle. The purpose of APP_ReleaseObject is to prepare
the target component for removal.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

146 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Precondition None
Postcondition All resources acquired by the target component are released. The application

may not be usable unless reinstantiated or reinitialized.
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-36] Each STRS application shall contain a callable APP_RunTest method as described in Table 15,
APP_RunTest().

Table 15—APP_RunTest()
APP_RunTest()
Description Test specific functionality within the target component (application, device).

The tests provide aid in isolating faults within the application. Application may
be in any internal state, but certain tests may be restricted to specific states. If
the application is not in the appropriate internal state, then nothing is done and
an error is returned. Property values may be used, if needed. The API is
defined in STRS_TestableObject.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
• testID - (in STRS_TestID) number of the test to be performed. Values of

testID are mission dependent.
Return status (STRS_Result)
Precondition None
Postcondition The test is performed.
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-37] Each STRS application shall contain a callable APP_Start method as described in Table 16, APP_Start().

Table 16—APP_Start()
APP_Start()
Description Begin normal target component (application, device) processing. If the

application is not in the appropriate internal state, then nothing is done and an
error is returned. The API is defined in STRS_ControllableComponent.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

147 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-38] Each STRS application shall contain a callable APP_Stop method as described in Table 17, APP_Stop().

Table 17—APP_Stop()
APP_Stop()
Description End normal target component (application, device) processing. If the

application is not in the appropriate internal state, then nothing is done and an
error is returned. The API is defined in STRS_ControllableComponent.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to Application developer

7.3.1 STRS
Application-
Provided
Application
Control API

[STRS-39] If the STRS application receives data from the infrastructure, then the STRS application shall contain a
callable APP_Write method as described in Table 18, APP_Write().

Table 18—APP_Write()
APP_Write()
Description Method used to send data to the target component (application, device). This is

optional. The API is defined in STRS_Sink. The caller manages the buffer
area, preallocating and filling the buffer before calling APP_Write. The
character data type (STRS_Message) does not have to contain valid characters.
If the application is not in the appropriate internal state, then nothing is done
and an error is returned.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

148 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
• buffer - (in STRS_Message) pointer to the data for the application to

process
• nb - (in STRS_Buffer_Size) number of bytes in buffer

Return Error status (negative) or number of bytes (non-negative) written
(STRS_Result)

Precondition Storage for the buffer with space for nb bytes is allocated before calling
APP_Write. If used for a C-style character string, the size should include space
for a final '\0'.

Postcondition The data has been captured by the application for its processing.
Applicable to Application developer

7.3.2 STRS
Infrastructure-
Provided
Application
Control API

[STRS-40] The STRS infrastructure shall contain a callable STRS_Configure method as described in Table 19,
STRS_Configure().

Table 19—STRS_Configure()
STRS_Configure()
Description Set value for one property in the target component (application, device). It is

the responsibility of the target component to determine which properties can be
changed in which internal states.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toWF - (in STRS_HandleID) handle ID of target component that should
respond to the request.

• name - (in STRS_Property_Name) name or other identification of data
to be obtained

• value - (in STRS_Property_Value *) location of data to process/store
in application corresponding to name

• lenValue – (in STRS_Buffer_Size) actual length of data in value
Return status (STRS_Result) actual size stored unless error
Precondition None

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

149 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Postcondition The appropriate named value is configured. When an error is returned, see the

logs for more information.
Applicable to OE developer: usually platform provider

7.3.2 STRS
Infrastructure-
Provided
Application
Control API

[STRS-41] The STRS infrastructure shall contain a callable STRS_GroundTest method as described in Table 20,
STRS_GroundTest().

Table 20—STRS_GroundTest()

STRS_GroundTest()
Description Perform unit and system testing—usually done before deployment. The testing

may include calibration. The tests aid in isolating faults within the target
component. This method provides more exhaustive testing to satisfy any
additional project requirements. A responding component may be in any
internal state, but certain tests may be restricted to specific states. If the
application is not in the appropriate internal state, then nothing is done and an
error is returned. Property values may be used, if needed. This method may be
invalid upon deployment.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toWF - (in STRS_HandleID) handle ID of target component that should
respond to the request.

• testID - (in STRS_TestID) number of the test to be performed. Values are
mission dependent.

Return status (STRS_Result)
Precondition None
Postcondition The test is performed.
Applicable to OE developer: usually platform provider

7.3.2 STRS
Infrastructure-
Provided
Application

[STRS-42] The STRS infrastructure shall contain a callable STRS_Initialize method as described in Table 21,
STRS_Initialize().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

150 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Control API Table 21—STRS_Initialize()

STRS_Initialize()
Description Initialize the target component (application, device). The purpose is to set or

reset the component to a known initial state.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toWF - (in STRS_HandleID) handle ID of target component that should
respond to the request.

Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.2 STRS
Infrastructure-
Provided
Application
Control API

[STRS-43] The STRS infrastructure shall contain a callable STRS_Query method as described in Table 22,
STRS_Query().

Table 22—STRS_Query()
STRS_Query()
Description Obtain values for one or more properties in the target component (application,

device).
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request.
• name - (in STRS_Property_Name) name or other identification of data to

be obtained
• value - (in STRS_Property_Value *) location to store data corresponding to

name
• lenValue – (in STRS_Buffer_Size) maximum length of data in to be stored

in value

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

151 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Return status (STRS_Result) actual size unless error
Precondition The value is to have space allotted for the maximum size of the property

whose value is to be returned (not bigger than lenValue).
Postcondition Value is populated with data as appropriate. When an error is returned, see the

logs for more information.
Applicable to OE developer: usually platform provider

7.3.2 STRS
Infrastructure-
Provided
Application
Control API

[STRS-44] The STRS infrastructure shall contain a callable STRS_ReleaseObject method as described in Table 23,
STRS_ReleaseObject().

Table 23—STRS_ReleaseObject()
STRS_ReleaseObject()
Description Free any resources that the target component (application, device) has

acquired. An example would be to allow the target component to close any
open files or devices. It is the responsibility of the target component to
determine whether any release is done in which internal states. The purpose of
STRS_ReleaseObject is to prepare the target component for removal.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toWF - (in STRS_HandleID) handle ID of target component that should
respond to the request.

Return status (STRS_Result)
Precondition None
Postcondition All resources acquired by the target component are released. The target

component may not be usable unless reinstantiated or reinitialized.
Applicable to OE developer: usually platform provider

7.3.2 STRS
Infrastructure-
Provided
Application
Control API

[STRS-45] The STRS infrastructure shall contain a callable STRS_RunTest method as described in Table 24,
STRS_RunTest().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

152 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Table 24—STRS_RunTest()

STRS_RunTest()
Description Test specific functionality within the target component (application, device).

The tests provide aid in isolating faults within the target component. A
responding application may be in any internal state, but certain tests may be
restricted to specific states. If the application is not in the appropriate internal
state, then nothing is done and an error is returned. Property values may be
used, if needed.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toWF - (in STRS_HandleID) handle ID of target component that should
respond to the request.

• testID - (in STRS_TestID) number of the test to be performed. Values of
testID are mission-dependent.

Return status (STRS_Result)
Precondition None
Postcondition The test is performed.
Applicable to OE developer: usually platform provider

7.3.2 STRS
Infrastructure-
Provided
Application
Control API

[STRS-46] The STRS infrastructure shall contain a callable STRS_Start method as described in Table 25,
STRS_Start().

Table 25—STRS_Start()
STRS_Start()
Description Begin normal target component (application, device) processing. Nothing is

done if the application (or device) is not in the appropriate internal state.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request.
Return status (STRS_Result)

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

153 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.2 STRS
Infrastructure-
Provided
Application
Control API

[STRS-47] The STRS infrastructure shall contain a callable STRS_Stop method as described in Table 26,
STRS_Stop().

Table 26—STRS_Stop()
STRS_Stop()
Description End target component (application, device) processing. Nothing is done unless

the application (or device) is in the appropriate internal state.
Parameters • fromWF - in STRS_HandleID) handle ID of current component making

the request.
• toWF - in STRS_HandleID) handle ID of target component that should

respond to the request.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-48] The STRS infrastructure shall contain a callable STRS_AbortApp method as described in Table 27,
STRS_AbortApp().

Table 27—STRS_AbortApp()
STRS_AbortApp()
Description Abort an application or service.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toWF - (in STRS_HandleID) handle ID of target component that should

respond to the request
Return Status (STRS_Result)

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

154 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Precondition None
Postcondition The target component is aborted, and application is stopped, resources

released, and unloaded, if allowed by OE.
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-49] The STRS infrastructure shall contain a callable STRS_GetErrorQueue method as described in Table 28,
STRS_GetErrorQueue().

Table 28—STRS_GetErrorQueue()
STRS_GetErrorQueue()
Description Transform an error status into an error queue.
Parameters • result - (in STRS_Result) return value of previous call.
Return Handle ID (STRS_HandleID) corresponding to invalid STRS_Result; that is,

return STRS_ERROR_QUEUE for STRS_ERROR,
STRS_WARNING_QUEUE for STRS_WARNING, and
STRS_FATAL_QUEUE for STRS_FATAL; otherwise, implementation
defined.

Precondition None
Postcondition The corresponding error queue handle ID is returned.
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

(STRS-117) The STRS infrastructure shall contain a callable STRS_GetHandleName method as described in Table
29, STRS_GetHandleName().

Table 29—STRS_GetHandleName()
STRS_GetHandleName()
Description The handle name is obtained for the given handle ID. The handle ID of the

current component (fromWF) is used for any error message. Using
STRS_GetHandleName to determine the handle name of the current
component while it is being instantiated gives undefined results.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

155 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
• toID - (in STRS_HandleID) handle ID of the resource (application, device,

file, queue) for which the handle name is to be obtained.
• toResourceName - (out char *) handle name of the desired resource.

Return status (STRS_Result)
Precondition Space must be allocated for handle name.
Postcondition Handle name is filled in. On error, the first character of the handle name is

filled with a zero unless the toResourceName variable is NULL.
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-50] The STRS infrastructure shall contain a callable STRS_HandleRequest method as described in Table 30,
STRS_HandleRequest().

Table 30—STRS_HandleRequest()
STRS_HandleRequest()
Description The handle ID is obtained for the given handle name. The handle ID of the

current component (fromWF) is used for any error message. Using
STRS_HandleRequest to determine the handle ID of the current component
while it is being instantiated gives undefined results.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toResourceName - (in char *) name of desired resource (application,
device, file, queue).

Return Handle ID of the entity or error status. (STRS_HandleID)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-51] The STRS infrastructure shall contain a callable STRS_InstantiateApp method as described in Table 31,
STRS_InstantiateApp().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

156 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Table 31—STRS_InstantiateApp()

STRS_InstantiateApp()
Description Instantiate an application, service, or device. The handle name specified for

the application, service, or device is to be unique. The OE-specific name is
used to identify the application for instantiation and may impose additional
operations to be performed as documented by the platform provider. It is up to
the OE to determine whether any resources are to be loaded to accomplish the
instantiation.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• handleName - (in char *) unique handle name for the application (or
device) that should be instantiated.

• startName - (in char *) OE-specific name used to instantiate and configure
the application (or device) into a known state.

Return handle ID (STRS_HandleID) of the application (or device) instantiated or the
error status

Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-52] The STRS infrastructure shall contain a callable STRS_IsOK method as described in Table 32,
STRS_IsOK().

Table 32—STRS_IsOK()
STRS_IsOK()
Description Return true, if return value of argument obtained from previous call is not an

error status.
Parameters • result - (in STRS_Result) return value of previous call.
Return true, if STRS_Result is not STRS_WARNING, STRS_ERROR, or

STRS_FATAL: that is, non-negative (bool)
Precondition Previous call returns a status result.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

157 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Postcondition None
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-53] The STRS infrastructure shall contain a callable STRS_Log method as described in Table 33,
STRS_Log().

Table 33—STRS_Log()
STRS_Log()
Description Send log message for distribution as appropriate. The time stamp and an

indication of the from and target handles are added automatically. STRS_Log
may be used to inform the infrastructure that the STRS component is in the
FAULT state when a target handle ID of STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE is used. The
character data type (STRS_Message) does not have to contain valid characters.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• logTarget - (in STRS_HandleID) handle ID of target (e.g.,
STRS_TELEMETRY_QUEUE, STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE). The last three
special-purpose handle IDs may be used to log errors.

• msg - (in STRS_Message) a pointer to the data to process
• nb - (in STRS_Buffer_Size) number of bytes in buffer

Return status (STRS_Result)
Precondition None
Postcondition Log message is distributed.
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-54] When an STRS application has a nonfatal error, the STRS application shall use the callable STRS_Log
method as described in Table 33, STRS_Log(), with a target handle ID of constant STRS_ERROR_QUEUE.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

158 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale

Table 33—STRS_Log()
STRS_Log()
Description Send log message for distribution as appropriate. The time stamp and an

indication of the from and target handles are added automatically. STRS_Log
may be used to inform the infrastructure that the STRS component is in the
FAULT state when a target handle ID of STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE is used. The
character data type (STRS_Message) does not have to contain valid characters.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• logTarget - (in STRS_HandleID) handle ID of target (e.g.,
STRS_TELEMETRY_QUEUE, STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE). The last three
special-purpose handle IDs may be used to log errors.

• msg - (in STRS_Message) a pointer to the data to process
• nb - (in STRS_Buffer_Size) number of bytes in buffer

Return status (STRS_Result)
Precondition None
Postcondition Log message is distributed.
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-55] When an STRS application has a fatal error, the STRS application shall use the callable STRS_Log
method as described in Table 33, STRS_Log(), with a target handle ID of constant STRS_FATAL_QUEUE.

Table 33—STRS_Log()
STRS_Log()
Description Send log message for distribution as appropriate. The time stamp and an

indication of the from and target handles are added automatically. STRS_Log
may be used to inform the infrastructure that the STRS component is in the
FAULT state when a target handle ID of STRS_ERROR_QUEUE,

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

159 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE is used. The
character data type (STRS_Message) does not have to contain valid characters.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• logTarget - (in STRS_HandleID) handle ID of target (e.g.,
STRS_TELEMETRY_QUEUE, STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE). The last three
special-purpose handle IDs may be used to log errors.

• msg - (in STRS_Message) a pointer to the data to process
• nb - (in STRS_Buffer_Size) number of bytes in buffer

Return status (STRS_Result)
Precondition None
Postcondition Log message is distributed.
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-56] When an STRS application has a warning condition, the STRS application shall use the callable
STRS_Log method as described in Table 33, STRS_Log(), with a target handle ID of constant
STRS_WARNING_QUEUE.

Table 33—STRS_Log()
STRS_Log()
Description Send log message for distribution as appropriate. The time stamp and an

indication of the from and target handles are added automatically. STRS_Log
may be used to inform the infrastructure that the STRS component is in the
FAULT state when a target handle ID of STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE is used. The
character data type (STRS_Message) does not have to contain valid characters.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• logTarget - (in STRS_HandleID) handle ID of target (e.g.,
STRS_TELEMETRY_QUEUE, STRS_ERROR_QUEUE,

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

160 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE). The last three
special-purpose handle IDs may be used to log errors.

• msg - (in STRS_Message) a pointer to the data to process
• nb - (in STRS_Buffer_Size) number of bytes in buffer

Return status (STRS_Result)
Precondition None
Postcondition Log message is distributed.
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

[STRS-57] When an STRS application needs to send telemetry, the STRS application shall use the callable
STRS_Log method as described in Table 33, STRS_Log(), with a target handle ID of constant
STRS_TELEMETRY_QUEUE.

Table 33—STRS_Log()
STRS_Log()
Description Send log message for distribution as appropriate. The time stamp and an

indication of the from and target handles are added automatically. STRS_Log
may be used to inform the infrastructure that the STRS component is in the
FAULT state when a target handle ID of STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE is used. The
character data type (STRS_Message) does not have to contain valid characters.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• logTarget - (in STRS_HandleID) handle ID of target (e.g.,
STRS_TELEMETRY_QUEUE, STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE). The last three
special-purpose handle IDs may be used to log errors.

• msg - (in STRS_Message) a pointer to the data to process
• nb - (in STRS_Buffer_Size) number of bytes in buffer

Return status (STRS_Result)
Precondition None

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

161 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Postcondition Log message is distributed.
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

(STRS-118) The STRS infrastructure shall contain a callable STRS_ValidateHandleID method as described in Table
34, STRS_ValidateHandleID().

Table 34—STRS_ValidateHandleID()
STRS_ValidateHandleID()
Description Determines if a handle ID is STRS_OK or in error. After calling any STRS

method that returns a handle ID, it is recommended that
STRS_ValidateHandleID be called before any other STRS method.

Parameters • tstID - (in STRS_HandleID) the STRS_HandleID object from which the
handle ID is extracted.

Return (STRS_Result) STRS_OK when successful; otherwise, for error,
STRS_WARNING, STRS_ERROR, or STRS_FATAL.

Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.3 STRS
Infrastructure
Application
Setup API

(STRS-119) The STRS infrastructure shall contain a callable STRS_ ValidateSize method as described in Table 35,
STRS_ValidateSize().

Table 35—STRS_ValidateSize()

STRS_ValidateSize()
Description Determines if a STRS_File_Size is STRS_OK or in error.

STRS_FileGetFreeSpace and STRS_FileGetSize return a type
STRS_File_Size number. After calling any STRS method that returns an
STRS_File_Size, it is recommended that STRS_ValidateSize be called before
calling any other STRS method.

Parameters • tstSize - (in STRS_File_Size) the file size object from which the file size
is extracted.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

162 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Return (STRS_Result) STRS_OK when successful; otherwise, for error,

STRS_WARNING, STRS_ERROR, or STRS_FATAL.
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.4 STRS
Infrastructure
Data Sink

[STRS-58] The STRS infrastructure shall contain a callable STRS_Write method as described in Table 36,
STRS_Write().

Table 36—STRS_Write()
STRS_Write()
Description Method used to send data to a target component (application, device, file, or

queue) acting as a sink. The caller manages the buffer area, preallocating and
filling the buffer before calling STRS_Write. The character data type
(STRS_Message) does not have to contain valid characters.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toID - (in STRS_HandleID) handle ID of target component that should
respond to the request and that implemented STRS_Sink.

• buffer - (in STRS_Message) a pointer to the data to process
• nb - (in STRS_Buffer_Size) number of bytes in buffer

Return Error status (negative) or number of bytes (non-negative) written
(STRS_Result)

Precondition Storage for the buffer is allocated before calling STRS_Write having space for
at least nb bytes. If used for a C-style character string, the size should include
space for a final '\0'.

Postcondition The data has been captured by the target component for its processing.
Applicable to OE developer: usually platform provider

7.3.5 STRS
Infrastructure
Data Source

[STRS-59] The STRS infrastructure shall contain a callable STRS_Read method as described in Table 37,
STRS_Read().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

163 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Table 37—STRS_Read()

STRS_Read()
Description Method used to obtain data from a target component (application, device, file,

or queue) acting as a source or supplier. The caller manages the buffer area,
preallocating the buffer before calling STRS_Read and processing the
returned data without any effects on the data source application. The character
data type (STRS_Message) does not have to contain valid characters.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• pullID - (in STRS_HandleID) handle ID of target component that should
respond to the request and that implemented STRS_Source.

• buffer - (out STRS_Message) a pointer to an area in which to store the
data requested

• nb - (in STRS_Buffer_Size) number of bytes requested
Return Error status (negative) or actual number of bytes (non-negative) obtained

(STRS_Result)
Precondition Storage for the buffer is allocated before calling STRS_Read, having space

for at least nb bytes. If used for a C-style character string, the size should
include space for a final '\0'.

Postcondition The data from the target component is stored in the buffer area.
Applicable to OE developer: usually platform provider

7.3.6 STRS
Infrastructure-
Provided
Device Control
API

[STRS-61] The STRS infrastructure shall contain a callable STRS_DeviceClose method as described in Table 38,
STRS_DeviceClose().

Table 38—STRS_DeviceClose()
STRS_DeviceClose()

Description Close the open device.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

164 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
• toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.
Return status (STRS_Result)
Precondition None
Postcondition The device is closed.
Applicable to OE developer: usually platform provider

7.3.6 STRS
Infrastructure-
Provided
Device Control
API

[STRS-62] The STRS infrastructure shall contain a callable STRS_DeviceFlush method as described in Table 39,
STRS_DeviceFlush().

Table 39—STRS_DeviceFlush()
STRS_DeviceFlush()
Description Used the opened device to send any buffered data immediately to the underlying

hardware and clear the buffers.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toDev - (in STRS_HandleID) handle ID of device that should respond to the

request.
Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.6 STRS
Infrastructure-
Provided
Device Control
API

[STRS-63] The STRS infrastructure shall contain a callable STRS_DeviceLoad method as described in Table 40,
STRS_DeviceLoad().

Table 40—STRS_DeviceLoad()
STRS_DeviceLoad()
Description Load a binary image to the open device.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

165 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
• toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.
• fileName - (in char *) storage area name or fully qualified file name of the

binary image to load onto the hardware device.
Return status (STRS_Result)
Precondition None
Postcondition The binary image is stored in the target device.
Applicable to OE developer: usually platform provider

7.3.6 STRS
Infrastructure-
Provided
Device Control
API

[STRS-64] The STRS infrastructure shall contain a callable STRS_DeviceOpen method as described in Table 41,
STRS_DeviceOpen().

Table 41—STRS_DeviceOpen()
STRS_DeviceOpen()
Description Open the device.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component

making the request.
• toDev - (in STRS_HandleID) handle ID of device that should respond

to the request.
Return status (STRS_Result)
Precondition None
Postcondition The device is opened.
Applicable to OE developer: usually platform provider

7.3.6 STRS
Infrastructure-
Provided
Device Control
API

[STRS-65] The STRS infrastructure shall contain a callable STRS_DeviceReset method as described in Table 42,
STRS_DeviceReset().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

166 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Table 42—STRS_DeviceReset()

STRS_DeviceReset()
Description Reinitialize the device, if possible. Reset is normally used after the

corresponding device has been started and stopped, and before the device is
started again to bring the hardware device to its power-on state.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toDev - (in STRS_HandleID) handle ID of device that should respond to
the request.

Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.6 STRS
Infrastructure-
Provided
Device Control
API

(STRS-68) The STRS infrastructure shall contain a callable STRS_DeviceUnload method as described in Table 43,
STRS_DeviceUnload().

Table 43—STRS_DeviceUnload()
STRS_DeviceUnload()
Description Unload the open device.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.
Return status (STRS_Result)
Precondition None
Postcondition The device is unloaded.
Applicable to OE developer: usually platform provider

7.3.6 STRS
Infrastructure-

(STRS-69) The STRS infrastructure shall contain a callable STRS_SetISR method as described in Table 44,
STRS_SetISR().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

167 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Provided
Device Control
API

Table 44—STRS_SetISR()

STRS_SetISR()
Description Set the Interrupt Service Routine for the device.
Parameters • fromWF - (in STRS_HandleID) handle ID of the current component

making the request.
• toDev - (in STRS_HandleID) handle ID of the device that should respond

to the request.
• pfun – (in STRS_ISR_Function) function pointer to a static or non-class

function to be called to service the interrupt
Return status (STRS_Result)
Precondition None
Postcondition ISR function is activated.
Applicable to OE developer: usually platform provider

7.3.7 STRS Device-
Provided
Device Control
API

(STRS-120) If the hardware is to be loaded by the STRS Device, the STRS Device shall contain a callable
DEV_Close method as described in Table 45, DEV_Close().

Table 45—DEV_Close()
DEV_Close()
Description Close the open device.
Parameters inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition The device is closed.
Applicable to Device developer: usually platform provider

7.3.7 STRS Device-
Provided
Device Control
API

(STRS-121) If the hardware is to be flushed by the STRS Device, the STRS Device shall contain a callable
DEV_Flush method as described in Table 46, DEV_Flush().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

168 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Table 46—DEV_Flush()

DEV_Flush()
Description Use the opened device to send any buffered data immediately to the underlying

hardware and clear the buffers.
Parameters inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition The device’s buffered data is flushed.
Applicable to Device developer: usually platform provider

7.3.7 STRS Device-
Provided
Device Control
API

(STRS-122) If the hardware is to be loaded by the STRS Device, the STRS Device shall contain a callable
DEV_Load method as described in Table 47, DEV_Load().

Table 47—DEV_Load()
DEV_Load()
Description Load a binary image to the open device.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.

• fileName - (in char *) storage area name or fully qualified file name of the
binary image to load onto the hardware device.

Return status (STRS_Result)
Precondition None
Postcondition The binary image is stored in the target device.
Applicable to Device developer: usually platform provider

7.3.7 STRS Device-
Provided
Device Control
API

(STRS-123) If the hardware is to be loaded by the STRS Device, the STRS Device shall contain a callable
DEV_Open method as described in Table 48, DEV_Open().

Table 48—DEV_Open()

DEV_Open()
Description Open the device.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

169 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Return status (STRS_Result)
Precondition None
Postcondition The device is opened.
Applicable to Device developer: usually platform provider

7.3.7 STRS Device-
Provided
Device Control
API

(STRS-124) If the hardware is to be reset by the STRS Device, the STRS Device shall contain a callable
DEV_Reset method as described in Table 49, DEV_Reset().

Table 49—DEV_Reset()
DEV_Reset()
Description Reinitialize the device, if possible. Reset is normally used after the

corresponding device has been started and stopped, and before the device is
started again to bring the hardware device to its power-on state.

Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition The device is reset to an initial state.
Applicable to Device developer: usually platform provider

7.3.7 STRS Device-
Provided
Device Control
API

(STRS-125) If the hardware is to be loaded by the STRS Device, the STRS Device shall contain a callable
DEV_Unload method as described in Table 50, DEV_Unload().

Table 50—DEV_Unload()

DEV_Unload()
Description Unload the open device.
Parameters • inst – (STRS_Instance *) instance pointer, only for C implementation.
Return status (STRS_Result)
Precondition None
Postcondition The device is unloaded.
Applicable to Device developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

170 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
7.3.8 STRS

Infractructure
File Control
API

(STRS-70) The STRS infrastructure shall contain a callable STRS_FileClose method as described in Table 51,
STRS_FileClose().

Table 51—STRS_FileClose()
STRS_FileClose()
Description Close the open file. STRS_FileClose is used to close a file that has been

opened by STRS_FileOpen.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toFile - (in STRS_HandleID) handle ID of file to be closed.

Return status (STRS_Result)
Precondition None
Postcondition The file is closed and the handle ID is released.
Applicable to OE developer: usually platform provider

7.3.8 STRS
Infractructure
File Control
API

(STRS-71) The STRS infrastructure shall contain a callable STRS_FileGetFreeSpace method as described in Table
52, STRS_FileGetFreeSpace().

Table 52—STRS_FileGetFreeSpace()
STRS_FileGetFreeSpace()
Description Get total size of free space available for file storage.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• fileSystem - (in char *) used when more than one file system exists.

Return Total size in bytes (STRS_File_Size).
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.8 STRS
Infractructure
File Control

(STRS-72) The STRS infrastructure shall contain a callable STRS_FileGetSize method as described in Table 53,
STRS_FileGetSize().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

171 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
API Table 53—STRS_FileGetSize()

STRS_FileGetSize()
Description Get the size of the specified file.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• fileName - (in char *) storage area name or fully qualified file name of the

file for which the size is obtained.
Return File size in bytes (STRS_File_Size).
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.8 STRS
Infractructure
File Control
API

(STRS-73) The STRS infrastructure shall contain a callable STRS_FileGetStreamPointer method as described in
Table 54, STRS_FileGetStreamPointer().

Table 54—STRS_FileGetStreamPointer()

STRS_FileGetStreamPointer()
Description Get the file stream pointer for the open file associated with the STRS handle

ID. This is normally not used because either the common functions are built
into the STRS architecture or the entire file manipulation is local to one
application or device. This method may be needed for certain file operations
not built into the STRS architecture and distributed over more than one
application or device or the STRS infrastructure. For example, the file stream
pointer may be used when multiple applications write to the same file using a
queue or need features not found in STRS_Write. Having a file system is
optional; if no file system is present, NULL will be returned. A NULL will
also be returned if another error condition is detected.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toFile - (in STRS_HandleID) file handle ID.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

172 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Return File stream pointer (FILE *) or NULL for error condition.
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.8 STRS
Infractructure
File Control
API

(STRS-74) The STRS infrastructure shall contain a callable STRS_FileOpen method as described in Table 55,
STRS_FileOpen().

Table 55—STRS_FileOpen()
STRS_FileOpen()
Description Open the file. This method is used to obtain an STRS handle ID when the

file manipulation is either built into the STRS architecture or distributed
over more than one application or device or the STRS infrastructure.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component
making the request.

• filename - (in char *) file name of the file to be opened.
• file access - (in STRS_Access) indicates if file is to be opened for

reading, writing, both, or appending.
• file type - (in STRS_Type) indicator whether file is text or binary.

Return a handle ID used to read or write data from or to the file
(STRS_HandleID). Handle ID should be validated with
STRS_ValidateHandleID to deteremine if successful.

Precondition None
Postcondition The file is open unless an error occurs. On error, the return value should

contain an error indication that can be tested by STRS_ValidateHandleID.
Applicable to OE developer: usually platform provider

7.3.8 STRS
Infractructure
File Control
API

(STRS-75) The STRS infrastructure shall contain a callable STRS_FileRemove method as described in Table 56,
STRS_FileRemove().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

173 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Table 56—STRS_FileRemove()

STRS_FileRemove()
Description Remove the closed file.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• oldName - (in char *) name of file to be removed.

Return status (STRS_Result)
Precondition None
Postcondition The file is no longer available, and the space where it was stored becomes

available.
Applicable to OE developer: usually platform provider

7.3.8 STRS
Infractructure
File Control
API

(STRS-76) The STRS infrastructure shall contain a callable STRS_FileRename method as described in Table 57,
STRS_FileRename().

Table 57—STRS_FileRename()
STRS_FileRename()
Description Rename the closed file where the new file name does not exist prior to the

call.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• oldName - (in char *) current name of file.
• newName - (in char *) new name of file after rename.

Return status (STRS_Result)
Precondition None
Postcondition The contents of the old file are now associated with the new file name.
Applicable to OE developer: usually platform provider

7.3.9 STRS
Infractructure
Messaging API

(STRS-77) The STRS applications shall use the STRS Infrastructure Messaging, STRS Infrastructure Data Source,
and STRS Infrastructure Data Sink methods to send messages between components.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

174 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
7.3.9 STRS

Infractructure
Messaging API

(STRS-126) The STRS infrastructure shall contain a callable STRS_MessageQueueCreate method as described in
Table 58, STRS_MessageQueueCreate().

Table 58—STRS_MessageQueueCreate()
STRS_MessageQueueCreate()
Description Create a FIFO message queue if a handle does not already exist having the

given name
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• queueName - (in char *) unique name of the queue.
• nb – (STRS_Buffer_Size) maximum size of buffer containing messages.
• nmax – (STRS_Queue_Max_Messages) maximum number of messages

in queue.
Return handle ID of queue or error status (STRS_HandleID)
Precondition None
Postcondition Queue is created unless an error occurs.
Applicable to OE developer: usually platform provider

7.3.9 STRS
Infractructure
Messaging API

(STRS-127) The STRS infrastructure shall contain a callable STRS_MessageQueueDelete method as described in
Table 59, STRS_MessageQueueDelete().

Table 59—STRS_MessageQueueDelete()
STRS_MessageQueueDelete()
Description Delete a queue if it exists.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toQueue - (inout STRS_HandleID) handle ID of queue to delete.

Return status (STRS_Result)
Precondition None
Postcondition Queue is deleted.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

175 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Applicable to OE developer: usually platform provider

7.3.9 STRS
Infractructure
Messaging API

(STRS-128) The STRS infrastructure shall contain a callable STRS_PubSubCreate method as described in Table 60,
STRS_PubSubCreate().

Table 60—STRS_PubSubCreate()

STRS_PubSubCreate()
Description Create a Pub/Sub handle ID that is a proxy used to receive and redistribute

messages using STRS_Write unless the handle name already is used
somewhere else.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• pubsubName - (in char *) unique name of the Pub/Sub.
Return handle ID of Pub/Sub or error status (STRS_HandleID)
Precondition None
Postcondition Pub/Sub is created unless an error occurs.
Applicable to OE developer: usually platform provider

7.3.9 STRS
Infractructure
Messaging API

(STRS-129) The STRS infrastructure shall contain a callable STRS_PubSubDelete method as described in Table 61,
STRS_PubSubDelete().

Table 61—STRS_PubSubDelete()
STRS_PubSubDelete()
Description Delete a Pub/Sub if it exists. Any association between a publisher and

subscriber that references the Pub/Sub is removed.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toPubSub - (inout STRS_HandleID) handle ID of Pub/Sub to delete.

Return status (STRS_Result)
Precondition None
Postcondition Specified Pub/Sub is deleted and any associations are removed.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

176 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Applicable to OE developer: usually platform provider

7.3.9 STRS
Infractructure
Messaging API

(STRS-80) The STRS infrastructure shall contain a callable STRS_Register method as described in Table 62,
STRS_Register().

Table 62—STRS_Register()
STRS_Register()
Description Register an association between a publisher and subscriber where both exist.

Disallow duplicates between the same publisher and subscriber.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• useQID - (in STRS_HandleID) handle ID of Pub/Sub that will be used as

a sink; the publisher.
• actQID - (in STRS_HandleID) handle ID of Pub/Sub, file, device, or

target component that should respond to the request as a sink; the
subscriber.

Return status (STRS_Result)
Precondition None
Postcondition Association between publisher and subscriber is registered, if allowed.
Applicable to OE developer: usually platform provider

7.3.9 STRS
Infractructure
Messaging API

(STRS-81) The STRS infrastructure shall contain a callable STRS_Unregister method as described in Table 63,
STRS_Unregister().

Table 63—STRS_Unregister()
STRS_Unregister()

Description Remove an association between a publisher and subscriber, if the association
exists.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

177 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
• useQID - (in STRS_HandleID) handle ID of Pub/Sub that was used as a

sink; the publisher.
• actQID - (in STRS_HandleID) handle ID of Pub/Sub, file, device, or

target component that should no longer respond to the request as a sink;
usually the subscriber.

Return status (STRS_Result)
Precondition None
Postcondition Association between publisher and subscriber is removed.
Applicable to OE developer: usually platform provider

7.3.10 STRS
Infrastructure
Time Control
API

(STRS-82) Any portion of the STRS Applications on the GPP needing time control shall use the STRS
Infrastructure Time Control methods to access the hardware and software timers.

7.3.10 STRS
Infrastructure
Time Control
API

(STRS-130) The implementer of an STRS clock/timer software component for use with STRS_GetTime shall
document it to include handle name, kind, epoch, resolution, use of leap seconds, and whether it should match a time
somewhere else, as described further in Table 64, Document STRS Clock/Timer.

Table 64—Document STRS Clock/Timer

Applicable to STRS clock/timer developer, which may be platform provider or application
developer.

7.3.10 STRS
Infrastructure
Time Control
API

(STRS-83) The STRS infrastructure shall contain a callable STRS_GetNanoseconds method as described in Table
65, STRS_GetNanoseconds().

Table 65—STRS_GetNanoseconds()
STRS_GetNanoseconds()
Description Get the number of nanoseconds from the STRS_TimeWarp object.
Parameters • twObj - (in STRS_TimeWarp) the STRS_TimeWarp object from which

the nanoseconds portion of the time increment is extracted.
Return Integer number of nanoseconds in the STRS_TimeWarp object representing a

time interval. (STRS_Nanoseconds)

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

178 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.10 STRS
Infrastructure
Time Control
API

(STRS-84) The STRS infrastructure shall contain a callable STRS_GetSeconds method as described in Table 66,
STRS_GetSeconds().

Table 66—STRS_GetSeconds()
STRS_GetSeconds()
Description Get the number of seconds from the STRS_TimeWarp object.
Parameters • twObj - (in STRS_TimeWarp) the STRS_TimeWarp object from which

the nanoseconds portion of the time increment is extracted.
Return integer number of seconds in the STRS_TimeWarp object representing a time

interval. (STRS_Seconds)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.10 STRS
Infrastructure
Time Control
API

(STRS-85) The STRS infrastructure shall contain a callable STRS_GetTime method as described in Table 67,
STRS_GetTime().

Table 67—STRS_GetTime()
STRS_GetTime()
Description Get the current base time and the corresponding time of a specified type

(kind). The base clock/timer is usually a hardware timer. The variable kind is
used to obtain a nonbase time at a specified offset from the base time. An
offset is usually specified to ensure that the clock is monotonically increasing
after a power reset or synchronized with another clock/timer. To compute the
time interval between two nonbase times of different kinds, the function is
called twice and the interval is modified by the difference between the two
base times.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

179 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.
• baseTime - (inout STRS_TimeWarp) current time of the base timer.
• kind - (in STRS_Clock_Kind) type of clock/timer.
• kindTime - (inout STRS_TimeWarp) current time of the specified timer.

Return status (STRS_Result)
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.10 STRS
Infrastructure
Time Control
API

(STRS-131) The STRS infrastructure shall contain a callable STRS_GetTimeAdjust method as described in Table
68, STRS_GetTimeAdjust().

Table 68—STRS_GetTimeAdjust()
STRS_GetTimeRate()
Description Get the current time rate for the specified clock/timer which, when applied to

the clock specified by its handle ID, will more closely synchronize it with
another.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• toDev - (in STRS_HandleID) handle ID of device that should respond to
the request.

Return iRate (STRS_TimeRate) an integer time rate. Units are specific to the
clock/timer.

Precondition None
Postcondition Time rate is obtained or computed.
Applicable to OE developer: usually platform provider

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

180 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
7.3.10 STRS

Infrastructure
Time Control
API

(STRS-86) The STRS infrastructure shall contain a callable STRS_GetTimeWarp method as described in Table 69,
STRS_GetTimeWarp().

Table 69—STRS_GetTimeWarp()
STRS_GetTimeWarp()
Description Get the STRS_TimeWarp object containing the number of seconds and

nanoseconds in the time interval.
Parameters • isec - (in STRS_Seconds) number of seconds in the time interval

• nsec - (in STRS_Nanoseconds) number of nanoseconds in the
fractional portion of the time interval

Return STRS_TimeWarp object representing the time interval.
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.10 STRS
Infrastructure
Time Control
API

[STRS-87] The STRS infrastructure shall contain a callable STRS_SetTime method as described in Table 70,
STRS_SetTime().

Table 70—STRS_SetTime()
STRS_SetTime()
Description Set the current time in the specified clock/timer by adjusting the time offset.
Parameters • fromWF - (in STRS_HandleID) handle ID of current component making

the request.
• toDev - (in STRS_HandleID) handle ID of device that should respond to

the request.
• kind - (in STRS_Clock_Kind) type of clock/timer.
• delta - (in STRS_TimeWarp) increment to add to specified clock/timer.

Return status (STRS_Result)
Precondition None
Postcondition Time is adjusted.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

181 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Applicable to OE developer: usually platform provider

7.3.10 STRS
Infrastructure
Time Control
API

(STRS-132) The STRS infrastructure shall contain a callable STRS_SetTimeAdjust method as described in Table
71, STRS_SetTimeAdjust().

Table 71—STRS_SetTimeAdjust()
STRS_SetTimeAdjust()
Description Set the current time rate in the specified clock/timer.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component

making the request.
• toDev - (in STRS_HandleID) handle ID of device that should respond

to the request.
• iRate - (in STRS_TimeRate) a rate applied to the specified clock/timer

to set the clock/timer relative time. Units are specific to the clock/timer.
Return status (STRS_Result)
Precondition None
Postcondition Time rate is adjusted.
Applicable to OE developer: usually platform provider

7.3.10 STRS
Infrastructure
Time Control
API

(STRS-133) The STRS infrastructure shall contain a callable STRS_Sleep method as described in Table 72,
STRS_Sleep().

Table 72—STRS_Sleep()
STRS_Sleep()
Description Delays the execution of the application for at least the time specified in the

STRS_TimeWarp argument that contains the number of seconds and
nanoseconds in the time interval. The time interval may still not be accurate
depending on the underlying timer resolution and thread interaction.

Parameters • clockID – (STRS_HandleID) the handle ID of the timer/clock.
• twObj - (in STRS_TimeWarp) the STRS_TimeWarp object from which

the time is extracted.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

182 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
• absOrRel- (Boolean) true, if absolute time is specified; false, if relative

time is specified.
Return (STRS_Result) STRS_OK when successful. STRS_ERROR for error.

STRS_WARNING if interrupted.
Precondition None
Postcondition None
Applicable to OE developer: usually platform provider

7.3.10 STRS
Infrastructure
Time Control
API

[STRS-88] The STRS infrastructure shall contain a callable STRS_TimeSynch method as described in Table 73,
STRS_TimeSynch().

Table 73—STRS_TimeSynch()
STRS_TimeSynch()
Description Synchronize clocks. The action depends on whether the clocks to be

synchronized are internal or external, or whether the clocks differ by amounts
that exceed the maximum step size allowed.

Parameters • fromWF - (in STRS_HandleID) handle ID of current component making
the request.

• refDev - (in STRS_HandleID) handle ID of reference device containing
the reference clock/timer.

• ref - (in STRS_Clock_Kind) type of reference clock/timer.
• targetDev - (in STRS_HandleID) handle ID of target device to

synchronize.
• target - (in STRS_Clock_Kind) type of clock/timer to synchronize with

reference clock/timer.
• stepMax – (in STRS_TimeWarp) maximum step size to allow at a time,

which can be used for gradual time adjustment. Zero implies no limit in
step size.

Return status (STRS_Result) where a positive value indicates the number of steps
left to adjust at the maximum step size.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

183 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Precondition None
Postcondition Clocks are more synchronized.
Applicable to OE developer: usually platform provider

7.3.11 STRS
Predefined
Data

(STRS-89) The STRS platform provider shall provide an STRS.h file containing the STRS predefined data shown in
Table 74, STRS Predefined Data.

Table 74—STRS Predefined Data

Typedefs

Name Type Description

STRS_Access A number Used to indicate how reading and/or writing of a
file or queue is done. See also constants
STRS_ACCESS_APPEND,
STRS_ACCESS_BOTH, STRS_ACCESS_READ,
and STRS_ACCESS_WRITE.

STRS_Buffer_Size A number Used to represent a buffer size in bytes. The type of
the number is to be long enough to contain the
maximum number of bytes to reserve or to transfer
with a read or write.

STRS_Clock_Kind A number Used to represent a kind of clock or timer. The type
of the number is to be long enough to contain the
maximum number of kinds of clocks and timers.

STRS_File_Size A number Used to represent a size in bytes. The type of the
number is to be long enough to contain the number
of bytes in GPP storage. Specific negative error
values returned indicate an error.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

184 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale

STRS_HandleID A number Used to represent an STRS application, device, file,
or queue. Specific error value(s) returned indicate
an error.

STRS_int8 A number Used for an 8-bit signed integer

STRS_int16 A number Used for a 16-bit signed integer

STRS_int32 A number Used for a 32-bit signed integer

STRS_int64 A number Used for a 64-bit signed integer

STRS_ISR_Function A static C-style
function pointer

Used to define static C-style function pointers
passed to the STRS SetISR() method. The function
passed to the STRS_SetISR() method is defined
with any arguments needed by the OE for its
underlying system calls. The OE-specific
documentation contains the description of any
arguments.

STRS_Message A char array
pointer

Used for messages.

STRS_Nanoseconds* A number Used to hold the number of nanoseconds in the
STRS_TimeWarp object, at least 32 bits for a
signed integer. Using 32 bits would allow a
maximum of 2,147,483,647 nanoseconds =
2.147483647 seconds that would allow the
sum/difference of the nanosecond counter in 2
normalized STRS_TimeWarp objects. Each
additional bit multiplies the 2.1475 seconds in the
nanosecond counter by 2.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

185 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale

STRS_Property_Name Used to hold a property name, usually a set of
characters (char).

STRS_Property_Value Used to hold a property value, usually a set of
characters (char).

STRS_Queue_Max_Messages A number Used to represent the maximum number of
messages allowed in the queue.

STRS_Result A number Used to represent a return value, where there are
specific values that indicate an error.

STRS_Seconds* A number Used to hold the number of seconds in the
STRS_TimeWarp object, at least 32 bit signed
integer. Using 32 bits would allow a maximum of
2,147,483,647 seconds = 68.05 years. For an epoch
of 1970, the 32-bit second counter runs out in 2038.
Each additional bit multiplies the 68.05 years in the
second counter by 2.

STRS_TestID A number Used to represent the built-in test or ground test to
be performed by APP_RunTest or
APP_GroundTest, respectively. See also
STRS_TEST_STATUS and
STRS_TEST_USER_BASE.

STRS_TimeWarp A representation
of a time delay

The representation of a time delay able to hold the
number of seconds and nanoseconds in the time
delay so that the corresponding macros can extract
them. The time delay is meant to be used for
recurrent processes such as in health management.
The implementation is mission and/or platform
specific and is most likely a struct. The maximum

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

186 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
number of seconds in a time delay cannot be greater
than 2(no. of bits in STRS_Seconds - 1) seconds. Divide the
maximum number of seconds by 31557600
(60*60*24*365.25) to get the approximate number
of years.

STRS_TimeRate A number Integer indicating time rate factor used to adjust
time relative to clock accuracy defined by
STRS_TimeRatePPS.

STRS_Type A number Used to indicate whether a file is text or binary. See
also constants STRS_TYPE_BINARY and
STRS_TYPE_TEXT.

STRS_uint8 A number Used for an 8-bit unsigned integer

STRS_uint16 A number Used for a 16-bit unsigned integer

STRS_uint32 A number Used for a 32-bit unsigned integer

STRS_uint64 A number Used for a 64-bit unsigned integer

Constants

Name Type Description

STRS_ACCESS_APPEND STRS_Access Indicates that writing is allowed
such that previous data written
are preserved and new data are
written following any previous
data. Corresponds to ISO C fopen

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

187 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
mode “a”.

STRS_ACCESS_BOTH STRS_Access Indicates that both reading and
writing are allowed. Corresponds
to ISO C fopen mode “r+” used
for update.

STRS_ACCESS_READ STRS_Access Indicates that reading is allowed.
Corresponds to ISO C fopen
mode “r”.

STRS_ACCESS_WRITE STRS_Access Indicates that writing is allowed.
Corresponds to ISO C fopen
mode “w”.

STRS_OK STRS_Result Indicates that the STRS_Result is
valid. See also STRS_IsOK().

STRS_ERROR STRS_Result Indicates that the STRS_Result is
invalid. Specific value indicating
an error such that the application
or other component is still usable.
See also STRS_IsOK() and
STRS_GetErrorQueue().

STRS_ERROR_QUEUE STRS_HandleID Indicates that the log queue is for
error messages. See also
STRS_GetErrorQueue().

STRS_FATAL STRS_Result Indicates that the STRS_Result is
invalid. Specific value indicating
a serious error such that the
application or other component is
not usable. See also

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

188 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
STRS_IsOK() and
STRS_GetErrorQueue().

STRS_FATAL_QUEUE STRS_HandleID Indicates that the log queue is for
fatal messages. The fatal queue is
used for messages that the fault
monitoring and recovery
functions are to deal with
immediately. The messages are
sent to the Flight Computer for
further handling. See also
STRS_GetErrorQueue().

STRS_TELEMETRY_QUEUE STRS_HandleID Indicates that the log queue is for
telemetry data.

STRS_TYPE_BINARY STRS_Type Indicates that a file is a binary
file.

STRS_TYPE_TEXT STRS_Type Indicates that a file is a text file.

STRS_WARNING STRS_Result Indicates that the STRS_Result is
invalid. Specific value indicating
an error such that there may be
little or no effect on the operation
of the application or other
component. See also
STRS_IsOK() and
STRS_GetErrorQueue().

STRS_WARNING_QUEUE STRS_HandleID Indicates that the log queue is for
warning messages. See also
STRS_GetErrorQueue().

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

189 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale

STRS_OE_HANDLE_NAME char * A handle name used to find
handle ID that may be used to
query the OE

OEClockAppName char * The handle name used to find
handle ID that may be used to
access time using
STRS_GetTime used in a
timestamp.

OEClockKind STRS_Clock_Kind The number used to indicate the
type of clock/timer used in a
timestamp.

STRS_TimeRatePPS STRS_TimeRate Integer accuracy of time rate in
number of parts per second.

STRS_MAX_PROPERTY_NAME_SIZE #define The maximum number of
characters in the name in a
Property object, not including the
final ‘\0’. Any use of this as a
dimension should be increased by
one.

STRS_MAX_PROPERTY_VALUE_SIZE #define The maximum number of
characters in the value in a
Property object, not including the
final ‘\0’. Any use of this as a
dimension should be increased by
one.

STRS_MAX_PATH_NAME_SIZE #define The maximum number of
characters in a path name for the

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

190 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
OE, not including the final ‘\0’.
Any use of this as a dimension
should be increased by one.

STRS_MAX_HANDLE_NAME_SIZE #define The maximum number of
characters in a handle name for
the OE, not including the final
‘\0’. Any use of this as a
dimension should be increased by
one.

STRS_MAX_LOG_MESSAGE_SIZE #define The maximum number of
characters in each message
submitted to the log, not
including the final ‘\0’. Any use
of this as a dimension should be
increased by one.

STRS_MAX_QUEUE_MESSAGES STRS_Queue_Max_Messages The maximum number of
messages that can be stored in a
queue. Not normally used except
for testing.

7.3.11 STRS
Predefined
Data

(STRS-106) An STRS application shall use the appropriate constant, typedef, or struct defined in Table 74, STRS
Predefined Data, when the data are used to interact with the STRS APIs.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

191 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Table 74—STRS Predefined Data

Typedefs

Name Type Description

STRS_Access A number Used to indicate how reading and/or writing of a
file or queue is done. See also constants
STRS_ACCESS_APPEND,
STRS_ACCESS_BOTH, STRS_ACCESS_READ,
and STRS_ACCESS_WRITE.

STRS_Buffer_Size A number Used to represent a buffer size in bytes. The type of
the number is to be long enough to contain the
maximum number of bytes to reserve or to transfer
with a read or write.

STRS_Clock_Kind A number Used to represent a kind of clock or timer. The type
of the number is to be long enough to contain the
maximum number of kinds of clocks and timers.

STRS_File_Size A number Used to represent a size in bytes. The type of the
number is to be long enough to contain the number
of bytes in GPP storage. Specific negative error
values returned indicate an error.

STRS_HandleID A number Used to represent an STRS application, device, file,
or queue. Specific error value(s) returned indicate
an error.

STRS_int8 A number Used for an 8-bit signed integer

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

192 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale

STRS_int16 A number Used for a 16-bit signed integer

STRS_int32 A number Used for a 32-bit signed integer

STRS_int64 A number Used for a 64-bit signed integer

STRS_ISR_Function A static C-style
function pointer

Used to define static C-style function pointers
passed to the STRS SetISR() method. The function
passed to the STRS_SetISR() method is defined
with any arguments needed by the OE for its
underlying system calls. The OE-specific
documentation contains the description of any
arguments.

STRS_Message A char array
pointer

Used for messages.

STRS_Nanoseconds* A number Used to hold the number of nanoseconds in the
STRS_TimeWarp object, at least 32 bits for a
signed integer. Using 32 bits would allow a
maximum of 2,147,483,647 nanoseconds =
2.147483647 seconds that would allow the
sum/difference of the nanosecond counter in 2
normalized STRS_TimeWarp objects. Each
additional bit multiplies the 2.1475 seconds in the
nanosecond counter by 2.

STRS_Property_Name Used to hold a property name, usually a set of
characters (char).

STRS_Property_Value Used to hold a property value, usually a set of
characters (char).

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

193 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale

STRS_Queue_Max_Messages A number Used to represent the maximum number of
messages allowed in the queue.

STRS_Result A number Used to represent a return value, where there are
specific values that indicate an error.

STRS_Seconds* A number Used to hold the number of seconds in the
STRS_TimeWarp object, at least 32 bit signed
integer. Using 32 bits would allow a maximum of
2,147,483,647 seconds = 68.05 years. For an epoch
of 1970, the 32-bit second counter runs out in 2038.
Each additional bit multiplies the 68.05 years in the
second counter by 2.

STRS_TestID A number Used to represent the built-in test or ground test to
be performed by APP_RunTest or
APP_GroundTest, respectively. See also
STRS_TEST_STATUS and
STRS_TEST_USER_BASE.

STRS_TimeWarp A representation
of a time delay

The representation of a time delay able to hold the
number of seconds and nanoseconds in the time
delay so that the corresponding macros can extract
them. The time delay is meant to be used for
recurrent processes such as in health management.
The implementation is mission and/or platform
specific and is most likely a struct. The maximum
number of seconds in a time delay cannot be greater
than 2(no. of bits in STRS_Seconds - 1) seconds. Divide the
maximum number of seconds by 31557600
(60*60*24*365.25) to get the approximate number
of years.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

194 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale

STRS_TimeRate A number Integer indicating time rate factor used to adjust
time relative to clock accuracy defined by
STRS_TimeRatePPS.

STRS_Type A number Used to indicate whether a file is text or binary. See
also constants STRS_TYPE_BINARY and
STRS_TYPE_TEXT.

STRS_uint8 A number Used for an 8-bit unsigned integer

STRS_uint16 A number Used for a 16-bit unsigned integer

STRS_uint32 A number Used for a 32-bit unsigned integer

STRS_uint64 A number Used for a 64-bit unsigned integer

Constants

Name Type Description

STRS_ACCESS_APPEND STRS_Access Indicates that writing is allowed
such that previous data written
are preserved and new data are
written following any previous
data. Corresponds to ISO C fopen
mode “a”.

STRS_ACCESS_BOTH STRS_Access Indicates that both reading and
writing are allowed. Corresponds
to ISO C fopen mode “r+” used

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

195 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
for update.

STRS_ACCESS_READ STRS_Access Indicates that reading is allowed.
Corresponds to ISO C fopen
mode “r”.

STRS_ACCESS_WRITE STRS_Access Indicates that writing is allowed.
Corresponds to ISO C fopen
mode “w”.

STRS_OK STRS_Result Indicates that the STRS_Result is
valid. See also STRS_IsOK().

STRS_ERROR STRS_Result Indicates that the STRS_Result is
invalid. Specific value indicating
an error such that the application
or other component is still usable.
See also STRS_IsOK() and
STRS_GetErrorQueue().

STRS_ERROR_QUEUE STRS_HandleID Indicates that the log queue is for
error messages. See also
STRS_GetErrorQueue().

STRS_FATAL STRS_Result Indicates that the STRS_Result is
invalid. Specific value indicating
a serious error such that the
application or other component is
not usable. See also
STRS_IsOK() and
STRS_GetErrorQueue().

STRS_FATAL_QUEUE STRS_HandleID Indicates that the log queue is for
fatal messages. The fatal queue is

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

196 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
used for messages that the fault
monitoring and recovery
functions are to deal with
immediately. The messages are
sent to the Flight Computer for
further handling. See also
STRS_GetErrorQueue().

STRS_TELEMETRY_QUEUE STRS_HandleID Indicates that the log queue is for
telemetry data.

STRS_TYPE_BINARY STRS_Type Indicates that a file is a binary
file.

STRS_TYPE_TEXT STRS_Type Indicates that a file is a text file.

STRS_WARNING STRS_Result Indicates that the STRS_Result is
invalid. Specific value indicating
an error such that there may be
little or no effect on the operation
of the application or other
component. See also
STRS_IsOK() and
STRS_GetErrorQueue().

STRS_WARNING_QUEUE STRS_HandleID Indicates that the log queue is for
warning messages. See also
STRS_GetErrorQueue().

STRS_OE_HANDLE_NAME* char * A handle name used to find
handle ID that may be used to
query the OE

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

197 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale

OEClockAppName* char * The handle name used to find
handle ID that may be used to
access time using
STRS_GetTime used in a
timestamp.

OEClockKind* STRS_Clock_Kind The number used to indicate the
type of clock/timer used in a
timestamp.

STRS_TimeRatePPS STRS_TimeRate Integer accuracy of time rate in
number of parts per second.

STRS_MAX_PROPERTY_NAME_SIZE #define The maximum number of
characters in the name in a
Property object, not including the
final ‘\0’. Any use of this as a
dimension should be increased by
one.

STRS_MAX_PROPERTY_VALUE_SIZE #define The maximum number of
characters in the value in a
Property object, not including the
final ‘\0’. Any use of this as a
dimension should be increased by
one.

STRS_MAX_PATH_NAME_SIZE #define The maximum number of
characters in a path name for the
OE, not including the final ‘\0’.
Any use of this as a dimension
should be increased by one.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

198 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale

STRS_MAX_HANDLE_NAME_SIZE #define The maximum number of
characters in a handle name for
the OE, not including the final
‘\0’. Any use of this as a
dimension should be increased by
one.

STRS_MAX_LOG_MESSAGE_SIZE #define The maximum number of
characters in each message
submitted to the log, not
including the final ‘\0’. Any use
of this as a dimension should be
increased by one.

STRS_MAX_QUEUE_MESSAGES STRS_Queue_Max_Messages The maximum number of
messages that can be stored in a
queue. Not normally used except
for testing.

7.3.11 STRS
Predefined
Data

(STRS-134) The STRS infrastructure shall have the queryable parameter names in Table 75, Queryable Platform
Parameter Names, for which values may be obtained using STRS_Query with the handle ID corresponding to the
handle name STRS_OE_HANDLE_NAME.

Table 75—Queryable Platform Parameter Names
Parameter Name Description Notes
PLATFORM_PROVIDER Unique name of STRS

platform provider
This is usually a company name or
university, followed by a subsidiary,
division, or department name.

PLATFORM_OE_VERSION Unique version number for
platform STRS
infrastructure software

7.3.11 STRS
Predefined

STRS-135) An STRS application shall have the queryable parameter names in Table 76, Queryable Application
Parameter Names, for which values may be obtained using STRS_Query with the handle ID of the application.

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

199 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
Data

Table 76—Queryable Application Parameter Names
Parameter Name Description Notes
WAVEFORM_DEVELOPER Unique name of application

developer
This is usually a company name or
university, followed by a subsidiary,
division, or department name.

WAVEFORM_VERSION Unique version number for
STRS application software

WAVEFORM_STATE Current application state Documented per STRS-12(3)

7.4.1 STRS
Application
Environment
Profile

[STRS-90] The STRS OE shall provide the interfaces described in POSIX® standard IEEE 1003.13 profile PSE51.

7.4.1 STRS
Application
Environment
Profile

[STRS-91] STRS applications shall use POSIX® methods except for the unsafe functions listed in Table 77,
Replacements for Unsafe Functions.

Table 77—Replacements for Unsafe Functions

Unsafe Function
Do Not Use!

Reentrant Counterpart
OK to Use

abort STRS_AbortApp
asctime asctime_r
atexit -
ctermid ctermid_r
ctime ctime_r
exit STRS_AbortApp
getlogin getlogin_r
gmtime gmtime_r
localtime localtime_r
rand rand_r
readdir readdir_r

NASA-STD-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

200 of 200

NASA-STD-4009A

Section Description Requirement in this NASA Technical Standard (NTS)
Applicable

(Yes or
No)

If No,
Enter

Rationale
strtok strtok_r
tmpnam tmpnam_r

7.7 Hardware
Abstraction
Layer

[STRS-92] The STRS platform provider shall provide the STRS platform HAL documentation that includes the
following:

(1) For each method or function, its calling sequence, return values, an explanation of its functionality, any
preconditions for using the method or function, and the postconditions after using the method or
function.

(2) Information required to address the underlying hardware, including the interrupt input and output, the
memory mapping, and the configuration data necessary to operate in the STRS platform environment.

8. External Command and Telemetry Interfaces
8. External

Command and
Telemetry
Interfaces

[STRS-94] An STRS platform shall accept, validate, and respond to external commands.

8. External
Command and
Telemetry
Interfaces

[STRS-95] An STRS platform shall execute external application control commands using the standardized STRS
APIs.

8. External
Command and
Telemetry
Interfaces

[STRS-107] An STRS platform provider shall document the external commands describing their format, function,
and any STRS methods invoked.

8. External
Command and
Telemetry
Interfaces

(STRS-96) The STRS infrastructure shall use the STRS_Query method to service external system requests for
information and to provide telemetry data about an STRS application.

	DOCUMENT HISTORY LOG
	This NASA Technical Standard establishes a description of an architecture standard for NASA space communication radio systems. This architecture is a required standard for communication radio system developments among NASA space missions. Although the...
	This NASA Technical Standard strives to provide commonality among NASA radio developments to take full advantage of emerging software-defined radio technologies from mission to mission. This architecture serves as an overall framework for the design, ...
	Requests for information should be submitted via “Feedback” at https://standards.nasa.gov. Requests for changes to this NASA Technical Standard should be submitted via MSFC Form 4657, Change Request for a NASA Engineering Standard.
	SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)
	ARCHITECTURE STANDARD
	Non-Government Documents

