NOT MEASUREMENT

SENSITIVE
National Aeronautics and NASA-GB-8719.13
Space Administration March 31, 2004

NASA Software Safety Guidebook

NASA TECHNICAL STANDARD



PREFACE
Effective Date: 31 March 2004

This document has been issued to make available to software safety practitioners a guidebook
for assessing software systems for software’ s contribution to safety and techniques for
analyzing and applying appropriate safety techniques and methods to software. Software
developers and software safety engineers are the primary focus; however, software assurance
(SA) engineers, project managers, system engineers, and system safety engineers will also
find this guidebook useful.

The document:

Provides an overview of general software safety and good software engineering
practices which contribute to software system safety.

Provides the means to scope and tailor the software safety and software engineering
activities to obtain the most cost effective, best quality, and safest products.

Provides analyses, methods and guidance which can be applied during each phase of
the software life cycle. Multiple checklists and examples are provided as well as
specific instructions for applying FMEA/CIL and FTA to software.

Includes devel opment approaches, safety analyses, and testing methodol ogies that lead
to improved safety in the software product.

Procuring NASA Enterprise Programs or Centers shall review this document for applicability
to NASA contracts as well as for applicability to itsinternal activities.

Questions concerning the application of this publication to specific procurements or requests
should be referred to the NASA Enterprise Program or Center.

This guidebook cancels NASA-GB-1740.13-96, NASA Guidebook for Safety Critical
Software Analysis and Devel opment.

/s

Bryan O’ Connor
Associate Administrator for
Safety and Mission Assurance

NASA-GB-8719.13 1



Foreword

This guidebook was created to provide specific information and guidance on the process of
creating and assuring safe software. In our modern world, software controls much of the
hardware (equipment, electronics, and instruments) around us. Sometimes hardware failure
can lead to a loss of human life. When software controls, operates, or interacts with such
hardware, software safety becomes avital concern

The audience for this guidebook is diverse. Software developers and software safety
engineers are the primary focus. Software assurance (QA) engineers, project managers,
system engineers, and system safety engineers will also find this guidebook useful. Section
1.5 of the Introduction provides guidance on sections of particular interest to the various
disciplines.

This guidebook is meant to be more than just a collection of development techniques and
analyses. The goal isto open the reader to new ways of thinking about software from a safety
perspective. This guidebook points out things to look for (and look out for) in the
development of safety-critical software. The guidebook includes development approaches,
safety analyses, and testing methodologies that lead to improved safety in the software
product.

While the focus of this guidebook is on the development of software for safety-critical
systems, much of the information and guidance is also appropriate to the creation of mission-
critical software.

NASA-GB-8719.13 2



Table of Contents

= - 10 1
0T o 2
Chapter 1  IntrodUCHION .....oeiieiiii e 12
O S Tolo o1 PP TP P PO PP PP PPPP 12
L 2 PUIPOSE . 12
R I ol (g [o VY [=To (o g =T o £ PP PRRTR 13
1.4 ASSOCIAtEA DOCUMENTS......eeiiiiiee ittt ittt e e e ettt e e e e e e e it be et e e e e e e s e sanbbeeeeeaaeeseanneens 13
1.5 Roadmap of this GUIAEDOOK............uuiiiiiiii e 14
1.5.1 Disciplin€s and SYMDOIS.........cciiiiiiiiiiiiiie e e s e e e s r e e e e e e aaans 14
T O o = o] (=Y gl DT = T o3 11 PR 15
Chapter 2 Software and System Safety.......cccovvvvviiiiiiiiiiennnnn. 17
2.1 Hazardous and Safety-critical SOftWare .............uueeiiiiiiii e 17
b I R V1V o T L A LS I= W o = V2 (o SRS 17
2.1.2  How Can Software be HazardOUS?...........cueiiiiiiiiiiiiie e 18
2.1.3  What is Safety-Critical SOftWar€?.........ccuuieiiiee e 18
2.1.4  How Does Software Control HAzardS? ..........cueeeiiiiiiiiiiiiiee e 19
2.15 Relationship Between Software and Hardware Controls.........ccccceevvveivieeeeee e e 20
2.1.6  Caveats with Software Hazard CONtrolS ...........cooiiiiiiiiiiiiiin e 20
2.1.7  Whatis Fault or Failure TOIErANCE? ........ouiiii it r e e e e snaneaeeeeees 21
2.2 The System Safety PrOQIamM .......ooiuiiiiiiiiiiie ittt e e e snneeas 22
221 SYSIEM SAFELY PrOCESS .. .eeiiiiiiiiiie ittt e e e 22
2.2.2  System Safety and Software Development ... 23
2.3 Safety Requirements and ANAIYSES ........ooiii ittt e e e e e e e e e e aees 25
2.3.1 Preliminary Hazard AnalySiS (PHA) ...t 26
2.3.2  RISK LBVEIS ...ttt ettt e et ettt e e et e e e e bae e e s araeeen 26
2.3.3 NASA Policy for Hazard Elimination and Control.............ccccvvvveeee i 28
2.3.4  Software Subsystem Hazard ANAIYSIS ........cccooiiiiiiiiiiie e 29
Chapter 3 Software Safety Planning.......cccccooivivviiiiiiiiiiiiinnne, 32
3.1  Scoping the Software for the Safety EffOrt ... 34
3.1.1 Identify Safety-Critical SOfWAIE ..........uuviiiiie i 34
3.1.2 Determine Software Safety- CritiCality ..........ccoviiiiiiiiieiie e 36
3.1.2.1 Software Control CatEgOrIES........cccuiiiiiiie e i scrr e e e e e e e e e s e eanerees 37
3.1.2.2 SOfWAIE RISK IMAIIIX ...eeeeiiiiieee ettt e e e enees 38
3.1.3 Determine the Safety Effort and Oversight Required ...........cccccveeeii i, 40
3.13.1 Determine Extent of Safety Effort ... 40
3.1.3.2 OVErSIGNt REQUITEA ......eeiiiiiiiieie e 41
3.2 Tailoring the Software Safety EffOrt..........cc.cooiiiiiiiiii e 42
3.2.1  “Full” Software Safety EffOrt ... 44
3.2.2  “Moderate” Software Safety Effort ... 44
3.2.3  “Minimum” Software Safety Effort ... 45
3.2.4  Projects with Mixed Levels Of EffOrt ... 45
Chapter 4 Safety-Critical Software Development..................... 46
4.1  Crafting Safer SOMWEAIE ... e e s e e e e e e e e anes 46
4.1.1 L070] 1211418 ] ] To=1 (o o HP PRSP 47
4.1.2  Good Software Engineering Practices and Procedures ............ccccceeeiniiiiiiiiiieee e 48
4.1.3 Perform Safety and Development ANAIYSES ..........ueiiiiiiiiiiiiiiieiee e 48
41.4 Incorporate Appropriate Methodologies, Techniques, and Design Features .................. 48
4.1.5 LOF- YT L = 0 ] o (o (PSPPI TSPPPN 49
4.2 The Software DeVElOPMENT PrOCESS........cccuiiiiieie e ettt e e s e e e e e et r e e e e e e s sannrreeeeaaeeeeans 49

NASA-GB-8719.13 3



421 SOftWArE LIfECYCIES ....uiiiieiiie ettt e e e e e e e e e s e e e e e e e e e e nnnae 52

4.2. 1.1 Waterfall MOUEI .......coiiiieei et et bb e 53
42.1.2 =T ol ol 01 (0] 1Y o 1o Vo R PP RTPPP 54
42.1.3 SPIFAIMOTEN ... 56
4214 Incremental Development - Single DelIVEIY..........oocuiiiiiiiiicie e 57
4.2.1.5 Incremental Development - Incremental Delivery ... 57
4.2.1.6 Evolutionary DeVEIOPMENT ..........coiiiiiiiiie et e e e 59
4.2.2 DesSign MethOdOIOGIES. ...t e e e e e e e snnb e ee s 60
4221 SAUSD i e e e e e et e e e e bree e e e nnree e e e nres 61
4222 1010 2V(© 16 ] 5 RSP SR 63
4.2.2.3 Formal Methods (FIM) .....ccooiiiiiieee e e e e e e e e e st e e e e e e as 66
4.2.2.4 Model-based Software DeVeIOPMENL...........ccvvieiiiiiiiiiieee e 69
4.2.2.5 [T T T o (Y 0 PSR 69

4.3 ManAgiNg the PrOCESS. ......uueiiiiiiiiie ittt ettt e e et b e e s anbb e e e enes 70
431 Project Management BESt PraCtiCeS........uuiiiiiiiiiiiiiie et 71
43.2 REQUITEIMENES ...ttt ettt e sttt e st e e s bbbt e e s nbe e e e s annneee s 73
4.3.3 (DTS o | o RO TPT TR 75
434 TeaT o] (ST 40T a1 ¢= 14 [o] o PO TP 76
R T 1= 11 oo SRR 76
4.3.6 Products from the Development PrOCESS ........ccccvuiiiiieeii it e e e svanee e 77
4.3.7 Managing Object-Oriented ProjeCtS.........uueeiieeiiiiiiiieec e e 79
4.3.8  Software Development Capability Frameworks .........ccccceeeiiiiiiiiieeeee e 81
S B 11 o= PSPPSR 85
N I V1 [o ) 1 o Y7o 10l o] 0Tt = ] PSSR 86
4.5  Software Configuration ManagemeENL..........ceuieeiiiiiiiiiieiiee e e s srrrrr e e e e e s s srrnrrrre e e e s s snnrnrrrrreeeees 87
451  Change CONLIOl.......c.ueiiiiiiiiieit ettt a bbb e e s b e e e e neeas 88
A L= 1T ] a1 oo [ PP PPPU PP OPTPPN 89
4.5.3  StAtUS ACCOUNTING c..uveiiieiiiiiee ettt ettt ettt sttt ettt e ettt e e s bt e e e aab b e e e s abb e e e anbeeeeeanrns 90
N A B 1< (= Tox = Tox (] T [ PR PUPPRTN 90
455 Metrics from YOUr SCM SYSTEIM ....ccoiiiiiiiiiiee ettt e e e e e 91
456 Whattoinclude in the SCM SYSIEM ..ot a e 91
4.6  Good Programming PractiCes for Safely.......ccccuiiiiiiiiiiii e 92

Chapter 5 System and Software Concept Stage .........ccccuvvn.... 98
5.1 TaSKS @GN0 ANAIYSES ..ottt e ettt e e e e e e e e e e e e e e b b baeeaaaeaeaaaa 100
5.2  Documentation @and MIlESIONES ...........uuuiiiiiiiiiiiiei e eib e eaaa e as 101
5.3  Tailoring GUIAEINES ...ttt e e e et e e e e e e e e bbb e e e e e e e e e aanes 102
5.3  Tailoring GUIAEINES.........cciiiieiie ettt e e e s e e e e e e s st e e e e e e e e s ssneraaeeeaeeeenanes 102
5.4  Independent Verification and Validation............ccccueireiee it e e 102
5.5 SAfEIY ANAIYSES. .ot e e e e et e e e e e s aarrrrrrraaeeaann 103
Chapter 6 Software Requirements.........ccccceevieiiiiiiiieeeeeeiiinnenn, 104

6.1  TaSKS @Nd ANAIYSES ..ottt e e e e bbb e e e e e e e e nbbbaeeeaaaaaaaaa 105
6.2  Documentation and MIlESTONES ...........uuuiiiiiiiii it e e reeeeaa e 106
6.3 Talloring GUIAEINES........co i e e e e e e e s s e e e e e e e e e senreraeeeaeeeesanes 107
6.4  Requirements ManagEmMENT.........ccciiiiiiiiiiiee e ecsciree e e e e e e s s s rr e e e e e s e s satbrareeaeessesanrrrereeaaeaeas 108
6.4.1 Requirements SPeCIfiCatioN ..........cccciiiiiiiiiiii e e e e 109
6.4.1.1 Requirements ENCItatioN ............covvieiiiiiiiiiec e 109
6.4.1.2 Requirements RefINEMENT ..........ooviiiiiiice e 110
6.4.1.3 Requirements DOCUMENTALION .......ccciiiiiiiiiiee e s e e e e e e e e e e 110
6.4.2 Requirements Traceability and VerifiCation ............cccccoiiiiiniiiini e 111
6.4.3 Requirements Change Management ...........oocuueeiiiiiiieiiiiie et 112
6.5 Development of Software Safety REQUIrEMENTS ..........coiiiiiiiiiiiiiiii e 113
6.5.1 Generic Software Safety REQUINEMENTS........cooiii it 113
6.5.2 Fault and Failure TOIErANCE ........cooiiiiiiiiiiiee e 114
6.5.3 Hazardous COMMEANGS ......cocuiiiiiiiiiie et et e e st e e s e e s ssbee e e e nnbeeeeeennees 115

NASA-GB-8719.13 4



6.5.4  Timing, Sizing and Throughput Considerations............c.cocccvvviiiieeeiiiirciieeee e 116

6.5.5 Formal Inspections of Software ReqUIrEmMENtS ..........cccoviiiiiiiieiie e 117
6.5.6  TESEPIANNING ....oeiiiiiiiiiiiiiii ettt 119
6.5.7 Checklists and CroSS FEfEIrENCES .....cvieii it e e e e seneees 119
6.6  Software Safety Requirements ANAlYSIS .........ceoiiiiiiiiiiiiiie e 120
6.6.1  Software Safety Requirements Flow-down AnalysSis .........c.c.ueeeiiiiiiiiiiiiiiiieeie e, 120
6.6.2 Requirements Criticality ANAIYSIS........c.uuuiiiiiieiai e 121
6.6.3  SPeCIfication ANAIYSIS .........uuiiiiiiiie i a e 124
6.6.3.1 Reading Analysis and Traceability ANalysiS .........cccccceeveeiiiiiiiiieece e 125
6.6.3.2 Control-flOW @NAIYSIS........uviiiiiee e e e e e e e e anaes 126
6.6.3.3 INformMation-flow @nalYSIS ........c..uuiiiiiiiiiiie e 126
6.6.3.4 Functional sSimulation MOEIS. ...........uuiiiiiiiiiii e 126
6.6.4  Formal Methods - Specification Development ..........ccccovvvciiiiiiiee e 126
6.6.5 MOAEI CHECKING ...ttt e b e e e b e e e e 127
6.6.5.1 How Model Checking WOIKS........coouiiiiiiiie e 127
6.6.5.2 LI 10 OSSR 127
6.6.5.3 (01 0 F= 11 =T o To =R RPRUPSR 128
6.6.6  Timing, Throughput And SiziNg ANAIYSIS ......ccoiiiiiiiiiiee e 129
6.6.7  Software Fault Tree ANAIYSIS .....cooui i 130
6.6.8  Software Failure Modes and Effects AnalysSis........cccccceiiiiiiiiiieeie e, 131
Chapter 7 Software DeSigN ......cooeevviiiiiiiiiieiie e 133

7.1 TASKS QNG ANAIYSES ..ottt s e e e e e nees 133
7.2  Documentation @and MIlESTONES ...........uuuiiiiiiieiite et a e e ea e e e as 135
7.3 Tailoring GUIAEINES ...t e e e et e e e e e e s st b beeeeaaeeeaanes 136
7.4  Design of Safety-Critical SOtWAIE ............eeiiiiiiii e 137
7.4.1 (DT o [aTl o R (o] Y= 1 (= Y 2SR 137
7.4.2 Designing around Faults and Failures ..............cccoiiiiiieii e 140
7.4.2.1 N-VErsion Programming ........cccuueeiieeeeiiiiiiiiieeee e e e s sisiiieee e e s e e s sesnntaeeeeeesesssnnnnneseeesess 142
7.4.2.2 Fault Containment REJIONS .......uiiiiieiiiiiiieeee e e e e e e e e s e e eeaee e s 143
7.4.2.3 Redundant ArChitECIUIE .........ouuiiie i 143
7.4.3 Selection of COTS and Reusing COMPONENES..........c.uviiiiieeeiiiiiiiireeee e s e ssvreeeeeee e e nnnens 144
7.4.4  Selection of language, development tools and operating SyStems...........cccovevveeerinnenn. 144
7.4.5 Language Restrictions and Coding Standards .............cccceiriiiiiiiiieic e 145
7.4.6 Defensive Programming.............ceeio oottt e e et e e e e e e s s snbbbeeeaaaaeesennneeees 146
7.4.7 Integration TSt PIANNING ..........ooo i e e eee s 147
A S T ©70] 1 ] ][5 (1 2T UPTTTT SRR 148
7.4.8.1 FUNCHON POINES ..ottt ettt e e s et e e e e nrae e e e nnnes 150
7.4.8.2 FUNCEION POINE EXIENSIONS .......vviiieiiiiiee ettt see et e e s snbbe e e s s nbee e e nneeas 150
7.4.9 Design for Maintainability and Reliability ..o, 151
A T O 1= TS (o AN g = Y= 1SS 153
7.5.1 Update PreVioUS ANGIYSES .....uvviiiiieiiiieiieiie e e e e e sttt e e e e e s sstaaee e e e e e s s s snnanaeeeeeeeseansrennees 154
7.5.1.1 (O g1 Tor= 11y YA AN F= 1| 1P UPEE 155
7.5.1.2 Software Component RiSK ASSESSMENT ........ccciiiiiiiiiiiiiei e 155
7.5.1.3 Software FTA and Software FIMEA..........ooooiiiiie e 156
7.5.2 Design Safety ANAIYSIS .....oooiiiiiii e 156
75.21 DESION REVIBWS ...ttt e et e e e e e e s nnraeeeaaaeeas 156
7.5.2.2 Prototype and SImMUIALION............ueiiiiii e 157
7.5.3 INAEPENAENCE ANAIYSIS ...ttt e e e e e e e e e e e anabeeeeeas 157
7.5.4  Formal Inspections of DeSIgN ProdUCLS ............cccuuiiiieee it 158
7.5.5 Formal Methods and Model ChecKing ...........ccoocciiiiiieii e 158
7.5.6 Design LOGIiC ANAIYSIS (DLA)....uuiiiie it e st e e e e s st e e e e e e e st re e e e e e e s e ananranaees 159
7.5.7 (D TST (o [ D = U r= AN F= 1) £ 159
7.5.8 DesSign INterface ANAIYSIS........uuuiiiie i a e e e e 159
7.5.9 Design Traceability ANAIYSIS .......cocuiiiiiiiii e 160
7.5.10 Software EIement ANAIYSIS ........cooiiiiiiiiiiiieiiiie e 161

NASA-GB-8719.13 5



7.5.11 Rate MoNOtONIC ANAIYSIS.....uuiiiieeiiiiiiiieiii e e s s e e e s e e e e s st r e e e e e e s s snnrraeeeees 162

7.5.12 Dynamic Flowgraph ANAlYSIS..........coicuiiiiiiiee i e e e e e 162
7.5.13  MarkoV MOGEIING ... .ceeiiiiiiiiieiet ettt et e b e e e eneees 163
7.5.14 Requirements State MaChINES ..........oviiiiiiii e 163
Chapter 8 Implementation ............coooviiiiiiiiiiii e, 164
8.1  TaSKS @Nd ANAIYSES ....ccoiieiiiieii ettt e s e e e e e e e r e e e e e e e araaeanaann 165
8.2  Documentation and MIlESIONES .........cciiiiiiiiiiiii e 166
LSRG S 1= U1 (o T T o I 10T [0 =110 T SRS 167
8.4  Software Development TECHNIQUES ..........ciiiiiiiiiiii e 168
8.4.1  Coding Checklists and Standards..............ccoiiiiiieiiiiiieii e 168
8.4.2 UNIE LEVEI TESHNG -..ettteetiieeee ittt e e e ettt e e e e e e s abbb e et e e e e e e e annnneeeas 169
8.4.3 [RYS] = (ox (o 1 o o [P PPPPRPT 170
8.4.4  Program SHCING ........eeeiaiiiiiiiie ittt e e e e e e e e e e e e e e e b a b e e e e e e e e e e aanreneeas 171
SIS I O To (I AN F= 11T PSSR 171
IR T @do To [ 3 Mo T [ [oa Y g T= 1)) T PSSR 171
8.5.2  COUE DA@ ANAIYSIS....ccceiiiiiiiiiiiiie e et e e e e e st e e e e e e e s r e e e e e e s e e e e e e e e aarraaeees 172
8.5.3  Code INtEerfaCe ANGIYSIS .....uuuiiiiiiee et s e e e e e e s e e e 172
8.5.4  UNUSEA COUE ANAIYSIS.....c.uuiiiiiiiieeeiiiiiiee et e e s e s e e e e e s e s e e e e e e s e ssnsen e e e eeeeseansraeeeees 173
8.5.5 T (=T 0] o AN F= 1)Y= £ PSS 173
8.5.6  TeSt COVErage ANAIYSIS ....cociiuiiiieiiiiii ettt ettt e e et e 174
8.5.7 Formal INSpections Of SOUICE COUE.........uuii i 175
8.5.8  Safety-Critical UNit TESE PIANS ......uuviiiiiiiiii e 176
8.5.9 Final Timing, Throughput, and Sizing ANAIYSIS ........ccccaiiiiiiiiie e 176
8.5.10 Update PreVioUS ANAIYSES ......eiiiii ittt a e e e et e e e e e e e e e annbeeeeeas 176
Chapter 9  TeStiNg oo 178
9.1 TASKS QNG ANAIYSES ..ottt 179
9.2  Documentation @and MIlESTONES ........c..uuiiiiiiiee e s e e e e e e e s enrrreeeeaaeee s 180
9.3 TailorNg GUIAEINES.....coiiiiiie it st e et e e e nnes 181
9.4 Software INtegration and TEST ......cui e a e ee e e e 183
9.4.1  Testing Techniques and CONSIAEIAtIONS. .........cuuiiiiiiiai i 183
9.4.1.1 What kinds of testing should be considered? .........ccccooviiiiiiiiieie i 184
9.4.1.2 What steps are needed to develop and run software testS? .........ccccoevvviveeeeeenninnns 185
9.4.1.3 WAhAL'S @ TESE CASE'? ...ttt ee e st e e e snneee s 186
9.4.1.4 What should be done after a bug is found?.........ccccceeeiiiic 186
9.4.1.5 What if there isn't enough time for thorough testing? ........ccccccceve v 188
9.4.2  TeStENVIFONIMENT .. ..eiiiiiiiiiie ittt ettt st e s et e e e e bt e e e e e st e e e s anbreeesannees 188
9.4.3 T c=To [ e=UiToT o =21 1] o o OO PP U PU PRSPPI 189
9.4.4 Integrating Object-Oriented SOfWAIE ..........cueiiiiiiiiie e 189
1S Vi1 (=1 4 T =T (T R P PP PP PPPPP P 190
9.4.6 REQIESSION TESHING ....eeeiiieiiiiitieie et ettt e et e e e e e e et b bt e e e e e e e s s abbbe e e e e e e e e e annnnneeas 192
9.4.7 SOftWAre SAFELY TESHNG ..eeeieiiiiiiiiii ettt e e e e e e e e e e s et ee e e e e e e e e annes 193
9.4.8 TESE WWIINESSING. .. eeeeee ettt ettt ettt e e e e e e e bbbt e e e e e e e s aabbbbe e e e e e e e e snnbnbeeeaaaeaan 193
9.4.9 Use of Computer Models for System Verification .............ccccvveeeeee e, 194
S I 1= Y T 1] PP PRSI 194
9.5.1  TeSt COVEIrage ANGAIYSIS ......uuiiiiiiee e ittt e e e e e sttt e e e e e s st re e e e e e e s s snabare e e e e e e e e s annreneees 195
9.5.2 Formal Inspections of Test Plan and Procedures..........ccccoccvvviveiieeeesiiciniieeeee e 196
9.5.3 L= =T o111 Y1, Lo o =1 o S 196
9.5.4  TeSt RESUILS ANAIYSIS......cccceiiiiiiie e e e st e e e e e s s e e e e e e s s st e e e e e e e e annnrenees 197
9.5.5  TESHNG RESOUICES ....eiiiiiiiiiieiiieet ettt ettt a bt e e e nnbre e e e eneees 197
Chapter 10 Operations and Maintenance...........cccceeeeeeevvvnnnnnn.. 198
10.1 TASKS QN ANGIYSES......uviiiiiii ettt e et e e e e s e s e e e e e e s s e st reeeeeeeessasanbeaeeaaeeesannnnes 198
10.2 Documentation and MIlESIONES .........ocueiiiiiiiii e 199
10.3 JLIE= V1L o TR0 T [ 1 =PSRRI 199

NASA-GB-8719.13 6



104 Software Acceptance and DElIVEIY .........c.euuiiiiie e 200

10.5 Software Operations and MaINENANCE .........ccceeiiiiciiiiieie e e s 200
10.5.1  COTS SOfWAIE ..eeeiiiee ettt e e e e e e e s e e e e e e e e s e sssb e eeaeeeeseansraeeeaeaeeas 201
10.5.2 Software Change IMpact ANAIYSIS ..........eviiiiiiiiiiiiiie et 203

Chapter 11 Software Development ISSUES ...........cceveeevviinnnnnnn.. 205

11.1 Programming LANQUAGES .....ceeeeeeiiiieiiieieiee e s seiiieeeesae e e s s sssieaeeeeeessssssnsnneeeeeeesssnnnsnsneeeaeeses 207
11.1.1 Safe SubSEts Of LANQUAGES .........viriiiiiee et ee e e sttt e s e e e e e s snnrrrner e e e e e s 207
11.1.2 Insecurities Common t0 All LANQUAGES ........c.evvvriiieeeeiiiieiieee e e e e e ssrie e e e e e s s snnrnreeeeaee e 208
11.1.3  Method Of ASSESSIMENL.......uuiiiiieiiiiiiiieiie et e e e e e e e e e s e ee e e e e e s s aesraeeeeeeeeas 208
O - g o U =T [T TP PO PETTP R PPPPPTP 209

11.1.4.1  AdaB83 and Ada95 LANQUAGES .......uuueeiiaiiiiiiiiiiieeia e e e eitieeeee e e e s e e siibereeeaa e e s e anneseeeeas 210
11.1.4.2  ASSEMDBIY LANQUAGES. ... eeeeeiiaaiiiiiiiiieeta e e e ettt e e e e e e s st e et e e e e e e seanbebeeeeaaaeesannreeees 213
11.1.4.3 € LABNQUAGE «.ceieieiiiiiiiiiiiiieeeieeeeeee ettt et eteeeeeeeetteeteeeataeeeseeesesssessesssssssssssssssssssnsssssnnnnnnns 214
0 O O o I o o U= T [ SRR SPRPPINY 218
0 O R O = g [0 [ T= T [ PSP SPPPPNY 221
5 T o T T I T T [0 = Lo = TR 223
11.1.4.7 FORTRAN LanNQUAGE........ccceieieiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeaeesesesensesessnsnnnnes 224
B B - Y 7= = Vg o 1 = o PRSP 225
11049  LADVIEW ...ttt e et e e st e e e st e e e nbe e e e e 227
11.1.4.10 PaSCaAl LANGQUAGE ... ..eeiiiiiiiieeiitie ettt ettt ettt e e et e e e b e e e annes 228
O I O V1T 0 - | = T [ USRS 229
11.1.5 Miscellaneous Problems Present in MOSt LANQUAGES ........ocvvveieiiiiiieiiiiiieeiiiiee e 230
11.1.6 Programming Languages: RecomMmendationsS...........oocuuiiieiiiaiiniiiiiiieeee e 232

11.2 Compilers, Editors, Debuggers, IDEs and other TOOIS..........cccuuiieiiiiiiiiiiiee e, 232

11.3 CASE tools and Automatic Code GeNeration..............ccoieeaiiiiiiiiieiee e 235
11.3.1 Computer-Aided Software Engineering (CASE).......cccovveieeeii i 235
11.3.2 PAT | (o] gaF= L[ @faTo [ €1 =T o 1= = o] o SRR 236

3 B R VA 1T U T | I T 10 F= Lo =SSR 237
11.3.2.2  Visual Programming ENVIFONMENLS .........coccviiiiieieeeieiiiiiiee e e e s sssvieeee e e e e e snnveeee s 238
11.3.2.3 Code Generation from Design MOdEeIS ...........c.eeevieeiiiiiiiiiieice e 238

11.4 OPEratiNg SYSIEIMS ....uiiiiiiie e e iiiiier e s e re e e e e s s r e e e e s s s se e eeeeeeessnstsreeeaeeeseannrneeees 240
11.4.1  Types Of OPerating SYSTEIMS ....ccciiuiiiiiiiiiie ettt e s saneee s 240
11.4.2 Do | really need a real-time operating System (RTOS)? .....cuveveiiiiiieiiiiiee i 240
11.4.3 What to 100K fOr in @n RTOS ...ttt e s 241
11.4.4 Commonly used Operating SYSIEMS ......cooiiiiiiiiiiieee et eea e 243

115 Distributed COMPULING ... ..eiiiiiiie et e e e e e e bnbreeeaaaeeas 244

11.6 Programmable LOGIC DEVICES..........ccuuiiiiiee ittt e et e e e e e e s ennraeeeaaeeeas 247
11.6.1 Types of Programmable LOQIC DEVICES ........ccuureiiiieiiiiiiiiiieeeee et e e evnreee e 247
11.6.2  “Program ONCE” DEVICES......uuuiieiiiiiiiiiieiie e e s e iittree e e e e e e s s sttaeeeeaeessasaataeseaaeeesassnrrreeaaaees 248
11.6.3 “Reprogram in the Field” DEVICES ........ccuiiiiiiiiiiieiieee e eeseee e e e e e e e e e 248
11.6.4 Configurable COMPULING ..veeiieeeiiiiiiiiie e e s r e e e e e s e e e e e e e snnrrrrreeeaeeean 249
11.6.5 Safety and Programmable LOQIC DEVICES.........ucuiieieiiiiiiiiiiiiiie e cceteeee e e eeee e 250

11.7 Embedded Web TEChNOIOQY ........coeiiiiiiiieiiie e 251
11.7.1 Embedded WED SEIVEIS ......ooi ittt e e e e e e 251
11.7.2  TeStiNg TECHNIGUES ........eiiiiiiiiii ettt e e sanee s 252

11.8 Al and AULONOMOUS SYSTEMS ....iiiiiiiiiiieiee ettt ettt e e e e e s ib e e e e e e e e e e nbnbeeeeaaaaeas 253
11.8.1 Examples of Intelligent Autonomous Systems (IAS) ........eeeeiiiiiiiiiiiiiiie e 254
11.8.2 Problems @nd CONCEIMNS.....ccccii ittt ettt e e e e e et e e e e e e e e e snbbbreeeaaaeaean 255
11.8.3 Case Study — Remote Agent 0N DEEP SPACE L.......ccocuiviiieieeeiii e et e e 256

11.8.3.1 Remote AQeNnt DESCIPLON .....ccoi it e s e e e e e e e rr e e e e e e e s snraaae e 257
11.8.3.2 Testing and Verification of REMOtE AQENt........covviiiiiiiiiiiieeee e 258
11.8.3.3 In-flight Validation: How well did it WOrK?..........covveeiiiiiiiiieie e 259

11.9 Human Factors in SOftware Safety ... 260

e T 10T =Yg =t o PP 261
11.9.1.1  AcCidents and INCIAENTS ........eeiii et e e e e e e e s s sneeeees 262

NASA-GB-8719.13 7



11.9.1.2  Errors t0 WatCh OUL FOr......uuueiiiiiiiieeee e e e e s e e e e e e e 263

11.9.1.3  ProCess ProDIEIMS ... ...ooiiiiiiie ittt st et e e 264
11.9.2 The Human-Computer INTEIfACE ........ocuiiiiiiiiiie et 264
11.9.3  INEEITACE DESIGN . .eeeiiiiiiiiie ittt ettt ettt e bt e e s bt e e e e snbn e e e s annreee s 265

Chapter 12 Software ACqQUISItioN .......cccoeeeviiiiiieeeieiee e, 268
12.1 Off-the-Shelf SOftWAIE.........coiiiiiiii e 269
12.1.1 Purchasing or Reusing OTS Software: Recommendations............ccccccveeevviiciiiieeeneeennn. 271
12.1.2 Integrating OTS Software into YOUr SYSEM.......ccviiieiiiiiiiiieire e e 275

12.1.2.1  Sticky stuff: Glueware and Wrapper FUNCHONS..........cccoviiiiiiiiiiieeiiiee e 275

12.1.2.2  Redundant ArChItECIUIE ........cooi i e e e 276

12.1.2.3 Adding or Adapting FUNCLONAIILY .......cc.coiiiiiiiiiiiiee e 276

12.1.2.4 Dealing with Extra FUNCLONAIILY .........cccoiiiiiiiiiiiiiiee e 277
12.1.3 Special Problems with Reused SOftWare ... 278
12.1.4 Who Tests the OTS? (US VS. ThHEM) ...ccciiiiiiiiiiieiie et e arrre e e 278
12.1.5 Recommended ANAlySES aNd TESES ....cccccciiiiiiiiiiieie e e e e e e e e re e e e 280

12.2 Contractor-developed SOfIWAIE ...........ceiiiiiiiiiiiiie e e e e 281
2 R S = =Y o = W 0] 11 - T o P 281
12.2.2  CONraCt INCIUSIONS.......uviiiiiiiiiie ettt e e st e e s snneeee s 282

12.2.2.1  SAfELY PrOCESS ...ciiiii i ittt ettt e e e e e e e s st e e e e e e e e st ta e e e e e e e e e annrnaeees 282

12.2.2.2  ANAIYSIS N0 TEST.....uiiiiiiiiiiie ettt e aanes 283

12.2.2.3 Software Assurance and Development ProCess .........cccovvvveieiiiiie e 283

12.2.2.4  Contractor SUMNVEIIIANCE.......c.ciii i 283

12.2.2.5 Software DeliVerabIes ...........ooo i 284

12.2.2.6 Independent Verification and Validation (IV&V)........cccuueiiiiiiiiiiiiieee e, 285

12.2.2.7  Software Change PrOCESS ........oocuuuiiiiiiaiai ittt e e e e e eas 285

12.2.2.8 Requirements SPeCIfiCation .........ccuuviiiiiiiiiiiiiiiiee e 285
12.2.3  MonNitoring CoNtraCtOr PrOCESSES. ... uuuuiiiiiii ittt e e e st e e r e e e e e e s e e e e e e e 285
12.2.4 Recommended SOftWware TESHNG..... e e e e e e e e e 286

Chapter 13 Looking Ahead..........cooiviiiiiiiiiiii e 287
Appendix A References and Information........c.......ccevvvvnnnn.. 289
N R o L= (=1 1= (o = USSP 289
)N [ | o1 1= 11T o T R PPRI 294
Appendix B Glossary and ACronymsS .....ccoeevvvviieeeeeeinnneeenn, 297
B.1  GIOSSAINY Of TEIMS ...eiiiiiiiiie ittt sttt e et e e s st e e s bt e e e s bt e e e e s nbeeeessnnee s 297
o {0 01 1 1 PSP EPR 312
Appendix C Software Fault Tree Analysis (SFTA) ................. 314
C.1 Software Fault Tree AnalysisS DESCHPLION .......ccuviiiiiiee et e e e srrrrr e e e e e 314
C.2 Goal of Software Fault Tre€ ANAIYSIS........ccieiiiiiiiiiiiieee e e e e e e e e e sarrrrreeaae e 314
C.3  Use of Software Fault Tree ANAIYSIS .......cciiiiiiiiiiiiiiiiiee et et r e e e e e 316
C.4 Benefits Of Software Fault Tree ANalYSIS ........cccuviiiiiiee e 318
Appendix D Software Failure Modes and Effects Analysis... 321
[ 20 R =17 1011 Te] (o |V RO PPPPRRRPO 321
D.2  WRY dO @N SFMEA? ...ttt ettt e e s eab e e s enbb e e s s bb e e e anbbe e e e nnreeas 322
D.3  ISSUES WIth SFIMEA ...ttt sttt e sttt e e s st e e s snba e e e e antteeeennneees 322
D.4 The SFMEA PrOCESS ... .uveiieiiiiiite it eie et s et ettt e sttt e sttt e e st e e e s esbb e e e s nnba e e e s anbaeeeeanneeeas 324
D.4.1 Identify Project/system COMPONENLS ........ccccuviiiiiiieeeiiiiiiiieee e e e s s s snieare e e e e e s e snnenraeeeeeeees 324
D.4.2  GroUnd RUIES ......eeiiiiiiiiee ettt et e ettt e e s sttt e e s sabe e e e e sabeeeessnbeeeeeane 325
D.4.3  1dentify FAIlUMES ....ccci ittt s e e e e e s s s e e e e e e e e s e e e e e e s 327
D.43.1 Examination of Normal Operations as Part of the System ..........ccccccvveiviieeennnn 328

NASA-GB-8719.13 8



D.4.3.2 Identify Possible Areas of Software Faults .............cccccveeeievccciiiii e, 328

D.4.3.3  Po0SSible FalUure MOUES........ccoiiiiiiiiiiie e 329
D.4.3.4 Start at the BOOM ........uviiiiiie e e e s e e e e s e s enenneees 330
D.4.4 Identify Consequences of each Failure...........cocueeeiiiiiiiiiiiiii e 330
D.4.5 Detection and COMPENSALION........ccciitiiiiiiiiiie ittt e ettt e et e e sbee e e s srneeeeanes 331
D.4.6  DeSIGN CRANGES.....cci ittt ettt e e e e e ettt e e e e e e s e bbb e e eeaaaeesaanbbbeeeaaaeeas 332
D.4.7  Impacts Of COrreCtive ChaANQES........ccuiiiiiiiiiiiiie et a e eea e e 332
D.4.8  EXAMPIE FOMMS ..ottt ettt e e e e e et e e e e e e e e e nbnbeeeaaaeeas 333
APPENDIX E Requirements State Machines ..........cccccceeveeeenns 337
E.1  Characteristics of State MaChINES.........cocoiiiiiiii e 337
E.2 Properties of Safe State MaChinNesS..........cooiiiiiiiiii e 339
E.3  INPUt/OULPUL VAKIADIES.......eeeiiieiiieiie e e e e e e e 339
ST 1= | (3 N 11 ] 01U (=2 SR PRPPRR PP 339
ST 4T o = g o (=T [0 | (=PSRRI 339
I @ U1 o101 B =T o= | (S SSEPR 341
SR DT=To | r=To (=T WY foTo [CR @ 0 T=T = 11 o] o O EPSRPR 342
SIS T = T=To | o o Yot S Mo Yo oI AN g = Y= LSRR 342
E.9  Transition CharaCteriStiCS .......uuuiiiiiiiiieiiiiie ittt et e e s e e s b e e e sneeeeas 343
E.10 (070] o [od 10153 o] o - SRR OPPRPPTRR 344
Appendix F  Preliminary Hazard Analysis (PHA) ................... 345
N R 1N Y o o] (0T T o USRS 345
F.2  1dentifying HAzZards...........oueiiieiiiiiiiiiie et e e e s st e e e e s e s e e e e e e e e s nanneees 346
F.3  Preliminary Hazard Analysis (PHA) PrOCESS ......cuviiiiiiiiiiiiiiiiee et e e ssivenen e e e e e 348
F.4  Tools and Methods fOr PHA ..o 349
F.5  PHA S @ LiVING DOCUMENT....cciiiiiiitiiiiie e e e e s ettt e e e e s e e e e e e e s st e e e e e e e s snnnnreneeeaeeesnnnnne 350
Appendix G Reliability Modeling .......cccccoeevieiiiiiiiice e, 352
G.1 Criteria for Selecting a Reliability MOdEl ...........coooiiiiiiiiiii e 352
G.2  ISSUES AN CONCEIMS. ...c.utiiiieiiiiieeiaiiteeeesiteeeestteeeesssateeesastbeeesssbeeeeanbeeeeanbaeeeaansbeeesansrenesenes 352
LR T o To RPN 353
G.4  DISSENLNG VIBWS ...eeeeiieeeiiiitiiieieee e e e e sttt et e e e s s sastateeeeeaesssssstataeeeaaeessannsssaeeeeeeessannssnnneneaeeeannes 353
G5 RESOUICES ... 354
Appendix H ChecCkKIistSs ........oiiiiiiiiii e, 355
H.1  Checklist 1 for Off-the-Shelf (OTS) HEMS ........uviiiiiiiiiiiccee e 355
H.2  Checklist 2 for Off-the-Shelf (OTS) HEMS .......uviiiiieiiii e 359
H.3  Generic Software Safety Requirements From MSFC .........cccccoiiiiiiiiiiinie e 361
H.4  Design for Safety ChecCKIiSt.........c.uviiiiiii e 364
H.5 Checklist of generic (language independent) programming pPractiCes...........ccccvevvvveeerneneen. 365
H.6  Checklist of assembly programming practices for safety ..........cccoucieiriiiiiiniicee e, 368
H.7  Checklist of Ada programming practices for Safety.........ccccvvuviriiiiii i 369
H.8 Checklist of C programming practices for Safety...........cccuuiiiiiiiiiiiiiiii s 370
H.9  Checklist of C++ programming practices for safety ... 372
H.10 Checklist of Fortran programming practices for safety ..o, 375
H.10 Checklist of Fortran programming practices for safety..........cccovveeveeiiiiiceeee e, 375
H.11 Checklist of Pascal programming practices for safety..........ccccvvveeeeeiiiciiiieecce e, 380
H.12 CheckKIist fOr VISUAI BASIC ......ccuvviieiiiiiie ittt ettt e e eesnnaeee s 381
H.13 Checkilist for selecting an RTOS .......coo i r e e e s sarreee s 383
H.14 Good Programming Practices ChecCKIiSt...........ccouiiiiiiiiiiie e 384

NASA-GB-8719.13 9



Figures

FIQUrE 2-1 HAZAId ANGIYSIS. ... ...ttt ettt ettt e e e e e e e s b e b e et e e e e e s nabbe e e e e e e e s ennbbeneaaaaens 22
Figure 2-2 Safety, System and Software TIMElINe .........c.c.eouiiiiiiiiii e 24
Figure 3-1 Participants in a Successful Safety ProCESS........c.uuuviiiieiiiiiiiiiiiiiee e ccitieee e e e 32
Figure 3-2 Relationship of RISK INAICES .......uuiiiiiiiiiiiie e e e e e 40
Figure 4-1 Waterfall LIfECYCIE MOUEI .........uiiiiiieeie et a e 53
Figure 4-2 Rapid ProtOtYPINg ......oooieeeeieiiiiiie ittt ettt e st e ee bt e e e enbb e e e anbbeeeeaneee 55
Figure 4-3 Spiral LIfeCYCle MOUEI .......cooiiiiiieiie e sare e 56
Figure 4-4 Incremental Development Lifecycle — Single DeliVEry .........ccccvvvveveeeiiiiciiieeece e 58
Figure 4-5 Incremental Development Lifecycle — Incremental DeliVery ...........cccocccvvvieveiieeiicciiveeeeenn, 58
Figure 4-6 Evolutionary LifeCyCle MOEL...........coo i 59
Figure 4-7 Sources of Software REQUINEIMENTS .........uuiiiiiiiieiiiiie ettt 73
Figure 4-8 Development Frameworks QUAGIMITE .........uviieeeiiiiiiiiiieeee e e s s st e e e e e e e sssanree e e e e e e e s e nnnnrneeees 83
Figure 4-9 Software Capability Maturity MOGEL............ouiiiiiiiiiiiiieiec e 84
Figure C-1 SFTA Graphical Representation SYmbolS............ccuuiiiiiiiiiii e, 318
Figure C-2 Example of High Level Fault Tree ........c..ooi it 319
Figure C-3 Example Code FaUIt TrE ......uuuiii et e e e e e e e e e e s rnaeeee s 320
LT T | I S EUR 324
FIGUIE D=2 ettt oo ookttt et e e e e oo e b e bttt e e e e e e e e a bbb be e e e e e e e e e nnbebe e e e e e e e annbrraeaaaaas 327
Figure E-1 Example of State Transition DIiagram ..........ccuueeeiiiiiieiiiiie e 338
Figure E-2 Example RSM @nd SIGNAIS .......ceviieiiiiiiiiiiieee et e e e e e e e e e e e s e s nnnnrnaeee e 340
Figure F-1 Example Payload Hazard Report FOrm (from JSC)........coooviiiiiiiiieei e 351

NASA-GB-8719.13 10



Tables

Table 2-1 Hazard Causes and Controls - EXAMPIES ......uuviiiiieeiiiiiiiiiieeee s e e e s e sieee e e e e e 18
Table 2-2 RiSK DEfiNIIONS ......coiiiiiiee ittt et e e e sttt e e s st e e e s snbaeeeesnbeeeeesbeeeeesnreeeeeans 27
Table 2-3 Hazard Prioritization - System RiSK INAEX .........ueiiiiiiiiiiiiiiiiee e 28
Table 2-4 System RISK INAEX ........uiiiiiie ettt e s e e 28
Table 3-1 MIL STD 882C Software Control CategOri€S ......uuiueeeiiiriiieiiieeeeeiiiiieeee e e e e s ssserreereeeeessnnnnnes 37
Table 3-2 Software Control CAtEQOIIES ..........uuviiieeeiiiiiiieiee e e e e e e e e e e s s s e e e e e e s s s rrarrareeeeeesanrernees 38
Table 3-3 SOftWAre RISK IMALIIX. ... ..eeieeiiieeee ittt e ettt e e e e e st e e e e e e e e e aanbbbeeeeessnnrnreees 39
Table 3-4 SOftWare RISK INAEX.........uiiiiiiiee e e e e e e e e e e s sbn e eeessennrnreees 39
Table 3-5 Required Software Safety EffOrt ... e 41
Table 3-6 Degree of Oversight VS. SYStEM RISK.........ccccuiiiiiiie e e e 41
Table 5-1 System Concept Phase TASKS .....cc..uiiiiiiiiiiiie et a e e 100
Table 5-2 Project/Software Conception DOCUMENTALION..........ciciiiiiieiiiiiie et 101
Table 5-3 Software Safety Effort for Conception Phase..........ccoevviiiiiiiiiiiic e 102
Table 6-1 Software ReqUIremMENtS TASKS ......ccuuiiiiiieeiiiiiiiie e e e e e e e e e s s snerarereaeeeeanes 105
Table 6-2 Software Requirements DOCUMENTALION.........ooiuuiiiiieie et a e 106
Table 6-3 Software Safety Effort for Requirements Phase..........cccccciiiiiiiiiie e 107
Table 6-4 Requirements Management TOOIS ........couiiiiiiiiiiiiieiiec e e e e e e 111
Table 6-5 Example Subsystem Ciriticality Analysis Report FOrm ........ccccccveeiiiiiiiiiieeieee e, 119
Table 6-6 Example Subsystem Criticality MatriX ...........ocuueiiiiiieiiiiiiieee e 124
Table 7-1 Software DeSIgN TaSKS.........uiiiiiiiiii e seb e 133
Table 7-2 Software Design DOCUMENTALION ..........ceviiiiiiiiiiiieec e ss e e e s e e e e e e s e ssrnrerereeeeeeann 135
Table 7-3 Software Design Safety EffOrt ... 136
Table 7-4 Previous Software Safety ANGIYSES......ccuu i a e 154
Table 8-1 Software Implementation TASKS .........cueiiiiiiiiieii e 165
Table 8-2 Software Implementation DOCUMENLALION ........c..vvviiiiiee i e e 166
Table 8-3 Software Safety Effort for Implementation Phase ..o 167
Table 9-1 SyStem TeSHNG TASKS .......uuiiiiiiiiiiiiiie ettt e e e e et e e e e e e e e s anbbbeeeeasaaanne 179
Table 9-2 Software Testing DOCUMENTALION .........ciiiiiiiiiiiiiiie ettt 180
Table 9-3 Software Safety Effort for TesSting Phase ..........uvvevviviiiiii e 181
Table 9-4 Dynamic Testing (Unit or Integration LEVEI) ...........eeveveiiiiiiiiiiiie e 181
Table 9-5 SOftware SYSEM TESHNG. ... .ueiiii ittt e e e e e e et e e e e e e e e s s nbbbeeeeaaasaaann 182
Table 10-1 Operations and MaintENANCE TASKS.......cocuuiiiiiiiiiie e 198
Table 10-2 Operations and Maintenance DOCUMENTALION ..........ccoviciiiiiiiiee e a e 199
Table 10-3 Software Safety Effort for Operations and Maintenance Phase............cccccovvvvivieeeeeeeininns 199
Table F-1 Generic Hazards CheCKIiST..... ... .uuiiiiiiieie et e e e e 345

NASA-GB-8719.13 11



Chapter 1 Introduction

This NASA Software Safety Guidebook was prepared by the NASA Glenn Research Center,
Safety and Assurance Directorate, under a Center Software Initiative Proposal (CSIP) task for
the National Aeronautics and Space Administration.

NASA-STD-8719.13A, “NASA Software Safety Standard,” [1] prepared by NASA
Headquarters addresses the “who, what, when and why” of software safety analyses. This
Software Safety Guidebook addresses the “how to.”

Section 1.5 provides a roadmap to using this guidebook. The roadmap describes the
information in each chapter and shows software developers, project managers, software
assurance personnel, system engineers, and safety engineers which sections are relevant for
their disciplines.

11 Scope

The focus of this document is on analysis, development, and assurance of safety-critical
software, including firmware (e.g. software residing in non-volatile memory, such as ROM,
EPROM, EEPROM, or flash memory) and progranmable logic. This document aso
discusses issues with contractor-developed software. It provides guidance on how to address
creation and assurance of safety-critical software within the overall software development,
management, risk management, and assurance activities.

Techniques and analyses are described in varying levels of detail throughout the guidebook,
depending on the amount of information available. For techniques or analyses are that are
new, the guidebook attempts to give a flavor of the technique or procedure and provides
sources for more information. Opinions differ widely concerning the validity of some of the
various techniques, and this guidebook attempts to present these opinions without prejudging
their validity. In most cases, there are few or no metrics as of yet, to quantitatively evaluate
or compare the techniques. This guidebook addresses the value added versus cost of each
technique with respect to the overal software development and assurance goals. Without
strong metrics, such evaluations are somewhat subjective and should not be taken as the
definitive answer. Each technique or analysis should be considered in the context of the
specific project.

This guidebook is meant to be more than just a collection of development techniques and
analyses. The goal isto encourage the reader to think about software with “an eye for safety.”
Some familiarity with the NASA methodologies for system safety analysis and software
development will assist in following this guidebook, though no experience with either is
assumed or required. Acronyms and definitions of terminology used in this guidebook are
contained in Appendix B.

1.2 Purpose

The purpose of this guidebook is to aid organizations involved in the development and
assurance of safety-critical software. Software developers will find information on the
creation of safer software, as well as introduction to the NASA process for system (and
software) safety. Software safety personnel are given an introduction to the variety of

NASA-GB-8719.13 12



techniques and anayses available for assuring that the software is safer, as well as
information on good development practices. Project managers, system safety, software
assurance engineers, and systems engineers may also find this guidebook useful. Some
knowledge of software development processes is helpful in understanding the material
presented in this guidebook.

This guidebook concentrates on software development and acquisition and the associated
tasks and analyses. While the focus is on the development of software for safety-critical
systems, much of the information and guidance is also appropriate to the creation of mission-
critical software. Guidance on the acquisition of software, either commercial off-the-shelf or
created under contract, is given in Chapter 12.

1.3 Acknowledgments

Much of the material presented in this Guidebook has been based directly or indirectly on a
variety of sources (NASA, government agencies, technical literature sources), as well as
containing original material previously undocumented. All the sources are too numerous to
list here, but are appropriately referenced throughout.

A special acknowledgment is owed to engineers of the NASA/Caltech Jet Propulsion
Laboratory of Pasadena, California, whose inputs and suggestions have been used verbatim or
slightly modified in several sections of this Guidebook.

We aso thank:

e The Software Productivity Consortium for permission to reproduce “ The Frameworks
Quagmire”’ diagram.

e Rick Hower for permission to use information from his website on “ Software QA and
Testing Frequently-Asked-Questions’, http://www.softwaregatest.conv.

e DenisHowe for permission to quote from ” The Free On-Line Dictionary of
Computing”, http://foldoc.doc.ic.ac.uk/foldoc/index.html

« Philip J. Koopman for permission to quote from “A Brief Introduction to Forth.”

e Paul E. Bennett for permission to reproduce his “Design for Safety” checklist.

Our gratitude goes to the many NASA engineers and contractors who reviewed drafts of the
guidebook and provided input and advise as well as encouragement.

1.4 Associated Documents

Documents detailing software safety standards, software development standards, and
guidebooks are listed in Appendix A.2: Information. Included are NASA standards for
software, aswell as |EEE and military standards.

NASA-GB-8719.13 13


http://www.softwareqatest.com/
http://foldoc.doc.ic.ac.uk/foldoc/index.html

1.5 Roadmap of this Guidebook

This guidebook provides information for several diverse disciplines: software development,
system and software safety, software assurance, project management, and systems
engineering. Each of these disciplines has an associated graphic symbol, used throughout the
document to assist the reader in locating relevant information. When an entire section is
appropriate for a specific discipline, the symbol will be placed after the section title. When a
paragraph within a section is applicable, the symbol will be placed to the left of the paragraph.

In addition, tailoring information will beindicated by thissymbol:  £52
'

Section 1.5.1 provides the symbols that are associated with each discipline, along with a brief
description of the discipline. Section 1.5.2 provides a brief description of the contents of each

Chapter in this guidebook.

1.5.1 Disciplines and Symbols

Discipline/Symbol Responsibilities

Software The task of developing safe software falls squarely on the shoulders

Development of the software developer (also referred to as the software engineer),
who creates the “code” that must be safe. Almost all sections of this
guidebook are relevant to the software development discipline.

Software Safety The software safety tasks may be performed system safety

(including System
Safety)

personnel, software assurance personnel, or by a separate software
safety engineer. The goal is to assure that the final software, when
integrated into the system, is safe. This goal is accomplished
through education of project team members, analysis of the software
products, test verification, and other techniques. Almost all sections
of this guidebook are relevant to the software safety discipline.

Software assurance personnel make sure that the software produced
meets the applicable quality standards. Standards include both
process (how the software was devel oped) and product (how good is
the actual software). The software assurance engineer may perform
some of the safety analyses, if that is negotiated by the project.

Project and/or
Software Management

%

Developing a safe system requires informed involvement of the
project manager. A culture where good practices are rewarded and
“systems thinking” is encouraged helps in the creation of a safe
system. Many of the topics in this guidebook are technical and
detailed. The project manager is pointed to sections that are more
general in nature. In addition, sections that point out potential
problems, difficulties, or concerns are also flagged for the project
manager.

Systems Engineering

A systems engineer may wish to read this guidebook for a better
understanding of how software fitsinto the entire system.

NASA-GB-8719.13

14




1.5.2 Chapter Description

Chapter 2 describes the concepts of system safety and the role of software in safety-critical
systems. The chapter provides software developers and others with an understanding of the
system safety process. System safety engineers may wish to review this chapter for
information on the various types of software that should be considered in a system safety
context.

Chapter 3 gives a more in-depth look at software safety. It provides guidance on how to
scope the safety effort and tailor the processes and analyses to the required level of effort.

Chapter 4 provides an overview of the software development process. System safety
engineers and project managers unfamiliar with the software development process will find
this chapter useful. Software developers, software assurance engineers, and software safety
engineers should review the chapter to make sure they are familiar with all the concepts.
Other discipline experts may wish to skim the chapter, or use the table of contents to locate
specific subsections of interest.

Chapters 5 through 10 describe development activities and assurance analyses for each
lifecycle phase. While this guidebook uses the waterfall lifecycle phases (Concept,
Requirements, Design, Implementation, Test, and Operations) to describe associated software
safety activities, this guidebook does not imply a strict adherence to that lifecycle. The ideas
of concept (planning the project), requirements (deciding what to build), design (deciding
how to build it), implementation (actually building the software/system), test (making sure it
works) and operations (using what was built) apply to all lifecycles. Maintenance of software
is viewed as a reduced scope of all these phases with good configuration management of
problems and upgrades as well as appropriate root cause analyses and corrective action when
required. Retirement of safety critical software is a phase not often thought of but perhaps
should be.

Chapter 5 focuses on activities performed during the concept phase of the project. Activities
and analyses for both development and safety are discussed.

Chapter 6 focuses on activities performed during the requirements phase of the project.
Activities and analyses for both development and safety are discussed. Requirements
management, determination of critical requirements, and other very important concepts are
included in this chapter.

Chapter 7 focuses on activities performed during the design phase of the project. Activities
and analyses for both development and safety are discussed.

Chapter 8 focuses on activities performed during the implementation phase of the project.
Activities and analyses for both development and safety are discussed.

Chapter 9 focuses on activities performed during the testing phase of the project. Activities
and analyses for both development and safety are discussed.

Chapter 10 focuses on activities performed during the operations and maintenance phase of
the project. Activities and analyses for both development and safety are discussed.

NASA-GB-8719.13 15



Chapter 11 is a collection of specific problem areas. Selection of programming language,
operating system, and development tools is one such area. Innovative technologies, such as
distributed computing, autonomous systems, and embedded web, are also included. Much of
this chapter will be of interest to software developers. Safety and software assurance
engineers may wish to skim this chapter to obtain a better understanding of software issues.

Chapter 12 discusses the acquisition of software. Both COTS/GOTS (commercia and
government off-the-shelf) software and software created under contract are considered.

Chapter 13 provides alook ahead to some evolving areas of software safety.
Appendix A contains reference and resource information.
Appendix B provides definitions of commonly used terms and allist of acronyms.

Appendices C through G provide details on five analysis techniques (Software Fault Tree
Anaysis, Software Faillure Modes and Effects Anaysis, Reguirements State Maching,
Preliminary Hazard Analysis, and Reliability Modeling).

Appendix H contains a collection of checklists.

NASA-GB-8719.13 16



Chapter 2 Software and System Safety

Safety is not the sole responsibility of the System Safety engineer. Creating a safe system is a
team effort and safety is everyone's responsibility. Software is a vital part of most systems. It
controls hardware and provides mission-critical data. Software must be safe.

But how do you know if any of your software is “safe” or “unsafe”? What are the hazards that
software may contribute to, or that software may control? Why should you even care about
software safety?

When a device or system can lead to injury, death, the destruction or loss of vital equipment, or
damage to the environment, system safety is paramount. The system safety discipline focuses on
“hazards’ and the prevention of hazardous situations. Hardware or software that can lead to a
hazard, or is used to control or mitigate a hazard, comes under that category. Software has
become a vital and integral part of most systems. Software can respond quickly to potential
problems, provide more functionality than equivalent hardware, and can even be changed in
flight! The promise of software, however, must be tempered with the consequences of its failure.
The software safety discipline expands beyond the immediate software used in hazard control or
avoidance to include all software that can impact hazardous software or hardware. All such
software is“ safety-critical”.

Project managers, systems engineers, software engineers, software assurance personnel, and
system safety personnel all play a part in creating a safe system.

t BAGD
2.1 Hazardous and Safety-critical Software rv

“ Softwar e does not fail —it just does not perform asintended.” Dr. Nancy Leveson, MIT

211 WhatisaHazard?

A hazard is the presence of a potential risk situation that can result in or contribute to a mishap.
Every hazard has at least one cause, which in turn can lead to a number of effects (e.g., damage,
illness, failure).

A hazard cause may be a defect in hardware or software, a human operator error, or an
unexpected input or event which resultsin ahazard. A hazard control is a method for preventing
the hazard, reducing the likelihood of the hazard occurring, or the reduction of the impact of that
hazard . Hazard controls use hardware (e.g. pressure relief valve), software (e.g. detection of
stuck valve and automatic response to open secondary valve), operator procedures, or a
combination of methods to avert the hazard.

For every hazard cause there must be at least one control method, usually a design feature
(hardware and/or software) or a procedural step. Examples of hazard causes and controls are
given in Table 2-1 Hazard Causes and Controls - Examples. Each hazard control will require
verification, which may be via test, analysis, inspection, or demonstration. For NASA, critical
hazard causes require two independent controls. Catastrophic hazard causes require three
independent controls.

Software can be used to detect and control hazards, but software failures can aso contribute to
the occurrence of hazards. Some software hazard causes can be addressed with hardware hazard

NASA-GB-8719.13 17



controls, athough this is becoming less and less practical as software becomes more complex.
For example, a hardwired gate array could be preset to look for certain predetermined hazardous
words (forbidden or unplanned) transmitted by a computer, and shut down the computer upon
detecting such aword. In practice, thisis nearly impossible today because thousands of words
and commands are usually sent on standard buses.

Table 2-1 Hazard Causes and Controls- Examples

Cause Control Example of Control Action

Hardware | Hardware | Pressure vessel with pressure relief valve.

Hardware | Software | Fault detection and safing function; or arm/fire checks which activate
or prevent hazardous conditions.

Hardware | Operator Operator opens switch to remove power from failed unit.

Software | Hardware | Hardwired timer or discrete hardware logic to screen invalid
commands or data. Sensor directly triggering a safety switch to
override a software control system. Hard stops for arobotic arm.

Software | Software | Two independent processors, one checking the other and intervening
if afault is detected. Emulating expected performance and detecting
deviations.

Software | Operator | Operator sees control parameter violation on display and terminates
process.

Operator | Hardware | Three electrical switchesin seriesin afiring circuit to tolerate two
operator errors.

Operator | Software | Software validation of operator-initiated hazardous command.
Software prevents operation in unsafe mode.

Operator Operator | Two crew members, one commanding and the other monitoring.

2.1.2 How Can Software be Hazardous?

Software, by itself, cannot injure you. But software does not exist by itself. It operates in an
electronic system (computer) and often controls other hardware. Software is hazardous if it can
directly lead to a hazard or is used to control a hazard.

= Hazardous software includes all software that is a hazard cause.

» |sahazard control.

= Providesinformation upon which safety-critical decisions are made.
» |sused asameans of failure/fault detection.

2.1.3 What is Safety-Critical Software?

Safety-critical software includes hazardous software (which can directly contribute to, or control
ahazard). It alsoincludesall software that can influence that hazardous software.

NASA-GB-8719.13 18




Software is considered safety-critical if it controls or monitors hazardous or safety-critical
hardware or software. Such software usually resides on remote, embedded, and/or real-time
systems. For example, software that controls an airlock or operates a high-powered laser is
hazardous and safety-critical. Software that monitors a fire-detection system is also safety-
critical.

Softwar e that provides information required for a safety-related decision falls into the safety-
critical category. If a human must shut down a piece of hardware when the temperature goes
over athreshold, the software that reads the temperature and displays it for the human operator is
safety-critical. All the software along the chain, from reading the hardware temperature sensor,
converting the value to appropriate units, to displaying the data on the screen are safety-critical.

Software that performs off-line processes may be considered safety-critical as well. For
example, software that verifies a software or hardware hazard control must operate correctly.
Failure of the test software may allow a potential hazard to be missed. In addition, software
used in analyses that verify hazard controls or safety-critical software must also function
correctly, to prevent inadvertently overlooking a hazard. Modeling and simulation programs are
two types of off-line software that may be safety-critical. Very often we rely on our software
models and simulators to predict how part or all of a system may react. The system may be
modeled to represent stressed or “normal” operations. Based on those modeled reactions,
changes may be made in the design of the hardware, software, and/or operator procedures. If the
system model failsto properly depict safety critical situations, design errors may go undetected.

If the softwar e resides with safety-critical software on the same physical platform, it
must also be considered safety-critical unless adequately partitioned from the safety-

& critical portion. Non-safety-critical software (such as a data massaging algorithm) could
lock up the computer or write over critical memory areas when sharing a CPU or any
routines with the safety-critical software. Techniques such as firewalls and partitioning
can be used to ensure that the non-safety-critical software does not interrupt or disrupt the
safety-critical functions and operations.

In summary, software is safety-critical if it performs any of the following:

%
B

o0 Controls hazardous or safety-critical hardware or software.

Monitors safety-critical hardware or software as part of a hazard control.
Provides information upon which a safety-related decision is made.
Performs analysis that impacts automatic or manual hazardous operations.
Verifies hardware or software hazard controls.

©O O O O O

Can prevent safety-critical hardware or software from functioning properly.

2.1.4 How Does Software Control Hazards?

In the past, hardware controls were the primary method used to control (i.e. prevent) hardware
hazards. Today, because of the complexity of systems, it may not be feasible to have only
hardware controls, or to have any hardware controls at all. Now, many hardware hazard causes
are addressed with software hazard controls. Often this is because of the quick reaction time

NASA-GB-8719.13 19



needed to respond to a failure or the complexity of detecting possible faults and errors before
they become failures.

Some examples of software controls are:

e Monitor hazardous hardware (via instrumentation) and execute a corrective action if
deviations are outside of established limits. For example, turn off a power supply (or
reduce power) when it isin an over-voltage condition.

e Monitor potential hazardous conditions (e.g. temperature) and warn operators. For
example, sound an alarm when the pressure goes above a predefined threshold.

e Inhibit certain activities in operational states that could lead to a hazardous event, such as
preventing a chamber door from being opened during experiment sequences while toxic
gases are present.

2.1.5 Relationship Between Software and Hardwar e Controls

NASA relies primarily on hardware controls, in conjunction with software controls, to prevent
hazards. Hardware controls are well known and understood, and have a better “track record”
than software. However, software is often the first line of defense, monitoring for unsafe
conditions and responding appropriately. The software may perform an automatic safing
operation, or provide a message to a human operator, for example. The hardware control is the
backup to the software control. |If the software fails to detect the problem or does not respond
properly to aleviate the condition, then the hardware control is triggered.

Using a pressurized system as an example, the software monitors a pressure sensor. If the
pressure goes over some threshold, the software would respond by stopping the flow of gas into
the system by closing a valve. If the software failed, either by not detecting the over-
pressurization or by not closing the valve, then the hardware pressure relief valve would be
triggered once the pressure reached acritical level.

While software controls can be, and are, used to prevent hazards, they must be
implemented with care. Special attention needs to be placed on this software during the

% development process. When there are no hardware controls to back up the software, the
software must undergo even more rigorous development and testing. This guidebook
provides guidance for the development, analysis, and testing of al such software. The
amount of effort to develop and assure safety-critical software will be determined by the
degree of criticality of the software, as described in Chapter 3.

2.1.6 Caveatswith Software Hazard Controls

When software is used to control a hazard, some care must be made to isolate it from the hazard
cause it is controlling. For a hazard cause outside of the computer-processing arena (e.g. stuck
valve), the hazard control software can be co-located with the regular operations software.
Partitioning of the hazard control software is recommended. Otherwise, al of the software must
be treated as safety-critical because of potential “contamination” from the non-critical code.

If the hazard cause is erroneous software, then the hazard control software can reside on a
separate computer processor from the one where the hazard/anomaly might occur. Another
option would be to implement a firewall or similar system to isolate the hazard control software,
even though it shares the same processor as that where the potential hazard cause may occur.

NASA-GB-8719.13 20



If the hazard cause is a processor failure, then the hazard control must be located on another
processor, since the failure would most likely affect its own software’s ability to react to that
CPU hardware failure. This is a challenging aspect of software safety, because multiprocessor
architectures are costly and can add significant complexity (which in itself can increase the
possibility of software failures). A single computer is inherently zero failure tolerant. Many
system designers believe that computers fail safe, whereas NASA experience has shown that
computers may exhibit hazardous failure modes. Another falacy is to believe that upon any
fault or failure detection, the safest action is always to shut down a program or computer
automatically. Instead, this action could cause a more serious hazardous condition. Consider
shutting down a computer which is your only means of monitoring, detecting, or controlling
many potential hazards due to one program or module failure. Self detection and isolation of the
problem area may be much less hazardous, allowing the problem to be corrected or mitigated.

2.1.7 What isFault or Failure Tolerance?

A fault is any change in the state of an item which is considered anomalous and may warrant
some type of corrective action. A failureis the inability of a system or component to perform its
required functions within specified performance requirements.

= A fault may or may not lead to afailure.
= One or more faults can become afailure.
= Al| faillures are the result of one or more faults.

Fault tolerance is the ability of the system to withstand an unwanted event and maintain a safe
and operational condition. It is determined by the number of faults that can occur in a system or
subsystem without the occurrence of a failure. Fault and failure tolerance are often used
synonymously, though they are different.

Fault tolerance usually is concerned with detecting and recovering from small defects

A before they can become larger failures. Error detection and handling is one example of

fault-tolerant coding practices. Failure tolerance is concerned with maintaining the

system in a safe state despite a failure within the system. Creating failure tolerance

0% requires a system-wide approach to the software and hardware design, so that a failure

does not lead to an unsafe state. Depending on the failure and the failure tolerance
mechanism, the system may operate normally or with reduced functionality.

System failure or fault tolerance is often described as the number of failures or faults the system
can handle and continue functioning at some level. A one failure tolerant system can continue
functioning after a single failure has occurred. A second failure would lead to afailed system or
the system in an unsafe state. Likewise, a two fallure tolerant system requires three failures
before the system becomes unsafe or fails to continue normal operations.

While a failed system is not good, it may still be safe. Failure tolerance becomes a safety issue
when the failures occur in hazard controls. To prevent a hazard, at least one control must be
functioning at al times. NASA, based on extensive experience with spacecraft flight operations,
has established levels of failure tolerance based on the hazard severity level necessary to achieve
acceptable levels of risk.

e Catastrophic Hazards must be able to tolerate two hazard control failures.
e Critical Hazards must be able to tolerate a single hazard control failure.

NASA-GB-8719.13 21



2.2 The System Safety Program

A System Safety Program Plan is a prerequisite to performing development or analysis of safety-
critical software. The System Safety Program Plan outlines the organizationa structure,
interfaces, and the required criteria for analysis, reporting, evaluation, and data retention to
provide a safe product. This safety plan describes forms of analysis and provides a schedule for
performing a series of these system and subsystem level analyses throughout the development
cycle. It also addresses how the results of safety analyses will be communicated and the sign-
off/approval process for al activities. A Safety Program Plan is usually created and maintained
at an organizational or “programmatic”’ level. Within NASA, a program may have one or many
projects. At the project level, there should also exist a safety plan which describes for that project
how it will incorporate the programmatic plan requirements as well as those specific to the
project.

Figure 2-1 Hazard Analysis

/Step 2: \ Step 6:
Perform a Perform a
Preliminary System Hazard
Hazard Analysis [ Step 4: \ Analysis (SHA)
(PHA) —agenera Perfo rrﬁ a - anothq type
type of assessment. Subsystem of specific
| dentify all Hazard assessment.
TN / potential hazards Analysis
Step 1: for that system. (SSHA) —
Gather K \ / more specific
information to the
on the system subsystem.
— hardware K J
and software. ._'
. Step 5t
Step 3 Investigate A\
\ / Development hazards
breaks the associated
system down into with the
subsystems.

interfaces.

2.2.1 System Safety Process

System safety analyses follow the life cycle of the system development efforts. The system is
comprised of the hardware, the software, and the interfaces between them (including human
operators). What generally happens in the beginning of project development is that the hardware
is conceived to perform the given tasks and the software concept is created that will operate
and/or interact with the hardware. As the system develops and gains maturity, the types of safety
analyses go from a single, overall assessment to ones that are more specific.

While software is often considered a subset of the complete system (a subsystem), it is actually a
“coexisting” system, acting with and upon the hardware system. Because software often

NASA-GB-8719.13 22

As System
Matures, KEEP
ON GOING



commands, interprets, stores and monitors the system functions, it should always be considered
in a systems context.

The System Safety Project Plan should describe interfaces within the assurance disciplines as
well as the other project disciplines. In practical terms, that means that al parties involved in the
project should decide who is doing what analyses. Depending mostly on where the expertise
resides, different organizations may be responsible for performing the necessary analyses. For
instance, the software assurance engineer may perform all the software safety analyses and the
software developer will perform any software development analyses. In alarger organization, or
for avery critical project, there will usually be a separate software safety engineer who performs
the software safety and development analyses. If the project uses an Independent Verification
and Validation (IV&V) team, they will review the anayses plus possibly perform some
additional analyses. All analyses and tasks should be complementary and supportive, regardiess
of which group (development, assurance, safety, IV& V) has the responsibility. The analyses and
tasks may be distributed between the groups, and within each discipline, according to the
resources and expertise of the project personnel. The project manager along with the appropriate
safety and mission assurance organization must assure coverage and support for the needed
safety tasks.

Concurrent engineering can help to provide better oversight, allowing information and
ideas to be exchanged between the various disciplines, reduce overlapping efforts, and

% improve communications throughout the project. Safety and assurance personnel bring a
safety “point of view” to a project, and should be included at the earliest possible stage.
The information obtained and rapport established by being an early member of the team
will go along way in solving problems later in the project. Designing in safety from the
beginning is far easier, more elegant, and cheaper than late-stage alterations or additions
intended to work the safety featuresin after the rest of the system is designed.

The Software System Safety Handbook [7] produced by the Department of Defense has an
excellent reference to system safety from a risk management perspective. Chapter 3 of that
document goes into detail about how risk and system safety are intertwined. Chapter 4 describes
planning a software safety program, including hazard analyses. Appendix E of that document
details generic requirements and guidelines for software devel opment and test.

2.2.2 System Safety and Softwar e Development

System safety within NASA has its own set of tasks, independent of the software development
lifecycle. Thesetasksinclude:

e Creating Safety Data Packages that describe the instrument (hardware, software, and
operations) and provide information on any safety hazards, controls, or mitigations.

e Conducting safety reviews through out the system lifecyle, usually Phase 0/1, Phase I,
and Phase Ill. For al Shuttle and 1SS sub-systems as well as their payloads, these
reviews are conducted at Johnson Space Center before the Shuttle or 1SS Safety Panel.
However, local review panels may be established as pre-cursors as well as for other
programs, facilities and projects.

e Conducting safety verification activities, including completing the Safety Verification
Tracking Log prior to launch. The completed log shows that all safety features, controls,
and fail safes are working as required.

NASA-GB-8719.13 23



Software safety engineers, as well as other members of the project team, will provide
information and input to the system safety engineer.

Figure 2-2 illustrates the relationship between the basic System Safety life cycle (on top), the
system lifecycle, and the software lifecycle. Although the tasks shown in this dlide are
specifically shown against the backdrop of the waterfall lifecycle, the information is still quite
usable for any lifecycle model. Figure 2-2 is a pictoria representation only and should not be
used to determine time, length of, or relationship in size for the various phases.

Figure 2-2 Safety, System and Software Timeline

Phase 0/1 Phase Il Phase IlI Safety Verification Tracking
Safety Reviews v v v Log _Closeout
PHA SYSTEM AND SUB-SYSTEMS HAZARD ANALYSES

CONCFPT

SYSTEM REQUIREMENTS .

SYSTEM ARCHITECTURE DESIGN

SYSTEM DETAILED DESIGN
SYSTEM BUILD

SW CONCEPT SYSTEM ACCEPTANCE

SW REQUIREMENTS OPERATION
SW DESIGN
TEST

SW IMPLEMENTATION

SW TESTING

System safety activities are discussed in the next section in general terms. For more information
on the NASA Space Shuttle and ISS system safety process, see NSTS 1700.7B, Safety Policy
and Requirements for Payloads Using the Space Transportation System; NSTS 22254,
Methodology for Conduct of Space Shuttle Program Hazard Analyses;, NSTS 18798,
Interpretations of NSTS Payload Safety Requirements;, and JSC 26943, Guidelines for the
Preparation of Payload Flight Safety Data Packages and Hazard Reports.

NASA-GB-8719.13 24



http://shuttlepayloads.jsc.nasa.gov/data/PayloadDocs/documents/1700_7b.pdf
http://wwwsrqa.jsc.nasa.gov/PCE/22254.pdf
http://shuttlepayloads.jsc.nasa.gov/data/PayloadDocs/documents/18798.pdf
http://shuttlepayloads.jsc.nasa.gov/data/PayloadDocs/documents/26943.pdf

=
23  Safety Requirementsand Analyses B8 (1)) £82 T-e

The first step to any safety analysis is asking the right questions. What could go wrong? Why
won't it? What if it did? Everyone involved in each activity throughout the life cycle of the
system should think about al the ways the system or software can fail, how to prevent the failure
from occurring, and how to prevent or mitigate an accident if the failure occurred.. Everyone has
adifferent viewpoint and will see different hazards, different ways the system can fail, and new
ways to prevent failures from occurring.

Depending on the program or project, there are many applicable safety requirements. In general,
there are two types of safety requirements. 1) imposed by standards and regulations and 2)
technically specific to the project and its operating environments. The requirements levied from
standards, either established internally by the organization, or externally by government or
industry must be sited within the project documentation as well as any tailoring for the specific
project. These should be specifically written into any contracts or sub-contracts. Such
requirements provide the minimum boundaries that must be met to ensure that the system is safe
and will not cause harm to people, itself, other systems, or the environment. Safety requirements
can include those specific to NASA, the FAA, the Department of Transportation (DOT), and
even the Occupational Health and Safety Administration (OSHA).

Once the regulatory and standard safety requirements have been identified, the available specific
system information is gathered to determine the project specific safety requirements. Usually,
these will be derived from the first safety analysis performed during system concept and
beginning requirements phase. A common assessment tool used during this beginning activity is
the Preliminary Hazard Analysis (PHA). This analysis tool will be discussed in more detail in
Section 2.3.1 and Appendix F. The results of the PHA are a list of hazard causes and a set of
candidate hazard controls, that are taken forward as inputs to the system and software safety
requirements flow-down process.

System hazard controls should be traceable to system requirements. |f controlsidentified
by the PHA are not in the system specification, safety requirements to control the hazards
should be added to that document, to assure that the software specification derived from
the system specification will include the necessary safety requirements.

At least one software requirement is generated for each software hazard control. Each
requirement is incorporated into the Software Requirements Specification (SRS) as a safety-
critical software requirement.

Any software item identified as a potential hazard cause, contributor, control, or
mitigation, whether controlled by hardware, software or human operator, is
designated as safety-critical, and subjected to rigorous software quality assurance,
analysis, and testing. Safety-critical softwareisalso traced through the softwar e safety
analysis process until the final verification. Thus, safety critical requirements need to
be identified as such to insure future changes, as well as verification processes, take
them into appropriate consider ation.

NASA-GB-8719.13 25



2.3.1 Preliminary Hazard Analysis (PHA)

Before any system with software can be analyzed or devel oped for use in hazardous operations
or environments, a system PHA must be performed. Once initial system PHA results are
available, safety requirements are derived and flow down into the hardware and software
requirements. As the specifications and design take shape, subsystem and component hazard
analyses can begin. The PHA is the first source of “specific’ system safety requirements and
may even go so far as to point to specific software safety requirements (i.e., unique to the
particular system architecture). It is a prerequisite to performing any software safety analysis as
it defines the overall hazards for the system.

It is then a matter of determining software’ s role in potentialy contributing to those hazards, or
in controlling or mitigating them. When performing a PHA, it is important to consider how the
software interacts with the rest of the system. Software is the heart and brains of most modern
complex systems, controlling and monitoring amost all operations. When the system is
decomposed into sub-elements, how the software relates to each component should be
considered. The PHA should also look at how components may feed back to the software (e.g.
failed sensor leading the software to respond inappropriately).

The PHA isthefirst of aseries of system level hazard analyses, whose scope and methodology is
described in NPG 8715.3, NASA Safety Manual [4], and NSTS-22254, Methodology for
Conduct of Space Shuttle Program Hazard Analyses|[6].

Appendix F describes the PHA process in more detail. Software safety engineers or others who
may be assisting in a PHA should read that appendix. The software developer should skim the
appendix, noting the information on software hazard controls and must work/must not work
functions.

Note that the PHA is not a NASA-specific analysis, but is used throughout industry. 1EEE 1228,
Software Safety Plans, also requires that a PHA be performed.

2.3.2 Risk Levels

Hazard analyses, such as the PHA, are not primarily concerned with whether the hazard is likely
to occur or not. All hazards are bad, even if their occurrence is highly improbable. However,
unlimited time and money are usually not available to address all possible hazards. The hazards
must somehow be prioritized. This prioritization leads to the concept of risk.

Risk is the combination of 1) the probability (qualitative or quantitative) that a program or
project will experience an undesired event such as safety mishap, compromise of security, or
system component failure; and 2) the consequences, impact, or severity of the undesired event
were it to occur.

Each project or program needs to define a set of “hazard severity” levels, using definitions
prescribed in Agency policy, procedures, and standards. Organization-wide definitions should
be used, if available and appropriate. Having a common language helps when team members
from different disciplines discuss the system and software hazards, causes, and controls. The
following definitions of hazard severity levels in Table 2-2 are from NPG 8715.3 and are
included as an example.

NASA-GB-8719.13 26



Table 2-2 Risk Definitions

Catastrophic
Loss of human life or permanent

Critical

Severe injury or temporary

ri disahility; loss of entire system; disahility; major system or
Hazard Seve ty loss of ground facility; severe environmental damage
Deﬁnitions environmental damage
M oder ate Negligible
Minor injury; minor system No injury or minor injury; some
damage system stress, but no system
damage
d of Likely Probable
ihoQ
Likellh an ce The event will occur The event will occur several
ccuy r-r_ ns frequently, such as greater timesin thelife of an item.
Defirlltlo than 1 out of 10 times.
Possible Unlikely Improbable

Likely to occur sometimein
thelife of an item.

Remote possibility of
occurrence during the life of
anitem.

Very rare, possibility islike
winning the lottery

As with the hazard severity definitions, each project or program needs to define the “likelihood
of occurrence” of the hazard. Likelihood may be expressed in quantified probabilities or as a
gualitative measure. Keep in mind that the possibility that a given hazard may occur is usually
based on engineering judgment and not on hard numbers, especially where software is
concerned. The definitions of likelihood of occurrence in Table 2-2 are provided as an example
only, and are based on NPG 8715.3 and “ Software Safety Hazard Analysis’[8].

Combining these two concepts (severity and likelihood) leads to a single risk index value for the
hazard. This allows hazards to be prioritized and risks to be managed. Highly likely and severe
hazards require a rigorous development and analysis environment. Improbable and negligible
hazards require little or no extra attention, beyond the good engineering, programming, and
assurance practices used by the project team.

%

The System Risk Index, based on the above severity levels and likelihood of occurrence,
is shown in Table 2-3 Hazard Prioritization - System Risk Index. This is an example
only. Each program, project, or organization should create a similar risk index, using
their definitions of severity and likelihood.

NASA-GB-8719.13 27



Table 2-3 Hazard Prioritization - System Risk Index

Severity Levels Likelihood of Occurrence

Likely Probable Possible Unlikely Improbable
Catastrophic 2 3 4
Critical 2 3 4 5
Moderate 2 3 4 5 6
Negligible 3 4 5 6 7

1 = Highest Priority (Highest System Risk), 7 = Lowest Priority (Lowest System Risk)

Prioritizing the hazards is important for determining allocation of resources and acceptance of
risk. For NASA, hazards with the highest risk, Level 1, are not permitted in a system design. A
system design exhibiting “1” for hazard risk index must be redesigned to eliminate or mitigate
the hazard probability of occurrence and/or severity level to within an acceptable range. The
lowest risk indices, "5" and above, require minimal, if any, safety analysis or controls. For the
Levels 2, 3, and 4, the amount of safety analysis required increases with the level of risk. The
extent of a safety effort is discussed within Chapter 3, where three levels of safety analysis -
Minimum, Moderate, and Full - are described. The three levels of safety analysis correspond to
risk asfollows:

Table 2-4 System Risk Index

?i/sISt(emdex Class of Safety Activities Recommended
1 Not Applicable asis (Prohibited)

2 Full

3 Moderate

4, 5% Minimum

6,7 None (Optional)

*Leve 5 systems fall between Minimum and Optional, and should be evaluated to determine the class of safety

activities required.

2.3.3 NASA Policy for Hazard Elimination and Control E@ ‘%
The NASA policy towards hazards of Risk Index 2, 3 or 4/5 is defined in NPG 8715.3,
paragraph3.4. Hazards are mitigated according to the following stated order of precedence:

e Eliminate Hazards

Hazards are eliminated where possible. Thisis best accomplished through design, such
as by eliminating an energy source. For example, software could have the ability to
affect a pressure control. If software access to the control is not needed, and
malfunctioning software could lead to a hazard, then preventing software’s access to
the control removes the possibility of software's contribution to the hazard. From a

NASA-GB-8719.13 28



system perspective, hazard elimination would be in the form of choosing a design
solution that does not require hazardously high pressure.

e Design for Minimum Hazards

Hazards that cannot be eliminated must be controlled. For those hazards, the PHA
evaluates what can cause the hazards, and suggests how to control them. Control by
design is preferred. The hazard may be minimized by providing failure tolerance (e.g.
by redundancy - series and/or parallel as appropriate), by providing substantial margins
of safety, or by providing automatic safing. For example, software verifies that all
conditions are met prior to ignition of rocket engines.

e Incorporate Safety Devices

An example of a safety deviceis afire detection and prevention system that detects and
interacts with a fire event. Software may be a part of these devices, and may aso
provide one of the triggers for the safety devices, such as turning on a sprinkler system,
sounding an alarm, or flooding the area with an oxygen suppression gas.

e Provide Caution And Warning

Software may monitor one or more sensors and trigger a caution or warning alarm or
announcement. Any software used in these caution and warning devices is safety-
critical.

e Develop Administrative Proceduresand Training

Control by procedure is sometimes alowed, where sufficient time exists for a flight
crewmember or ground controller to perform a safing action. The concept of “time to
criticality” is an important design aspect of the software/hardware/human interaction in

controlling safety critical situations.
2.3.4 Software Subsystem Hazard Analysis h’
The PHA identifies hazards a the system level. Some stbset of these hazards will involve

software. The Software Subsystem Hazard Analysis determines which of the hazards (including
hazard causes, controls, mitigations, or verifications) have software as a component.

At the beginning of a project, the design is high-level and fluid. While some software
functional areas may be identified early on, many more will become apparent as the
design matures. It isvital to revisit this analysis regularly, as more detail emerges. Also,

% a shift of functionality from hardware to software is common during the design process.
As the design progresses and possibly changes, system, software, safety and assurance
engineering must consider the potential impact to safety. The system and/or software
safety engineers update this analysis as the design and implementation progress, or when
the system changes.

The procedure for a Software Subsystem Hazard Analysisisfairly smple. The hazards listed on
the Preliminary Hazard List (PHL) are examined for a software component. Those that have
software as a cause, control, mitigation, or verification are put on a Software Hazard List. The
system and software specifications are examined to verify that the software functions identified
on the hazard list are included as safety-critical requirements.

NASA-GB-8719.13 29



Software may impact a hazard in several ways.

Software failure may lead to a hazard occurring (hazard cause). For example,
software may incorrectly command a mechanical arm to move past its operational limit,
resulting in the arm damaging nearby equipment or causing injury. A failure in a data
conversion function could incorrectly report a temperature value, allowing a furnace door
to be opened when the temperature inside is at a dangerous level.

Failure of a software hazard control may allow a hazard to occur. Software that
monitors pressure and opens a valve when it reaches a threshold may be a hazard control.
Failure of that software would allow an over-pressurization of the vessel and a potential
for arupture or other hazard.

Software safing mode (move from hazardous to non-hazardous state) may fail.
Failure of the software to detect or shut down a runaway electromechanical device (such
asarobotic arm or scan platform) is an example of such an impact.

Software used to mitigate the consequences of accident may fail. As an example,
software controlling the purging of toxic gases (which resulted from a failure in some
other portion of the system) may fail, allowing the gases to remain in the chamber or be
vented inappropriately to the outside air.

Software used to verify hazard hardware or software hazard controls may fail.
Failure in this situation would be due to invalid results (either verifying a control when it
really failed or failing a control when it actually works). “False positives’ may allow a
potentially hazardous system to be put into operation.

When conducting the Software Subsystem Hazard Analysis, it is important to consider many
types of failures. Examples of failuresto consider are:

e Sensorsor actuators stuck at some value (all zeros, all ones, some other value)
e Value above or below range

e Vauein range but incorrect

e Physical unitsincorrect

e \Wrong datatype or datasize

e Incorrect operator input

e Overflow or underflow in calculation

e Algorithm incorrect

e Shared data corrupted

e Out of sequence event

e Failure to meet timing requirement

e Memory usage problems

e Dataoverflow due to inappropriate data packet or data arrives too quickly
e Datasampling rate not sufficient to detect changes

e Onetask failing to release shared resource

e Deadlocking in a multitasking system

e Effectsof either system or computer hardware failures on the software

NASA-GB-8719.13 30



“Software Safety Hazard Analysis’ [94], prepared for the US Nuclear Regulatory Commission,
isan excellent reference for details on performing the Software Subsystem Hazard Analysis.

Software safety analyses are conducted throughout the development cycle of the
software. It isimportant to reexamine softwar e’ srole and safety impact thr oughout
the system development phases. Software's role is often altered to accommodate
system changes or work around hardware problems. Additions to the system's
functionality can result in additions and/or changes to the hazards as well as functionality.
As the software changes, hazard contributions may be added, deleted, or their criticality
modified. These changes to the safety-critical software functionality must be reflected in
the requirements, design, implementation, and verification of the system and software.

The following sections describe these various software safety analyses. Chapter 3 provides
guidance on tailoring the number of analyses required to match the risk of the software hazards.
Other software safety analyses, such as Software Fault Tree Analysis (SFTA), Software Failure
Modes and Effects Analysis (SFMEA), requirements Criticality Analysis (CA), and specification
analysis, are described in Chapters 5 through 10.

NASA-GB-8719.13 31



Chapter 3 Software Safety Planning

If the Preliminary Hazard Analysis (PHA) reveals that any software is safety-critical, a software
safety process must be initiated. This chapter describes how to plan the software safety effort,
and how to tailor it according to the level of risk of the system and software.

Determination of the level of safety risk inherent in the system was presented in Section 2.3.2
Risk Levels. This chapter focuses on the risk level of the software. Once the risk level is
determined (i.e., arisk index is assigned), the amount of effort that must be expended to assure
safe software can be estimated.

Figure 3-1 Participantsin a Successful Safety Process

Systems
Engineers

System Safety
Engineers

Software
Developers

Software Safety
Engineers

Project Manager

Software Assurance
Engineers

N

Lines of Communication.
It is VERY important that these lines
are established and maintained.

Each discipline involved in the project has arole to play in the creation of safe software.

The project manager maintains a high-level overview of the whole process, works with
the team to include the extra software development and analysis tasks in the schedule and
budget, and can be called on to help in negotiations between team members. When
guestions arise as to the necessity of a particular analysis or development technique, the
project manager is usualy the fina authority. Ultimately, the Project Manager
determines the amount and types of risk they are willing to accept for their project. They
may be required to work with, utilize, and pay for a certain amount of Independent
Verification and Validation, but they determine the balance of overal safety analyses,
verification, and validation to take place. SMA and IV&V provide an independent
reporting path to assure that an appropriate amount of safety analysis, design and
verification does take place.

NASA-GB-8719.13 32




Systems engineers are responsible for designing the system and partitioning the elements
between hardware and software. Because they see the “big picture,” they have a unique
perspective. System developers can make sure that safety-critical elements are not
overlooked in the initial analyses. As system elements shift from hardware to software
later in the design process, these engineers can make sure that the criticality of the design
component is also transferred.

System safety engineer s determine what components of the system are hazardous. They
look at the system as a whole entity, but also need to understand how the different
elements function (or fail to function).

Softwar e safety engineers build on the work of the system safety engineers. They look
closely at the requirements and development process to verify that software safety
requirements are present and being designed in. They perform anayses and tests to
verify the safety of the software. The software safety engineer works in conjunction with
the system safety organization to develop software safety requirements, distribute those
safety requirements to the software developers, and monitor their implementation. The
software safety engineer also analyzes software products and artifacts to identify new
hazards and new hazard causes to be controlled, and provides the results to the system
safety organization to be integrated with the other (non-software) subsystem analyses.

Softwar e developer s are the “in the trenches” engineers who design, code, and often test
the system. They are responsible for implementing all the requirements in the software
system. Software developers can have a great impact on the safety of the software by the
design chosen and by implementing defensive programming techniques.

Softwar e Assurance engineers work with the software developers and software safety
engineers to assure that safe software is created. They monitor development processes,
assure the traceability of al requirements, perform or review analyses, witness or
perform tests, and provide an “outside view” of both the software process and products.

Independent Verification and Validation (IV&V). For al NPG 7120.5 and all safety
critical projects, the project manager is required to perform a self assessment of the
project software and report the findings to the NASA 1V&V Facility and local SMA
organization. (See NPD/NPG 8730.1, Software Independent Verification and Validation
Policy/Guidance.) The IV&V Facility may then perform their own review and present
the project manager with their estimate for additional analyses. 1V&V isin addition to
software assurance and software safety and not a replacement for those roles.

In a small team, there may not be a separate software safety engineer. The software assurance
engineer, the system safety engineer, the system developer, or someone from the software
development team may take on this role, depending on the individual’ s expertise. Several people
working cooperatively may also share the software safety role.

Software assurance functions within the overall project and software development processes and
can be a key factor in developing safer software. For safety, the objectives of the software
assurance process are to:

Develop software that has fewer defects (and therefore fewer safety-related defects).
Software assurance and 1V&V can provide guidance on best practices and process

NASA-GB-8719.13 33



improvements that may reduce the required effort to develop the software and/or the
number of inherent defects.

e Find the defects earlier in the lifecycle, when they are less costly to correct.
e Assure the safety of the software, contributing to the assurance of system safety.

e Help the project stay within budget and schedule by eliminating problems and risk early
on.

e Reduce the software-related risks (safety, reliability, mission success, etc.)

Chapter 4 presents an overview of the software development process, including various life-
cycle models. Chapters 5 through 10 discuss the various analysis and development tasks used
throughout the software development life cycle. The division of the tasks and anayses into
conception, requirements, design, implementation, verification, and maintenance phases does not
imply a waterfall lifecycle. These concepts are applicable to al lifecycles, though at different
times and to varying degrees.

3.1 Scoping the Software for the Safety Effort % & h

The System Risk Index specified the hazard risk for the system as a whole. The software
element of the system inherits from the system risk, modified by the extent with which the
software controls, mitigates, or interacts with the hazardous elements. In addition, the
complexity of the software and the development environment play a role. Merging these two
aspectsis not an exact science, and the information presented in this section is meant to guide the
scoping and then tailoring of the safety effort. The numerous charts provided are to be used only
as a starting point when determining the level of safety effort.

The process of scoping the software safety effort begins with the determination of how much
software is involved with the hazardous aspects of the system. The PHA, Software Hazard
Analysis, Software Risk Assessments, and other analyses provide information for determining
whether systems and subsystems should be initially categorized as safety-critical.

Scoping the software safety effort can be accomplished by following three steps:

1. ldentify safety-critical software
2. Determine safety-critical software criticality (i.e., how critical isit?)

3. Determine the extent of development effort and oversight required

The third scoping step actually leaves the project manager with choices in how to meet the
needed development and oversight levels. Using the information gained from the scoping
process, as well as input from the safety and assurance engineers, the project manager can better
tailor the effort and oversight needed for a particular project.

3.1.1 Identify Safety-Critical Software & ™

Before deciding how to apply software safety techni to a project, it is important to first
determine if there is even a safety concern. The initia criteria for determining if software is
safety-critical isfound in section 2.1.3.

NASA-GB-8719.13 34



Reliability is also a factor when determining whether software is safety-critical. Most aerospace
products are built up from small, smple components to make large, complex systems.
Electronic components usually have a small number of states and can be tested exhaustively, due
to their low cost, to determine their inherent reliability. Mechanical components have similar
means to determine their predictable, usable life span when used within predefined
environmental and operationa limits. Reliability of a large hardware system is determined by
developing reliability models using failure rates of the components that make up the system.
Reliability and safety goals of hardware systems can usually be reached through a combination
of redundant design configurations and selection of components with suitable reliability ratings.

Reliability of software can be hard to determine, and as yet, is mostly qualitative and not
guantitatively expressed. Software does not wear out or break down. It may have a large
number of states that cannot be fully tested. For example, an important difference between
hardware and software is that many of the mathematical functions implemented by software are
not continuous functions, but functions with an arbitrary number of discontinuities. Although
mathematical logic can be used to deal with functions that are not continuous, the resulting
software may have a large number of states and lack regularity. It is usually impossible to
establish reliability values and prove correctness of design by testing all possible states of a
medium to large (more than 40,000-50,000 lines of code) software system within a reasonable
amount of time.

Much of the software used within NASA is “one-off” code, that is written once for a particular
operation/mission and then never used again. That is, there is little to no reuse and thus there is
little record of long term use to provide statistics on software reliability. Even code used several
times, such as that for the Shuttle operations, is often modified. Reliability estimation requires
extensive software testing. Except in the rare cases where formal methods are used to capture the
requirements and/or design, testing can only commence after preliminary code has been
generated, typically late in the development cycle. At that point, exhaustive testing is not in the
schedule or budget. As a result, it is very difficult to establish accurate reliability and design
correctness values for software.

If the inherent reliability of software cannot be accurately measured or predicted, and most
software designs cannot be exhaustively tested, the level of effort required to meet safety goals
must be determined using other characteristics of the system. The following characteristics have
astrong influence on the ability of software developers to create reliable, safe software:

e Degree of Control: The degree of control that the software exercises over safety-
critical functionsin the system.

Software that can cause a hazard if it malfunctions is considered safety-critical
software. Software which is required to either recognize hazardous conditions and
implement automatic safety control actions, provide a safety-critical service, or inhibit a
hazardous event, will require more software safety resources and detailed assessments
than software which is only required to recognize hazardous conditions and notify a
human operator to take necessary safety actions. Human operators must then have
redundant sources of data independent of software, allowing them to detect and
correctly react to misleading software data before a hazard can occur.

NASA-GB-8719.13 35



Fatal accidents have occurred involving poorly designed human computer interfaces,
such as the Therac-25 X-ray machine [9]. In cases where an operator relies only on
software monitoring of critical functions, then a complete safety effort is required.

e Complexity: The complexity of the software system. Greater complexity increases the
chances of errors.

The number of safety related software requirements for hazards control increases
software complexity. Some rough measures of complexity include the number of
subsystems controlled by software and the number of interfaces between
software/hardware, software/user and software/software subsystems.  Interacting,
paralel executing processes also increase complexity. Note that quantifying system
complexity can only be done when a high level of design maturity exists (i.e., detail
design or coding phases). Software complexity can be estimated based on the number
and types of logical operationsit performs. Complexity metrics are further discussed in
section 7.4.8.

e Timing criticality: Thetiming criticality of hazardous control actions.

The speed at which a system with software hazard control must react is a major factor.
Does control need to be exercised faster than a human or mechanica system can react?
With the advent of software control, faults can be detected and countered prior to
becoming full failures. Thus, even embedded real-time software systems which need
microseconds to react to some critical situations can be designed to detect and avoid
hazards as well as control them one they occur. How fast must the system respond?
That depends on the system. For example, spacecraft that travel beyond Earth orbit
need a turnaround time of possibly hours or days in order to notify a ground human
operator of a possible hazard and wait for return commands on how to proceed. That is
likely to exceed the time it takes for the hazard to occur. Thus, on-board software
and/or hardware must deal with the situation autonomously.

You've determined 1) the function that software is to perform is safety critical, 2) the needed
level of control, 3) the system complexity, and 4) the required time to react to prevent a hazard
from occurring. The next step is to define the degree of the software criticality, which will
trandate to the level of software safety effort.

N

3.1.2 Determine Softwar e Safety- Criticality % & :
Once software has been identified as safety-critical, further analyses such as the Software Failure
Modes and Effects Analyses (SFMEA) or Software Fault Tree Analyses (SFTA) will help to
determine the criticality rating.

The following sections describe how to determine the software risk index. Thisis an extension
of the system risk index shown in Table 2-3. The level of software risk will determine the extent
of the software safety effort. Software with low risk will require less effort (analyses, tests,
development activities) than software that is high-risk. This exercise will need to be refined as
the design architecture and implementation reveal how the functionality is modularized, or not.
At first, it may be determined that all the software is safety critical, and that may be the final
answer. However, if the safety critical functions can be encapsulated or segregated to some
degree within certain routines or objects, then a more refined safety design and analysis approach
can be made.

NASA-GB-8719.13 36



3.1.2.1 Software Control Categories

The degree of control the software exercises over system functions is one factor in determining
the extent of the safety effort required. A reference source of definitions for software control
categoriesisfrom MIL-STD-882C. MIL-STD-882C [10] has been replaced by MIL-STD-882D,
which does not reference the software control categories. MIL-STD-882C categorized software
according to its degree of control of the system, as follows:

Table3-1 MIL STD 882C Software Control Categories

Software | Degree of Control
Control
Category

IA. Software exercises autonomous control over potentially hazardous hardware systems,
subsystems or components without the possibility of intervention to preclude the
occurrence of ahazard. Failure of the software, or afailure to prevent an event, leads
directly to a hazard's occurrence.

IA. Software exercises control over potentially hazardous hardware systems, subsystems,
or components allowing time for intervention by independent safety systemsto
mitigate the hazard. However, these systems by themselves are not considered
adequate.

1B. Software item displays information requiring immediate operator action to mitigate a
hazard. Software failures will alow, or fail to prevent, the hazard's occurrence.

IA. Software item issues commands over potentially hazardous hardware systems,
subsystems or components requiring human action to complete the control function.
There are several, redundant, independent safety measures for each hazardous event.

IB. Software generates information of a safety-critical nature used to make safety-critical
decisions. There are several redundant, independent safety measures for each
hazardous event.

V. Software does not control safety-critical hardware systems, subsystems or components
and does not provide safety-critical information.

Complexity also increases the possibility of errors. Errors lead to the possibility of fault, which
can lead to failures. The following chart builds on what we have from MIL-STD 882C and takes
into consideration the complexity of the software. The chart also relates back to the system risk
index discussed in Section 2.3.2 Risk Levels and has aready eliminated System Risk Index level
1 (prohibited) and levels beyond 5 (negligible risk). The software category links the complexity
of the software, the control that the software exerts on a system, the time to criticality, and the
systemrisk index. Thisinformation is used to create a Software Risk Matrix (see Table 3-3).

NASA-GB-8719.13 37



Table 3-2 Software Control Categories

Softwar e Control Descriptions
Categories
A Partial or total autonomous control of safety-critical functions by software.

(System Risk Index 2) Complex system with multiple subsystems, interacting parallel processors, or multiple
interfaces.

Some or all safety-critical functions are time critical .

1A & 11B* Control of hazard but other safety systems can partially mitigate.
Detects hazards, notifies human operator of need for safety actions.

(System Risk Index 3) Moderately complex with few subsystems and/or a few interfaces, no parallel processing.

Some hazard control actions may be time critical but do not exceed time needed for adequate
human operator or automated system response.

[HTA & 11l B* Severa mitigating systems prevent hazard if software malfunctions.

Redundant sources of safety-critical information.

(System Risk Index 4) Somewhat complex system, limited number of interfaces.

Mitigating systems can respond within any time critical period.

v No control over hazardous hardware.

No safety-critical data generated for a human operator.

(System Risk Index 5) Simple system with only 2-3 subsystems, limited number of interfaces.

Not time-critical.

Note: System risk index number is taken from Table 2-3 Hazard Prioritization - System Risk Index
* A = software control of hazard. B = Software generates safety data for human operator

3.1.2.2 Software Risk Matrix

The Software Risk Matrix is established using the hazard categories for the columns and the
Software Control Categories (Table 3-2 above) for the rows. The next matrix relates the
software control of a hazard to the system severity levels. A Software Risk Index is assigned to
each element of the matrix, just as System Risk Index numbers are assigned in the Hazard
Prioritization - System Risk Index (Table 2-3) matrix.

NOTE: The Software Risk Index is NOT the same as the System Risk Index, though the two may
appear similar. The difference is mainly that the System Risk Index of 1 (prohibited) has already

been eliminated.

Unlike the System Risk Index, a low index number from the Software Risk Matrix does not
mean that a design is unacceptable. Rather, it indicates that greater resources need to be applied
to the analysis and testing of the software and its interaction with the system.

NASA-GB-8719.13 38



Table 3-3 Software Risk Matrix

Hazard Category*
Softwar e Control o
Category Catastrophic Critical M oder ate Negligible or
Marginal

'A 1 1 3 4
(System Risk Index 2)
[TA & IIB

: 1 2 4 5
(System Risk Index 3)
IHTA & I1IB 5 3 . .
(System Risk Index 4)
v 3+ 4x* 5 5
(System Risk Index 5)

Note: System risk index number is taken from Table 2-3 Hazard Prioritization - System Risk Index
* Hazard Category definitions are provided in Table 2-2.

** All software in a safety-critical system must be evaluated. |f software has the potential to compromise system safety
elements, then it must be treated as safety-critical.

w8 . The interpretation of the Software Risk Index is given in Table 3-4. The level of risk
7z determines the amount of analysis and testing that should be applied to the software.

Table 3-4 Softwar e Risk I ndex

Softwar e Risk Index Risk Definition

1 High Risk: Software controls catastrophic or critical
hazards

5 Medium Risk: Software control of catastrophic or

critical hazardsis reduced, but still significant.

Moderate Risk: Software control of less significant
hazards

5 Low Risk: Negligible hazard or little software control

Figure 3-2 shows the relationships among the various risk indices and software criteria. The
System Risk Index feeds into the Software Risk Index, modified by the software categories. The
modification relates to how much control the software has over the hazard, either potentially
causing the hazard or in controlling or mitigating the hazard. Note that the Software Risk Index
relates to only a subset of the System Risk Index, because the riskiest level (System Index 1) is
prohibited, and the levels with the least system risk do not require a safety effort.

NASA-GB-8719.13 39




Figure 3-2 Relationship of Risk Indices

Systlerg Risk Software
Mdex :
Risk Index Software
e Safety Effort
1 Prohibited High Risk
Software Risk Elements 3 =
2 Software Categories Hzzard Sewverity Mediurm
| Risk
Catastrophic
3 ol 5 Moderate
. Moderate
I Critical Rick
(1A, IB) | 4
4 Moderate 4
I Moderate to rAinimurm
Low Risk
c l(LI(I:IA e, Negligible ow Ris
5
Low Risk
B, 7 :
Mo Safety Program Required

3.1.3 Determinethe Safety Effort and Oversight Required

3.1.3.1 Determine Extent of Safety Effort % &

The Software Risk Index (Table 3-3) determines the level of required software safety effort for a
system (Table 3-5 Required Software Safety Effort). The mapping is essentially: Software Risk
Index 1 = full effort, Software Risk Index 2 and 3 = moderate effort, and Software Risk Index 4
and 5 = minimum effort. However, if the Software Risk Index is 2, consider whether it is a
“high” 2 (closer to level 1 — more risk). A high 2 should follow the full safety effort, or
somewhere between full and moderate. Also, if the Software Risk Index is a high 4, then the
safety effort fallsinto the moderate category.

Note that category IV software, which does not participate in any hazardous functions, may still
require a minimum software safety effort. Normally, no safety effort would be needed for such
software. However, with catastrophic and critical hazards, non-safety-critical software should be
evaluated for possible failures and unexpected behavior that could lead to the hazard or to the
compromise of ahazard control or mitigation.

Further explanation of Full, Moderate, and Minimum software safety effort isfound in_Section
3.2.

NASA-GB-8719.13 40



Table 3-5 Required Softwar e Safety Effort

Softwar e Category | Hazard Severity L evel from Table 2-2

See Table 3-3 Catastrophic Critical M oder ate Negligible/ Marginal
IA Moderate Minimum
(Software Risk Index 1)
A & 11B Moderate Minimum Minimum
(Software Risk Index 2/3)
A & 111B Moderate Moderate Minimum None
(Software Risk Index 4/5)
v .. .

_ Minimum Minimum None None
Software does not directly
control hazardous operations.

WARNING: Requirements are subject to change as the system design progresses! Often
items that were assigned to hardware are determined to be better (or more cheaply) developed
in software. Some of those items may be safety-critical. As system elements are redistributed,
it is vital to revisit the software safety effort determination. If the new requirements lead to
software controlling hazardous hardware, then more effort needs to be applied to the software
safety program.

3.1.3.2 Oversight Required

The level of software quality assurance and independent oversight required for safety assurance
depends on the system risk index as follows:

Table 3-6 Degree of Oversight vs. System Risk

Softwar e Risk System Risk Index | Degree of Oversight
Index
1 Not applicable (Prohibited)
1 2 Fully independent IV & V* organization, as well as in-house SA
2 3 In house SA organization; Possible software AL
4 In house SA organization
45 5-7 Minimal in house Software Assurance (SA)

! NASA NPG 8730.x (draft) “Software Independent Verification and Validation (IV&V) Management”
details the criteria for determining if a project requires IV&V or Independent Assessment (IA). This NPG
should be followed by all NASA projects when establishing the level of IV&V or IA required.

NASA-GB-8719.13 41



The level of oversight indicated in the preceding table is for safety purposes, not for mission
success. The oversight required for a project would be the greater of that required for either
Mission success or safety purposes.

A full-scale software safety development effort is typically performed on a safety-critical flight
system, (e.g., a human space flight vehicle, or high value one-of-a-kind spacecraft or aircraft,
critical ground control systems, critical facilities, critical ground support equipment, payloads on
expendable vehicles.). Other types of aerospace systems, such as non-critical ground control
systems, facilities, and ground support equipment, or unmanned payloads on expendable
vehicles, often use less rigorous development programs. In these cases, subsets of the software
safety development and analysis tasks can be used.

"«
3.2 Tailoring the Software Safety Effort

T
Once the scope of the software safety effort has been determined, it istime to tailor it to a given

project or program. The safety activities should be sufficient to match the software development
effort and yet ensure that the overall system will be safe.

The scope of the software development and software safety effort is dependent on risk. Software
safety tasks related to lifecycle phases are listed within the development phase chapters
(Chapters 5 through 10) of this guidebook. A recommendation? is given for each technique or
analysis and each software safety effort level (full, moderate, and minimum). Software
developers may employ severa techniques for each development phase, based on a project's
level of software safety effort. At the very minimum, a project must review all pertinent
specifications, designs, implementations, tests, engineering change requests, and problem/failure
reports to determine if any hazards have been inadvertently introduced. Software assurance
activities should always verify that all safety requirements can be traced to specific design
features, to specific program sets or code elements, and to specific tests conducted to exercise
safety control functions of software (See Section 6.6.1 Software Safety Requirements Flow-down
Analysis).

Each NASA project, regardless of its level of safety-criticality, must perform an IV&V
evaluation at the beginning of the project, and whenever the project changes significantly.
NPD 8730.4 describes the process and responsibilities of all parties. 1V&V provides for
independent evaluation of the project software, including additional analyses and tests
performed by the IV&V personnel. This is in addition to any analyses and tests
performed by the project Software Assurance.

If your system will include off-the-shelf software (COTS, GOTS), reused software from another
project, or software developed by a contractor, refer to Chapter 12 Software Acquisition.

2

Recommendation Codes
F Mandatory vV Highly Recommended
v Recommended N Not Recommended

"Not Recommended" are expensive relative to the required level of effort and the expected benefits.
"Recommended" techniques may be performed if extra assurance of safety or mission success is desired.
"Highly Recommended" entries should receive serious consideration for inclusion in system development.
If not included, it should be shown that safety is not compromised. “Mandatory” are required.

NASA-GB-8719.13 42



Additional analyses and tests may need to be performed, depending on the criticality of the
acquired software and the level of knowledge you have about how it was developed and tested.
The level of safety effort may be higher if the COT S/reused/contracted software is safety-critical
itself or interacts with the safety-critical software.

g

. Sections 3.2.1 through 3.2.4 below help determine the appropriate methods for software
quality assurance, software development, and software safety for full, moderate, and
minimum safety efforts. Ultimately, the categorization of a project’s software and the
range of selected activities must be negotiated and approved by project management,

A/ software development, software quality assurance, and software systems safety personnel
together.

{

K
1

Other techniques, which are not listed in this guidebook, may be used if they can be shown to
produce comparable results. Ultimately, the range of selected techniques must be negotiated and

approved by project management, software development, software quality assurance, and
software systems safety.

The following software activities can be tailored:

Development The use of safety features such as firewalls, arm-fire commanding, etc.
depends on where it is best applied and needed. The degree to which
each of these activitiesis performed is related to the software risk.
Software Safety features should be reflected in the requirements.

Anaysis There are many types of analyses that can be completed during
software development. Every phase of the lifecycle can be affected by
increased analysis as aresult of safety considerations. The analyses
can range from Requirements Criticality Analysis to Software Fault
Tree Analysis of the design to Formal Methods.

Inspections Inspections can take place in anumber of settings and with varying
products (requirements to test plans). The number of inspections and
products is dependent on the risk related to the system.

Reviews The number of formal reviews and the setting up of deltareviews can
be used to give the organization more places to look at the products as
they are being devel oped.

NASA-GB-8719.13 43



Verification and Verification checks that the system is being “built right” by
Validation Activities | determining whether the products of a given phase of software
development fulfill the requirements established during the previous
phase. Verification methods include analysis, review, inspection,
testing, and auditing. Validation checks that the “right product” is
being built, with testing as the usual primary method.

The number of tests, amount of code subjected to detailed testing, and
the level of test coverage can betailored. The frequency of Software
Assurance and Safety audits of development processes and products, as
well as the number of products to be audited, can also be tailored.
Analyses, inspections, and reviews are discussed in the paragraphs
above.

3.2.1 *“Full” Software Safety Effort

Systems and subsystems that have severe hazards which can escalate to major failluresin a very
short period of time require the greatest level of software safety effort. Some examples of these
types of systems include life support, fire detection and control, propulsion/pressure systems,
power generation and conditioning systems, and pyrotechnics or ordnance systems. These
systems may require a formal, rigorous program of quality and safety assurance to ensure
complete coverage and analysis of al requirements, design, code, and tests. Safety analyses,
software development analyses, safety design features, and Software Assurance (SA) oversight
are highly recommended. In addition, IV&V activities may be required.

3.2.2 “Moderate” Software Safety Effort

Systems and subsystems which fall into this category typically have either 1) a limited hazard
potential or 2) the response time for initiating hazard controls to prevent failures is long enough
to allow for human operators to respond to the hazardous situation. Examples of these types of
systems include microwave antennas, low power lasers, and shuttle cabin heaters. These systems
require a rigorous program for safety assurance of software identified as safety-critical. Non-
safety-critical software must be regularly monitored to ensure that it cannot compromise safety
controls or functions. Some analyses are required to assure there are no “undiscovered” safety-
critical areas that may need software safety features. Some level of Software Assurance
oversight is still needed to assure late design changes do not affect the safety criticality.

A project of this level may require 1IV&V. However, it is more likely to require a
software Independent Assessment (1A).

Software independent assessment (IA) is defined as a review of and analysis of the
program/project’ s system software development lifecycle and products. The IA differsin scope
from afull IV&V program in that IV&V is applied over the lifecycle of the system whereas an
IA is usually a one time review of the existing products and plans. In many ways, IA is an
outside audit of the project’'s development process and products (documentation, code, test
results, and others).

NASA-GB-8719.13 44




3.2.3 “Minimum” Software Safety Effort

For systems in this category, either the inherent hazard potential of a system is very low or
control of the hazard is accomplished by non-software means. Failures of these types of systems
are primarily reliability concerns. This category may include such things as scan platforms and
systems employing hardware interlocks and inhibits. Software development in these types of
systems must be monitored on a regular basis to ensure that safety is not inadvertently
compromised or that features and functions are added which make the software safety-critical. A
formal program of software safety is not usually necessary. Of course, good development
practices and SA are always necessary. The development activities and analyses in described in
Chapters 5 through 10 can provide increased reliability as well as safety, and for a minimal
effort.

3.24 Projectswith Mixed Levels of Effort

Not al projects fall into neat categories for classification. Some projects may be large and
complex, but with a small portion of safety-critical, low risk software. Other projects may be
small, but a significant portion of the software is safety-critical and high risk.

Not al the software within a project needs to be treated in an identical way. Safety-critical
software components can have different levels of software safety effort applied to them. High-
risk safety-critical software components may undergo a “full” safety effort, while low risk
safety-critical components may only undergo the “minimum” safety effort tasks and analyses.

Too often smaller projects argue that they have no safety-critical software out of concern
that the label will lead to massive amounts of work. Thisis not the case. Partitioning the
safety-critical software from code that is not safety-critical alows the safety effort to be
applied only to that safety-critical portion. Further tailoring of the software safety
program to match the risk from the safety-critical portion may lead to a reduced, or at
least more focused, safety effort. The extent of the software safety effort can be
negotiated between the project manager, software developers, software assurance
engineers, and system or software safety engineers.

0

i
5
4

NASA-GB-8719.13 45



Chapter 4 Safety-Critical Software Development

Thecardinal rulesfor safety are:
¢ No single event or action shall be allowed to initiate a potentially hazardous event.
¢ When an unsafe condition or command is detected, the system shall
o0 Inhibit the potentially hazardous event sequence.

o Initiate procedures or functions to bring the system to a predetermined “ safe”
state.

We al want systems with software products that work reliably, provide required
functionality, and are safe. The software we create must not allow hazardous events to
occur, and must be capable of returning the system to a safe state when it has veered into
dangerous territory. Software designers must be aware of the safety implications of their
design, and software engineers must implement that design with care. Safety must bein the
forefront of everyone’'s mind.

Safe software does not just “happen”. It is crafted by ateam of software engineers and designers
from well-understood requirements. The software products are analyzed by the devel oper, software
assurance engineers, and software safety engineers. Thefina codeistested, either by the
developer, assurance personnel, or a separate test organization. The whole processis overseen by a
manager cognizant of the entire project. All disciplines contribute to the production of safer
software.

This chapter provides an overview of a safety-oriented software development process. System
safety engineers unfamiliar with software devel opment, and software developers unfamiliar with
safety-critical systems, are the intended audience.

4.1 Crafting Safer Software

Five Rulesfor Creating Safer Software

1. Communicate

2. Haveand Follow Good Softwar e Engineering Practices and Procedures
3. Perform Safety and Development Analyses
4

I ncor por ate Appropriate Softwar e Development M ethodologies, Techniques &
Design Features

5. Caveat Emptor

NASA-GB-8719.13 46



411 Communication

Communication is an intangible process that can greatly improve the safety of the software and
the system being created. Communication is more than just verbal exchange. It includes
documentation, notes, email, video, and any other form of communication. It isimportant that all
team members communicate regularly. Some goals of communication are to:

%

Prevent misunder standings. Everyone on the team makes assumptions as part of their
work, but the assumptions are not always the same. For example, the electronic design
engineer may order the bits high-to-low, but the software engineer may interpret them
low-to-high. Communication — verbal or written — prevents this type of problem.

| dentify risks before they become problems. Communication is the center of the Risk
Management paradigm (see NPR 8000.4, Risk Management Procedures and Guidelines).
Brainstorming is often used to identify project risks. People from varying backgrounds
and points-of-view see different risks. A diverse team, skilled in communication, will
usually find better solutions to the problems.

Provideinsight into the reasoning behind design decisions. Knowing the reasons why
a design decision was made can prevent problems when the design is changed down the
road in response to a requirements change, or when “fixes’ are introduced into the
system.

M ake team member s awar e of anomalies, problems, or other issues. Prior to
established baselines, anomaly or problem tracking is often minimal or non-existent.
Regular communication provides an informal tracking system. It also promotes a cross-
disciplinary approach to problems. For example, if the operators make similar mistakes,
perhaps the graphical display needs to be made more user friendly.

Provide management with a qualitative insight into the state of the project. Besides
giving afeel for the progress, communication allows management to spot some problems
early. Grumbling among the developers may indicate personality problems, management
problems, or the effects of too much schedule pressure, for example. An informal
communication channel between software safety and management may allow resolution
of safety concerns before the problem gets out of hand.

Help engineersgrow in knowledge and experience. The quality of the team members
has a direct effect on the safety and reliability of the software. Communication helps
junior engineers learn from the experiences of more senior engineers.

Communication is one aspect of human factors in safety-critical systems. Human factors are
discussed in more detail in section 11.9.

NASA-GB-8719.13 a7



&
=
N

Good Softwar e Engineering Practices and Procedures

Before beginning software development, processes and methodol ogies need to be
selected from those available. No one process or methodology isa “ silver bullet.”
Intelligent selection needs to be done, matching the process with the needs, resources,

and talents of the software development team. “Cutting edge’ techniques or processes
may not be the best choice, unless time and budget exist to allow extensive training of the
development and assurance teams. Staying with awell understood process often
produces better (i.e. safer and more reliable) software than following the process-of-the-
year.

p @

This guidebook cannot go into great detail on how to craft good software. Several important
elements of a good development process are discussed in the following sections. The references
below are just afew examples, and are provided to give a starting point for those interested in
learning more about software engineering.

e Software Engineering: A Practitioner's Approach by Roger Pressman, 5th Edition (2001)
Software Engineering 5th Edition, by 1. Sommerville (1996)
o Software Systems Engineering by Andrew Sage and James D. Palmer.

o Software Engineering: The Production of Quality Software by Shari Pfleeger, 2nd
Edition (1991)

e Classic and Object-Oriented Software Engineering, 3rd Edition, by Stephen R. Schach
(1996)

e Code Complete: A Practical Handbook of Software Construction, by S. McConnell
(1993)

e Object-Oriented Software Engineering: A Use-Case Driven Approach, by I. Jacobson
(1997)

4.1.3 Perform Safety and Development Analyses

Well-crafted software is not the only prerequisite for safe software. Safety analyses are used to
verify that the software properly addresses the safety issues. Asdesigns change, or thedesignis
implemented in code, analyses verify that no new hazards were introduced. Software
development analyses are used to confirm that the design or code does what is needed, especially
within the safety-critical areas.

Safety and development analyses are discussed in Chapters 5 through 10, coordinated with the
phase of the software development. For each phase, tailoring information is provided to select
the most appropriate analyses for the project.

4.1.4 Incorporate Appropriate Methodologies, Techniques, and Design Features

There are many development methodologies, techniques, and design features that can help create
safer software. This guidebook does not provide an exhaustive list of all such areas. However,
the following sections detail some of the development and design techniques and methodol ogies
for crafting safer software:

NASA-GB-8719.13 48



Section 4.2.1 Software Lifecycles

Section 4.2.2 Design Methodologies

Section 4.2.2.3 Formal Methods

Section 4.2.2.5 Design patterns

Section 4.3.8 Software Development Capability Frameworks
Section 4.5 Software Configuration Management

Section 4.6 Programming for Safety

Section 6.5.2 Fault and Failure Tolerance

Section 6.5.5 Formal Inspections

Sections7.4.4and 11.1 Language selections

Sections 7.4.411.2, 11.3
and 11.4

Tool and Operating System selections

Sections7.4.5and 8.4.1 | Coding Checklists, Standards, and Language restrictions
Section 7.4.6 Defensive Programming

Section 8.4.3 Refactoring

Section 11.9.3 Interface Design/Human Factors

Section 12.1.2 Integrating COTS software

4.15 Caveat Emptor

“Buyer Beware.” COTS software and hardware are extremely common in most systems. Even
if the software is developed in-house, the tools used (e.g., compiler, editor, debugger) are usually
purchased. Operating systems arerarely created by the development team, but are usually
procured from a commercia vendor or selected from those freely available.

B

Safety is usually not on anyone' s mind when they select a compiler, editor, or other tool,
but it should be. All software must be considered potentially flawed. Thisisn’'t a cause
for panic, however. Understanding how the software tool, library, operating system, or
other element could fail isimportant in guarding against such afailure. Knowing that a
potential failure could impact the safety of the system is the most important aspect.
Don’'t become complacent when safety isinvolved!

Chapter 12 discusses issues and concerns with off-the-shelf, reused, and contracted software in

more detail.

Software engineering, like mechanical, electrical, civil, or structural engineering, requires a
disciplined process. No one would consider building a bridge, or a spacecraft, without using the
rules for development that have become second nature to developers of hardware. With software
being so flexible and “easy” to dlter, it is even more important to have a disciplined and planned
approach for software.

4.2 The Software Development Process % &

NASA-GB-8719.13 49



Creating any software involves more than just coding. For safety-critical software, having and
following an appropriate devel opment methodology that includes requirements analysis, design,
and verification is essential.

A thorough software development process hel ps assure that:

All the requirements are understood, well documented, and incorporated in the software

The needed functionality isindeed incorporated into the system and all elements work
together without conflict

Analysis and testing have assured the viability of the product under less than friendly
conditions.

The steps to a good software development process are:

Choose a Process

o0 Lifecycle(Section4.2.1)

o0 Design Methodology (Section 4.2.2)
Manage the process (Section 4.3)

0 Metrics

0 Tasks

0 Products

o0 Tools& Methods
Tailor the processin a plan (Section 4.4)

At the very minimum, a project team must review all pertinent specifications, designs,
implementations, tests, engineering change requests, and problem/failure reports to

determineif any hazards have been introduced.

In the software development process, software engineersideally perform the following functions:

Work with systems engineers, safety engineers, and assurance engineers to help
formulate the software functionality and determine the role of software in this
project/product. Most of this will be done at the project concept stage, though hardware
and software functions may be redistributed during the system design phase. During the
concept phase, when everything is flexible, is the time to propose possible technical
innovations and approaches. It is also the time to begin to formulate the management
plans and development plans for the software.

Complete software management and development plans. A software management plan
will include schedules, deliverables, reviews, and other details. The development plan
will contain the lifecycle, methodology, language, standards, and techniques to be used to
specify, design, test, manage configuration, and deliver the software. The level of detall
in these documents can be tailored to match the complexity and criticality of the
software.

Analyze requirements and create the software specification. The system requirements
that pertain to software must be specified and included in a software requirements

NASA-GB-8719.13 50



document (also called a software specification). Any additional requirements (including
safety requirements), standards and guidelines chosen must also be included. Analysis of
those requirements assures that all requirements are included and that they are achievable
and verifiable.

Create a design that implements the requirements. Analyses assure that the design will
be able to meet the functional and performance requirements.

Implement the design (code) and perform unit testing.

Test the software. Tests include integration, functional, stress, load, and other varieties of
system tests. Final acceptance testing is performed when the system is ready to be
delivered.

While the software engineers are creating the software, software safety engineers perform their
own set of tasks. These activitiesinclude:

Perform analyses, or verify the analyses of others. Provide inputs to hazard reports,
tracking matrices, and safety checklists. The analysis work will stretch out over the life
of the software development activity and into the operations or maintenance phase. For
highly safety-critical software, many analyses will be performed by the safety engineer.

Implement the tasks that “fall out” of the analyses. This includes making sure that a
missed safety requirement is actually included in the software requirements and flows
down to the current development phase. Tracking requirements and maintaining
traceability or verification matrices are also implementation activities.

Verify the changes. After the problem was fixed, the software safety engineer needs to
verify that the problem was corrected (usually via inspection or test) and change its
tracking status to “closed.” The engineer also makes sure that the fix does not have a
negative effect on any other portions of the system.

Suggest changes to the software development and verification activities to increase
safety. Examples include Formal Inspections of safety-critical code and enhanced safety
testing to verify the software does not have undesired effects.

A good softwar e development process, under stood and followed, greatly increase the odds of

developing safer, morereliable software.

NASA-GB-8719.13 51




IMPORTANT NOTE

Throughout the remainder of this Guidebook, the waterfall lifecycle phases (Concept,
Requirements, Design, Implementation, Test, and Operations) will be used to organize
activities. However, this does not imply a strict adherence to the waterfall lifecycle. These
phases are basic concepts that are applicable to al lifecycles. The phases may be broken up into
pieces, or be invoked in an iterative manner, but ultimately the ideas of Concept (planning the
project), Requirements (deciding what to build), Design (deciding how to build it),
Implementation (actually building the software system), Test (making sure it works) and
Operations (using what was built) apply to al lifecycles.

421 SoftwareLifecycles T = S

Lifecycle models describe the interrelationship between software development phases. Software
development tasks are usually broken down into the following activities:

a. ldentification of Requirements
b. Design

c. Implementation (Coding)

d. Testing and Verification

These are not usually linear, sequential tasks. There may be much overlap, depending on the
lifecycle chosen. The tasks may be performed sequentially, but in small increments, until the
software is compl eted.

Selecting a software lifecycle is one of the first decisions that will need to be made. The
lifecycle chosen will have a strong impact on how the software is developed and what
products (such as documentation) will be produced. Time spent researching the options,
and especially the types of systems the model works best with, directly benefits the
project asawhole.

As with any important project decision, choosing the appropriate lifecycle should not be donein
a vacuum. Besides the Software Lead Engineer, knowledgeable software, systems, and safety
engineers can, and should, have an impact on these choices.

The lifecycle models discussed in the following sections are not an exhaustive list. New models
are being developed and older models are modified, as software engineering research strugglesto
find the best model (or more likely, the best set of models) for software development. The
models included in this guidebook are well-established models that are commonly used for
software development projects.

Any lifecycle model can be used with any design methodology, but some fit better than others.
Because most of the lifecycle models were devel oped before object-oriented design was popular,
they can al be used easily with structured development. If your project will use object-oriented
design, consider how well the lifecycle method will work together with the design methodol ogy.

NASA-GB-8719.13 52



This guidebook makes no recommendation for a specific lifecycle model. Each has its strengths
and weaknesses, and no one model is best for al situations. It is important to intelligently
evaluate the potentia lifecycles and select one that best matches the product you are producing.
Standards or organizational policy may dictate a particular lifecycle model. Also, keep in mind
that the familiar may be the best choice, because of reduced uncertainty in how to implement the
process.

4.2.1.1 Waterfall Model

The first publicly documented software development model is the classic Waterfall model. It
was developed to help cope with the increasing complexity of aerospace products. The Waterfall
model is documentation driven and linear (sequential). It is probably the best known of the
lifecycle models.

The Waterfall model is characterized by a strict (more or less) one-way flow structure. It
consists of up to seven phases, each with products and activities. The usual phases are: Concept,
Requirements (Analysis), Design, Implementation (Code), Testing, and Operation
(Maintenance). The Design phase is sometimes broken up into Architectural (high-level) and
Detailed design phases.

Figure 4-1 Waterfall Lifecycle Model

CONCFPT

SYSTFM

SYSTEM ARCHITECTURE DESIGN

SYSTEM DETAILED DESIGN
SYSTEM BUILD

SW CONCEPT SYSTEM ACCEPTANCE

SW REQUIREMENTS
SW DESIGN

SW IMPLEMENTATION

OPERATION
TEST

SW TESTING

The overal system can have a top level Waterfall and the software, hardware, testing, and
operations organizations, groups, or teams may each have their own lifecycle that feeds into and
fits within the overall system lifecycle. Specified activities and deliverables are called out for
each phase and must be approved prior to moving into the next phase.

NASA-GB-8719.13 53




Notice that there are clear delineations between the phases of the waterfall lifecycle. All phases
start with deliverable(s) from a previous phase. New deliverables are created and reviewed to
determine if the current phase of the product is properly prepared to move to the next stage. The
product, as its current phase deliverables define it, is usually formally reviewed in either a
system phase review (Systems Requirements Review, System Design Review, Preship Review)
or may have lower level, internal phased reviews in place of, or in addition to, system reviews.

This model is the most widely used and modified because it is graphically, and intellectually,
easy to grasp. The Waterfal lifecycle came from industry where the products are usually
similar, the requirements are known upfront, and the products are created the same way time
after time. The model is seldom, if ever, followed exactly, especially in Research and
Development (R& D) work. Some problems with the waterfall model include:

e Assumption that requirements can be specified up front.

e Assumption that requirements and design do not change significantly (or often).

e No products (other than documentation) delivered until late in the devel opment cycle.
e Team members “blocked” waiting for othersto complete dependent tasks.

Variations of the individual phases of the waterfall model are used in most of the other lifecycle
models. Even the deliverables are similar. The main difference is that instead of one monolithic
process, an iterative or repetitive approach is used.

4.2.1.2 Rapid Prototyping

A prototype is a model of a product or system, in part or in whole. Depending on the purpose of
the prototype, and the nature of the product, the prototype will demonstrate various aspects of the
product, such as its interfaces, functionality, and so on. It is used as “Proof of Concept” and as a
means to undergo concept devel opment when no clear approach isimmediately evident.

Usually, a portion of a system is prototyped up front (rapidly, with little strict development
discipline) to prove out a possible design feature or technique. Examples include testing out the
feasibility of using web-based interfaces or read/write CD memory instead floppies, getting user
feedback on a graphical interface design, or determining if planned hardware (or a software
algorithm) can produce the required timing.

Rapid prototyping is used in large extent to quickly see if something will work. It isalso used at
times to quickly model the basics of an entire system to allow the user to see early on what the
system will be like, what it will do, and how it will operate.

In general the prototype should be built with the “20/80” rule in mind, such that it is usualy the
case that 20% of the functions in a system provide 80% of what the user wants. The prototype
should concentrate on these functions, alowing the user to get their specification tied down as
soon as possible. 1t is possible for the prototype to be a “full” working model, in which case it
can be used in alive situation to see how the software performs, and what real users think of it.
Once the concepts are all worked out and chosen, the final product is specified, designed, built,
tested, and formally released using the information gained from the prototyping stage(s).

NASA-GB-8719.13 54



Figure 4-2 Rapid Prototyping

GATHER
REQUIREMENTS

DO
A A “QUICK DESIGN”
BUILD
PROTOTYPE

EVALUATE &
REFINE
REQUIREMENTS

DESIGN,
CODE AND
TEST FINAL
PRODUCT

Problems and pitfalls with this model include:

Customers misunder stand the quality of the prototype. The customer may see what
appears to be a working system, and balk when informed that the system must be
completely rewritten. Explaining the concepts behind rapid prototyping to the customer
up front can help prevent this problem.

Developer or management desire to not “recreate the wheel” leads to the prototype
being used as the basis of the complete system. Sometimes, the prototype appears to
perform so well that it is felt there is no need to build the "real” system. If this happens,
some development organizations will just go ahead and add on the remaining 80% of the
functions without implementing a thor ough development process.

Choices made for the prototype may not be applicable for the complete system.
Operating systems, languages, or tools may be chosen to get the prototype done quickly,
but these choices may not be the best for the final system. Evaluation may not be done to
determine what is best, and the original choices may be used without question.

Rapid prototyping is a valuable lifecycle method and should be considered when there is
uncertainty about the best approach, equipment, or interaction. What is learned from rapid
prototyping should be feed into a thorough development process that provides the discipline of
documentation, review, analysis, and thorough testing for a safer, more maintainable, robust
finished product.

NASA-GB-8719.13 55



4.2.1.3 Spiral Model

The spiral model combines the idea of iterative development (prototyping) with the systematic,
controlled aspects of the waterfall model. It allows for incrementa releases of the product, or
incremental refinement through each time around the spiral. The spira model also explicitly
includes risk management within software development. Identifying major risks, both technical
and managerial, and determining how to lessen the risk helps keep the software development
process under control.

The spiral model is based on continuous refinement of key products for requirements definition
and analysis, system and software design, and implementation (the code). At each iteration
around the cycle, the products are extensions of an earlier product. This model uses many of the
same phases as the waterfall model, in essentialy the same order, separated by planning, risk
assessment, and the building of prototypes and simulations.

Documents are produced when they are required, and the content reflects the information
necessary at that point in the process. All documents will not be created at the beginning of the
process, nor all at the end (hopefully). Like the product they define, the documents are worksin
progress. The ideais to have a continuous stream of products produced and available for user
review.

Figure 4-3 Spiral Lifecycle M odel

Deter mine ohjediv es,
dternaives, & congdrants

Evduate alter naives,
identify & resalverizks

Develp & werify

Planned phase nest lewe procuct

NASA-GB-8719.13 56



The spiral lifecycle model allows for elements of the product to be added in when they become
available or known. This assures that there is no conflict with previous requirements and design.
This method is consistent with approaches that have multiple software builds and releases and
allows for making an orderly transition to a maintenance activity. Another positive aspect is that
the spiral model forces early user involvement in the system development effort. For projects
with heavy user interfacing, such as user application programs or instrument interface
applications, such involvement is helpful.

Starting at the center, each turn around the spiral goes through several task regions:
e Determine the objectives, aternatives, and constraints on the new iteration.
e Evaluate alternatives and identify and resolve risk issues.
e Develop and verify the product for thisiteration.
e Plan the next iteration.

Note that the requirements activity takes place in multiple sections and in multiple iterations, just
as planning and risk analysis occur in multiple places. Final design, implementation, integration,
and test occur in iteration 4. The spiral can be repeated multiple times for multiple builds.

Using this method of development, some functionality can be delivered to the user faster than the
waterfall method. The spiral method aso helps manage risk and uncertainty by allowing
multiple decision points and by explicitly admitting that all of anything cannot be known before
the subsequent activity starts.

4.2.1.4 Incremental Development - Single Delivery

The incremental development - single delivery model is effective for early development of some
of the features of the software. This model enables you to get those efforts that are risky started,
and the concepts tested and accepted, early in the development process. The increments are
developed separately but integrated and delivered as a single system. Figure 4-4 shows the
lifecycle phases of this model.

Note that the model uses the same phases as those in the waterfall model.

4.2.1.5 Incremental Development - Incremental Delivery

Where the Incremental Development — Single Delivery model produced only one deliverable
product (the final version), the Incremental Development — Incremental Delivery model produces
products in stages. This means that the system will have limited but partial functionality for
some period of time. An example would be an application with a Beta release, a Version 1,
Version 2, and so on. Thislifecycle may be used if the customer wants some functions delivered
early and can wait for other functions and refinements until later. Figure 4-5 shows the lifecycle
phases of this model.

Note again that this model uses the phases from the waterfall model.

NASA-GB-8719.13 57



Figure 4-4 Incremental Development Lifecycle — Single Delivery

System
Acceptance

System
TRR

System PDR Incr 1 Incr 1&2
Increment 1 TRR TRR

PDR
J\ -------- Incr 1, 2&3

,7 TRR

Incr 2
PDR PDR
I

System

s >\ >\ / >\

*

Increment 1 Increment2 Increment 3

....................... Code, Fab, Assemble Units

Figure 4-5 Incremental Development Lifecycle —Incremental Delivery

577

A AN

SYSTEM AN

| Safety Ver  Phase lll

The emphasis with an incremental delivery life cycle is that you can plan to release
incrementally. This alows the project to focus the resources and efforts accordingly. All too
often a single grand release is planned, but then the schedule slips, resources are not available,
technical difficulties arise, or other problems occur. The project may just ship whatever it has at
the due date, promising a future update to complete the application or fix remaining problems.
Using Incremental Development-Incremental Delivery can help avoid these problems.

NASA-GB-8719.13 58



4.2.1.6 Evolutionary Development

In the evolutionary lifecycle model, new or enhanced functions are added to a functioning
system iteratively. Each development cycle builds on the experience from earlier increments,
defining and refining the requirements for subsequent increments. Increments are developed
sequentialy, rather than in parallel. Within each incremental development cycle, there is a
normal progression through analysis, design, code, test and implement, followed by operations
and maintenance. Experience with each finished release is incorporated in requirements for the
next development cycle.

From the customers point of view, the system will "evolve" as increments are delivered over
time. From the developers point of view, those requirements that are clear at the beginning of
the project will dictate the initial increment, and the requirements for each development cycle
there after will be clarified through the experience of developing prior increments. Care must be
taken to ensure that the evolving system architecture is both efficient and maintainable.

Figure 4-6 Evolutionary Lifecycle M odel

Possible Possible
Deployment Deployment

System { i\ Update System
Test System Test
Requirements

Update
System Final System

Requirements Acceptance and
Deployment

Code, Fab, Code, Fab, Code, Fab,
Assemble Units Assemble Units Assemble Units

The benefits from using the evolutionary model are:

e Early deliveries of portions of the system, even though some of the requirements are not
yet decided.

e Useof early releases as tools for requirements elicitation.
Limitations of the evolutionary lifecycle model include:

e It may be difficult to estimate costs and schedule at the start of the project when scope
and requirements have not been established.

e Theoverall elapsed time for the project may be longer than if the scope and requirements
are established before any increments are devel oped.

e Time apparently gained on the front end of a project because of early releases may be lost
later because of the need for rework resulting from evolving requirements.

NASA-GB-8719.13 59




e Additional time must also be planned for integration and regression testing as increments
are developed and added to the system.
.

422 Design Methodologies — 3has =4

A design is a meaningful engineering representation of something that is to be built. It is a
higher-level interpretation of what will actually be implemented in the source code. Designs
should be traceable back to a customer’s requirements. They should also be assessed for quality
against a set of predefined criteriafor agood design.

Analysis and design methods for software have been evolving over the years, each with its
approach to modeling the needed worldview into software. The following methodologies are
most commonly used. Specific methodologies under the main categories are just a sample of
available methodologies.

e Structured Analysis and Structured Design (SA/SD). SA/SD methods were among the
first to be developed. They provided means to create and evaluate a“good” design. Prior
to the introduction of SA/SD processes, “code and debug” was the normal way to go
from requirements to source code. Even in this “object-oriented” time, SA/SD is still
used by many.

o0 Functional Decomposition
o DataFlow (also caled Structured Analysis)
o Information Modeling

e Object Oriented Analysis and Object Oriented Design (OOA/OOD). OOA/OQOD breaks
the world into abstract entities called objects, which can contain information (data) and
have associated behavior. OOA/OOD has been around for nearly 30 years. In the last
decade the majority of development projects have shifted to this collection of
methodologies. Object-orientation has brought real benefits to software devel opment, but
itisnot asilver bullet.

0 Object-Oriented Analysis and Design (OOA/OOD) method (Coad & Y ourdon)
0 Object Modeling Technique (OMT) (Rumbaugh et. al.)

0 Object-Oriented Analysis and Design with Applications (OOADA) (Booch)

0 Object-Oriented Software Engineering (OOSE) (Jacobson et. al.)

o UML

e Forma Methods (FM) and Model-based Development. FM is a set of techniques and
tools based on mathematical modeling and formal logic that are used to specify and
verify requirements and designs for computer systems and software. FM is also a process
that alows the logical properties of a computer system (primarily software) to be
predicted (in a process similar to numerical calculation) from a mathematical model of
the system by means of alogical calculation.

o Formal Specification
o Formal Verification
o Software models (with automatic code generation)

NASA-GB-8719.13 60



Which design methodology is best? The answer to that question depends on many
W#., project-specific variables. What is the experience base of the software personnel? Is
P94 there time and money, both for training and to absorb project schedule delays as the team
comes up to speed on a new method or language? Has object-oriented or structured
design been used successfully in this problem domain? What external components must
& the software interface with? Are there any contractual requirements or standards that
=5 specify or limit the methodology choices? What tools are available to help with a chosen
methodology, and how mature are they? These questions are just some that must be
answered before selecting a design methodology. Advantages and pitfalls for SA/SD,
OOA/OQOD, and FM are discussed in the paragraphs below. Think seriously about the
options and choose wisely.

4.2.2.1 SA/SD

Structured software development is a phrase with multiple meanings. In a genera sense, it
applies to all methodologies for creating software in a disciplined, structured manner. In the
context of this section, however, “structured” refers to the various analysis and design methods
that are not object-oriented.

In the following discussion, “analysis’ is defined as a process for evaluating a problem space (a
concept or proposed system) and rendering it into requirements that reflect the needs of the
customer. “Design” isthe process of taking those requirements and creating the desired system.

Among the structured methods used, the most popular have been Functional Decomposition,
Data Flow (or Structured Analysis), and Information Modeling.

Functional Decomposition focuses on what functions and sub-functions the system needs to
perform and the interfaces between those functions. It is a technique for developing a program
in which the problem is divided into more easily handled sub-problems, the solutions of which
create a solution to the overall problem. Functional decomposition is a “top-down” development
methodol ogy.

Functional decomposition begins with the abstract (the functions the software must perform) and
works toward the particular (algorithmic steps that can be translated directly into code). The
process begins by breaking the functionality into a series of major steps. Each step is then
further decomposed, until a level is reached where a step cannot be reasonably subdivided. The
result is usually a collection of “units’ or components that perform a single sub-step of the
process. The relationship between the componentsis hierarchical.

The general complaints with this method are that:

e The functional capability is what most often changes during the design lifecycle and is
thus very volatile.

e |t is often hard to see the connection between the proposed system as a whole and the
functions determined to create that system.

e Dataplaysasecondary rolein support of actionsto be performed.

Structured Analysis (DeMarco [16], Yourdon [15]) became popular in the 1980's and is still
used by many. The analysis consists of interpreting the system concept (or real world) into data
and control terminology, graphically displayed as data flow diagrams. Data dictionaries describe

NASA-GB-8719.13 61



the data, including where and how it is used. A process specification captures the transaction
and transformation information.

The steps to performing a structured analysis are:
e Start with the Data Flow Diagram.
e Determine major flow from input to output.
e Partition into input, central transform, and output processes.
e Convert to high level structure chart.
e Refine.
e Validate using coupling and cohesion.

This methodology has some problems in practical usage. The flow of data and control from
bubble (i.e. processes) to data store to bubble can be very hard to track. Also, the number of
bubbles can get to be extremely large. One approach to avoiding this problem is to first define
events from the outside world that require the system to react, then assign a bubble to that event.
Bubbles that need to interact are then connected until the system is defined. This can be rather
overwhelming, so the bubbles are usually grouped into higher-level bubbles.

The main difficultiesin using this method have been:

Choosing bubbles appropriately.

Partitioning those bubbles in a meaningful and mutually agreed upon manner.

The size of the documentation needed to understand the Data Flows.

This method is still strongly functional in nature and thus subject to frequent change.

o~ w DN PE

Though “data” flow is emphasized, “data’ modeling isnot. Thereislittle understanding
of just what the subject matter of the system is about.

6. Itishard for the customer to follow how the concept is mapped into these data flows and
bubbles. Itisaso very hard for the designers who must shift the data flow diagram
organization into aformat that can be implemented.

Information Modeling, using entity-relationship diagrams, is really aforerunner for OOA. The
analysis first finds objects in the problem space, describes them with attributes, adds
relationships, refines them into super and sub-types and then defines associative objects. Some
normalization then generally occurs. Information modeling is thought to fall short of true OOA
in that, according to Peter Coad & Edward Y ourdon [17],

1. Services or processing requirements for each object are not addressed.
2. Inheritance is not specifically identified.

3. Poor interface structures (messaging) exist between objects.

4

. Classification and assembly of the structures are not used as the predominate method for
determining the system’s objects.

Modern structured analysis often combines elements from all three analysis methodologies
(functional decomposition, structured analysis, and information modeling).

NASA-GB-8719.13 62



4.2.2.2 OOA/O0D

Object Oriented Analysis and Design (OOA/OOD) represents the new paradigm for creating
software. OOA/OQOD is viewed by many as the best solution to most problems. Like the older
SA/SD, OOA/OQOD provides a way to model the real world in a defined, disciplined manner.
OOA actually incorporates structured analysis techniques at a lower level, once the system is
cast into objects or classes with attributes and methods (i.e. functions).

The Object-oriented (OO) paradigm says.
1. Look at your problem in terms of individual, independent objects.

2. Decompose your domain into objects. Each object has some certain properties and a
certain behavior or set of actions particular to each object.

3. Organize your objects so that:

a. They interact among each other by sending messages that may trigger actions on
the object to which they arrive.

b. They are defined in a hierarchical way so that objectsin lower levelsinherit
automatically all properties and behavior of the objectsin upper levels.

c. Objectsin lower levels may add or modify the properties or behavior that they
have inherited.

Modeling the real world into objects can have some advantages. This methodology tends to
follow a more natural human thinking process. Also, objects, if properly chosen, are the most
stable perspective of the real world problem space and can be more resilient to change as the
functions/services, data, and commands/messages are isolated and hidden from the overal
system.

For example, while over the course of the development lifecycle the number, as well as

& types, of functions (e.g., turn camera 1 on, download sensor data, ignite starter, fire
engine 3) may change. The basic objects (e.g., cameras, sensors, starter, engines,
operator) needed to create a system usually are constant. That is, while there may now be
three cameras instead of two, the new Camera-3 is just an instance of the basic object
‘cameral. OOA/OOD should not be confused with OO programming languages. While
an OO language is usually chosen to implement the design, it is not required. A
procedural language can be used to implement OOD.

OOA incorporates the principles of abstraction, information hiding, and inheritance, which are
the three most “human” means of classification. These combined principles, if properly applied,
establish a more modular, bounded, stable, and understandable software system. These aspects
of OOA should make a system created under this method more robust and less susceptible to
changes--properties that help create a safer software system design.

Abstraction refers to concentrating on only certain aspects of a complex problem, system, idea,
or situation in order to better comprehend that portion. The perspective of the analyst focuses on
similar characteristics of the system objects that are most important to them. Later, the analyst
can address other objects and their desired attributes or examine the details of an object and deal
with each in more depth. An object is defined by the attributes it has and the functions it
performs on those attributes. An abstraction can be viewed as a smplified description of a

NASA-GB-8719.13 63



system that emphasizes some of the system’s details or properties while suppressing others. A
good abstraction is one that emphasizes details that are significant to the reader or user and
suppresses details that are, at least for the moment, immaterial or diversionary.

Information hiding also helps manage complexity in that it allows encapsulation of requirements
that might be subject to change. In addition, it helps to isolate the rest of the system from some
object specific design decisions. Thus, the rest of the software system sees only what is
absolutely necessary for the inner workings of any object.

Inheritance “defines a relationship among classes [objects], wherein one class shares the
structure or behavior defined in one or more classes. Inheritance thus represents a hierarchy of
abstractions, in which a subclass [object] inherits from one or more superclasses [ancestor
objects]. Typicaly, a subclass augments or redefines the existing structure and behavior of its
superclasses’ [19].

Classification theory states that humans normally organize their thinking by:

e Looking at an object and comparing its attributes to those experienced before (e.g.
looking at a cat, humans tend to think of its size, color, temperament, or other attributes
in relation to past experience with cats)

e Distinguishing between an entire object and its component parts (e.g., a rose bush
versus its roots, flowers, leaves, thorns, andstems.)

e Classification of objects as distinct and separate groups (e.g., trees, grass, cows, cats,
politicians)

In OOA, the first step is to take the problem space and render it into objects and their attributes
(abstraction). The second step is classifying an object into Assembly Structures, where an object
and its parts are considered. The third step includes organizing the problem space into
Classification Structures. This involves examining the problem space for generalized and
specialized instances of objects (inheritance). The purpose of all this classification is to partition
the system into well-defined boundaries that can be individually and independently understood,
designed, and revised. However, despite “classification theory,” choosing what objects represent
a system is not always that straightforward. In addition, each analyst or designer will have their
own abstraction, or view, of the system which must be resolved. Shlaer and Mellor [87],
Jacobson [88], Booch [19], and Coad and Y ourdon [17] each offer a different look at candidate
object classes, as well as other aspects of OOA/OOD. These are all excellent sources for further
introduction (or induction) into OOA and OOD. OOA/OOD provides a structured approach to
software system design and can be very useful in helping to bring about a safer, more reliable
system.

OO0 projects are implemented by those with book-knowledge and little direct experience.
Remember that everything written in the OOA/OOD books are not the only correct way
to do things. Adaptation of standard methods may be important in your environment. As
an example, a team of software designers who worked on the Mars Pathfinder mission
[89] decided to use Object Oriented Design, though their developers had only book-
knowledge of the methodology. Attempting to follow the design methodologies verbatim
led to a rapidly increasingly complex set of objects. The team eventually modified the
design methodology by combining the “bottom up” approach they had been using with a

% While there is a growing number of OO “gurus’ with years of practical experience, many

NASA-GB-8719.13 64



more “top down” division into subsystems. The AIPS team [18] found that it took 6
months for structured (procedural) developers to be productive in an object-oriented
environment. Once OO gurus were on the project, new developers progressed more
quickly.

Reference [101] provides a "cookbook," or design guide, to creating software based on use cases,
while stressing software requirements, traceability, and testing. Reference [102] describes the
Dynamic Systems Development Method of software development. DSDM provides a
framework of controls and best practices for Rapid Application Development.

OOA/OQOD isnot a silver bullet for software development. Besides the steep learning curve
for those unfamiliar with the methodology, other problems or pitfalls exist. Many software
development organizations have shown a significant increase in productivity when OO
techniques were adopted. However, it is not clear that all the benefits resulted strictly from the
object-oriented philosophy. In some cases, the extra focus on design provided most of the gain.
Also, not all of the promised advantages have come about in practice. Code reuse, touted as a
major benefit of OO methodologies, has not been implemented to the extent originally expected.

Other examples of problems or concerns are:

e Not every problem domain is a candidate for OOD. Real-time or embedded systems,
distributed computing, and rapidly evolving systems, among others, should evaluate
whether OO is the right methodology for the domain.

e |t isdifficult to determine “objects’ for abstract entities. Is wind an object, or the
behavior of an air object?

e Weaknessin large-scale reuse and integration. With its focus on small-scale objects,
OOD does not provide sufficient mechanisms to achieve large-scale reuse or integration
of off-the-shelf system components without significant prior planning.

e Weakness in system decomposition. Decomposing the real world into objects or
classes is useful for modeling data-centric aspects of a system. Other decompositions
(e.g., by-feature; by-function) are better for modeling other aspects. Without them,
maintai nability, comprehensibility, and reusability suffer.

e Weakness in multi-team and decentralized development. OOD leads to contention
over shared, centralized classes. It forces all developers to agree on a single domain
model, rather than using models more appropriate to their tasks.

e OO Testing methods are still an evolving science. At the system level, testing an OO
and structured system is identical. “Unit testing” and “integration testing” for OO
systems differs in some ways from structured or procedural software. The best ways to
test OO software is not well understood yet.

e Changing the OO model for evolving systemsisnot as easy as claimed. Lubars et a
[21] showed that for one system, the object model was simple to change as the system
evolved, but the behavioral model was much more complex.

Shah et al [20] describes additional pitfalls, both technical and managerial, when moving to
OOD.

NASA-GB-8719.13 65



Unified Modeling Language (UML)

UML is a language and methodology for specifying, visualizing, and documenting the
development artifacts (design) of an object-oriented system. The UML represents the unification
of the Booch, Objectory, and OMT (spell) methods and is their direct and upwardly compatible
successor. It also incorporates ideas from many other methodologists, including Coad, Gamma,
Mellor, Shlaer, and Y ourdon.

UML uses a variety of diagrams and charts to show the structure and relationships of an object-
oriented design. Class diagrams show the individual classes and how they relate to each other,
e.g. subclass, superclass, or contained within another class. Each class box can contain some or
all of the attributes (data) and operations (methods) of the class.

Rel ationships among classes come from the following set:
e Associations between classes means that they communicate via messages (calling each
other’s methods).
e Aggregations are a specialized association, where one class “owns’ the other.
e Compositions show that one class isincluded within another class.
e Generalizations represent an inheritance relationship between the classes.

e Dependencies are similar to associations, but while one class depends on another, it does
not contain a pointer or reference to the other class.

e Realizations are relationships where one modeling element is the implementation
(realization) of another.

Features of UML Types of diagrams
Use cases and scenarios Use-case diagrams
Object and class models Class diagrams
State charts and other behavioral specifications State-machine diagrams
Large-scale structuring Message-trace diagrams
Design patterns Obj ect-message diagrams
Extensibility mechanisms Process diagrams
Module diagrams
Platform diagram

UML is quickly becoming the standard OO modeling language. Tools aready incorporate it,
and some can even generate code directly from the UML diagrams. UML has been adapted for
real-time systems. Many books now exist for learning UML, as well as on applying UML to
specific environments or integrating it with other design methodologies.

4.2.2.3 Formal Methods (FM)

The NASA Formal Methods Guidebook [22] states: “Formal Methods (FM) consists of a set of
techniques and tools based on mathematical modeling and formal logic that are used to specify
and verify requirements and designs for computer systems and software.” Forma Methods
therefore has two parts — formal specification and formal verification.

NASA-GB-8719.13 66



Software and system requirements are usually written in “human-readable” language. This can
lead to ambiguity, when a statement that is clear to one person is interpreted differently by
another. To avoid this ambiguity, requirements can be written in a formal, mathematical
language. Thisformal specification isthe first step in applying FM.

Formal verification provides the proof that the result (software) meets the formal specification.
Verification is a progressive activity. At each stage, the new product is formally verified to be
consistent with the previous product. For example, the detailed design is verified against the
preliminary design, which was verified against the desired properties such as safety or security.

In the production of safety-critical systems or systems that require high assurance, FM provides a
methodology that gives the highest degree of assurance for a trustworthy software system. FM
has been used with success on NASA, military, and commercial systems that were considered
safety-critical applications. The benefits from the application of the methodology accrue to both
safety and non-safety areas. FM does not guarantee a precise quantifiable level of reliability. At
present, FM is only acknowledged as producing systems that provide a high level of assurance.

FM isused in severa ways.
a. Asaway to assure the software after-the-fact
b. Asaway to assure the software in parallel.
c. Asaway to develop the software.

“After the fact” software verification can increase the confidence in a safety-critical system.
When the regular software development is completed, then the formal specification and
verification begin. The Software Assurance, Safety, or IV&V engineer converts the “human
readable” requirements into a formal specification and proves properties about the specification.
The code that implements the system may also be formally verified to be consistent with the
formal specification. With this approach, two separate development activities occur, increasing
cost and schedule. In addition, problems found at this late stage are costly to fix.

“In parallel” software verification still uses two separate teams (software development and FM
verification), but they operate in paralel during the whole process. The development team uses
the regular practices of good software development. At the same time the FM team writes
formal specifications for the system and verifiesthem. While still costly, this method of assuring
the software allows for quicker development. Software errors are found earlier in the
development cycle when they are less expensive to correct. However, communication between
the two teamsis vital for this approach to work.

Rather than two teams working in parallel, the software can be developed using FM exclusively.
Thisis an integrated approach. Requirements and design are written in a formal language. The
design is formally verified before code is generated. This method is the least costly of the three,
though the devel opers must be trained in FM for it to work.

FM has not gained a wide acceptance among all industries, mostly due to the difficulty of
the formal proofs. A considerable learning curve must be surmounted for newcomers,
% which can be expensive. Once this hurdle is surmounted successfully, some users find
that it can reduce overall development lifecycle cost by eliminating many costly defects
prior to coding. In addition, many tools are now available to aid in using FM. Also, the
process of creating a formal specification, even without the mathematical proofs, can be

NASA-GB-8719.13 67



invaluable. Removing ambiguity and uncertainty from the specification helps to prevent
future errors when that specification isimplemented.

Lutz and Ampo [23] described their successful experience using formal specification and
verification at the requirements level. As a result of the Formal Specification, 37 issues were
found in the requirements, including undocumented assumptions, inadequate off-nominal or
boundary case behavior, traceability and inconsistency, imprecise terminology and logic errors.
The project being used as a test subject was following an Object-oriented (OO) development
process. FM worked well with the OO approach.

A new approach to “light” formal methods is the SpecTRM modeling language [109]. This
language is human-readable and supports a safety-driven design process. “Under the hood” of
the modeling language is aformal (mathematical) basis that supports formal and even automated
analysis. In addition, the models can be executed, allowing dynamic analysis of the specified
system's behavior before any code is written. The design of the formal modeling language
emphasizes readability so it can serve as a model and as the specification of the software
requirements.

Detailed descriptions of FM are given in the NASA Formal Methods Guidebook [22]. In
addition, the following publications are recommended reading as primers in FM: Rushby [24],
Miller, et a [25], and Butler, et a [26]. Anthony Hall [27] gives “Seven Myths of Formal
Methods,” and discusses using formal specification of requirements without formal proofsin a
real-world development environment. Richard Kemmerer [28] shows how to integrate FM with
the development process.

The NASA Langley Formal Methods Group website (http://atb-
www.larc.nasa.gov/fm/index.html) provides good general information on the what and why of
FM. This website also provides links for more information. The NASA FM page is
http://eis.jpl.nasa.gov/quality/Formal_M ethods/home.html.

A quick search of the Internet produces links to many FM tools. The web-site
http://www.afm.sbu.ac.uk has a list of notations and tools, as well as other resources. The FM
page produced by Jonathan Bowen (http://www.afm.sbu.ac.uk/) also contains resources and tool
information.

The following list contains some of the tools available for FM. Links to these can be found
through the above URLs or via a search of the World Wide Web.

e Theorem provers (ACL2, Boyer-Moore, HOL, Isabelle, JAPE, leant, LEGO, Nqgthm,
Otter, PVS, RRL, and SteP).

e Specification languages and formal notations (Z, SDL, Algebraic Design Language
(ADL), Caculus of Communicating Systems (CCS), Estelle, Esterel, Larch, LUSTRE,
Murphi, OBJand TAM.

e Methods and Systems (B-Method, Circal, Evolving Algebras, KIV, LOTOS, Penelope,
Refinement Calculus, RESOLVE, and VDM).

e Others (ASLAN, Binary Decision Diagrams, NP-Tools, Nuprl, PVS, Specware, HyTech
for embedded systems, LAMBDA for hardware/software co-design, Maintainer’s
Assistant for re-engineering code, UNITY for parallel and distributed programs, and Trio,
Kronos, TTM/RTTL, and UPPAAL for rea-time systems).

NASA-GB-8719.13 68


http://atb-www.larc.nasa.gov/fm/index.html
http://atb-www.larc.nasa.gov/fm/index.html
http://eis.jpl.nasa.gov/quality/Formal_Methods/home.html
http://www.afm.sbu.ac.uk/
http://www.afm.sbu.ac.uk/

4.2.2.4 Model-based Software Devel opment

M odel-based software development focuses on creating a complete (and possibly formal) model
of the software system. Models are an abstract and high level description of the system,
expressed as statements in some modeling language or as elements in a modeling tool. Unlike
standard design documents, models can be executable (able to simulate the process flow within
the system).

The standard *“requirements—design—code—unit, integration, and system test” development
cycle becomes “requirements—model —verify (test) and debug—generate code—system test”.
Unit and software integration testing is pushed up in the life cycle to the modeling phase. In
theory, the model-driven approach allows developers to construct, test, and analyze their designs
before they write any code.

When the model is formally defined, it becomes “formal methods’ (section 4.2.2.3). Another
growing trend in software engineering is to use the Unified Modeling Language (UML, section
4.2.2.2) to describe the system. In many cases, tools can take the developed model and
automatically generate the source code.

One advantage of model-based development is moving some of the testing activities earlier in
the life cycle. If major problems are found, they can be resolved with less impact on the budget
or schedule of the project. Disadvantages include a reliance on the automatically generated
source code (which may not be generated correctly) and the difficulty of knowing how well the
model conforms to reality. Interactions between parts of the system may not be evident until the
system is operational. Testing on the model should not replace thorough system testing.

4.2.2.5 Design Patterns

In software engineering, the wheedl is reinvented on aregular basis. Creating reusable software
components is one way to avoid that reinvention process. Design patterns are another. Unlike
reusable software, however, design patterns are not things (software components) but ideas.
They are proven solutions to recurring problems in software engineering.

The idea of software patterns derives from severa sources: an architectural design movement
conceived by Christopher Alexander, the literate programming® concepts, and the documentation
of best practices and lessons learned in all vocations. Software engineering solutions to a
problem are usualy specific to the context of a particular system. A pattern is a generalization
from the specific solutions that captures the essential insight into the problem solution, as well as
the context-specific elements. Or, more succinctly, “a pattern is a named nugget of insight that
conveys the essence of a proven solution to a recurring problem within a certain context amidst
competing concerns’. [95]

Software patterns are given names, which then become part of the vocabulary of software
engineering. One of the software patterns community’s goals is to create a body of literature to
help software developers resolve recurring problems encountered throughout all of software
development. Patterns provide a shared language for communicating insight and experience
about these problems and their solutions. Formally codifying these solutions and their
relationships captures this body of knowledge. The primary focus of the patterns community is

% Literate programming is a phrase coined by Donald Knuth to describe the approach of developing
computer programs from the perspective of a report or prose. Literate programming is the combination of
documentation and source together in a fashion suited for reading by human beings. [91]

NASA-GB-8719.13 69



not so much on technology as it is on creating a culture to document and support sound
engineering architecture and design.

Patterns have been used for many different domains, including organizations, processes, teaching
and architecture. At present, the software engineering community is using patterns largely for
software architecture and design, and (more recently) software development processes and
organizations.

Software patterns have four basic elements:
1. Pattern name.

2. Problem description. This explains the problem and its context, conditions that must be
met, and when to apply the pattern.

3. Solution. This describes the elements that make up the design, their relationships,
responsibilities, and collaborations.

4. Conseguences. The results and trade-offs of applying the pattern, often program space
and execution time trade-offs.

Patterns provide proven solutions to specific problems where the solution is usually not obvious.
The best patterns generate a solution to a problem indirectly. Patterns describe deeper system
structures and mechanisms, rather than modules. Good patterns do more than just identify a
solution; they also explain why the solution is needed.

Resources for software patterns include:

e Design Patterns. Elements of Reusable Object-Oriented Softwar e by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides, October 1994, ISBN 0-201-63361-2.

e Pattern-Oriented Software Architecture: A System of Patterns by Frank Buschmann,
Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal, 1996, ISBN 0-471-
95869-7.

e Pattern Languages of Program Design (and follow-on volumes) contain selected
papers from the conference on Patterns Languages of Program Design. Addison-Wesley
published the first volume in 1995.

e Patterns home page, http://www.hillside.net/patterns/patterns.htm.

e Portland Pattern Repository, http://c2.com/ppr/index.html.

4.3

All software development must be managed if it isto be succ&sful The degree of management
and documentation varies with the complexity and size of the project. A large, software-
intensive project may require a full-fledged, formal program whose details are found in a specific
Software Management Plan. A Software Management Plan describes the necessary software
tasks, processes, methodologies, reviews, configuration management approach, reporting,
documentation, and other elements of software management. A small software project, without
much criticality, will have atailored process that does not overburden the project. The software
processes for a small project will usually be described inside a System Management Plan, rather
than in separate documents.

NASA-GB-8719.13 70


http://www.hillside.net/patterns/patterns.htm
http://c2.com/ppr/index.html

i Categorizing the project’s software and selecting the range of activities to perform must

=i be negotiated early in the system development. Project management, software

= developers, software assurance engineers, and software and/or systems safety engineers
will be involved in the negotiations.

First and foremost, everyone needs to agree on the degree of safety-criticality of the software.
The level is based on several factors ranging from control over hazardous hardware to visibility
of the system (and therefore a failure) to the outside world. Chapter 3 describes how to
determine the safety-criticality of the software.

Starting a project with varying understandings of the criticality of the software system will
usually lead to problems down the road. The project manager does not want to have this issue
raised repeatedly throughout the development period, as developers and software assurance
continue to argue over the criticality of individual sections or the software as awhole.

Along with the criticality level, the development and safety activities need to be negotiated.
Tailoring the activities to the criticality level (risk index) is discussed in section 3.2. Further
tailoring information is provided in the “ Tailoring Guidelines’ sections of Chapters 5 through 10.

as  Determining who will perform an activity is as important as what tasks will be

implemented. Thisis another area for negotiation, especially when there is no designated

7 software safety engineer. Team members may wear different “hats’ at various times.
The project manager should distribute the tasks according to the expertise and talents of
the team members, keeping in mind that some activities may require a certain amount of
independence from the development team.

Part of managing a safety-critical project includes selecting the right team. Experience
and successful past performance with similar efforts are prerequisites to developing
dependable safety-critical software.

NASA’s Software Engineering Initiative Implementation Plan, from the Office of the
Chief Engineer, sets out four strategies to improve software engineering practices,
especialy in cost and schedule predictability, reliability, quality, and cost. This plan (and
NPG 2820 (pending) require all NASA Centers to implement software process
improvement that will bring the software development up to (or equivalent to) SW-CMM
(Software Capability Maturity Mode) or CMMI level 3. Section 4.3.8 discusses the SW-
CMM and other process improvement frameworks.

4.3.1 Project Management Best Practices %

The focus of this guidebook is on producing safe software. The project manager is one of those
responsible for making sure the software produced is safe, and meets all the other requirements.
As Section 11.9 points out, the human element isimportant in meeting the goal of safety.

While a treatise on all aspects of project management is outside the scope of this guidebook, the
following list gives an overview of important practices. The list is found on the Software
Program Managers Network website (http://www.spmn.com/16CSP.html).

NASA-GB-8719.13 71


http://www.spmn.com/16CSP.html

The Airlie Software Council identified nine Principal Best Practices observed in industry and
deemed essential for nearly all DoD software development projects. (This list has now been
updated to 16 software practices, and is available through the link above.)

Formal Risk Management. Risk management is vital to the success of any software
effort. A formal risk management process requires that risks be identified and accepted
(with whatever mitigations are determined to be necessary or prudent), and necessary
resources be committed to the project. Formal processes for identifying, monitoring, and
managing risk must be used.

Agreement on Interfaces. To deal with the chronic problem of vague, inaccurate, and
untestable specifications, the Council proposed that a baseline user interface must be
agreed upon before the beginning of implementation activities and be included as an
integral part of the system specification. For those projects developing both hardware
and software, a separate software specification must be written with an explicit and
complete interface description.

Formal Inspections. Inspections should be conducted on requirements, architecture,
designs at all levels (particularly detailed design), on code prior to unit test, and on test
plans.

Metric-based Scheduling and Management. Statistical quality control and schedules
should be maintained. This requires early calculation of size metrics, projection of costs
and schedules from empirical patterns, and tracking of project status through the use of
metrics. Use of a parametric analyzer or other automated projection tool is also
recommended.

Binary Quality Gatesat the Inch-Pebble Level. Completion of each task in the lowest-
level activity network needs to be defined by an objective binary indication. These
completion events should be in the form of gates that assess either the quality of the
products produced, or the adequacy and completeness of the finished process. Gates may
take the form of technical reviews, completion of a specific set of tests which integrate or
qualify software components, demonstrations, or project audits.

Program-wide Visibility of Progress vs. Plan. The core indicators of project health or
dysfunction should be made readily available to all project participants. Anonymous
channel feedback should be encouraged to enable unfavorable news to move freely up
and down the project hierarchy.

Defect Tracking Against Quality Targets. Defects should be tracked formally at each
project phase or activity. Configuration management (CM), or a form of Problem
Reporting or Defect Management, allows each defect to be recorded and traced through
to removal.

Configuration Management (CM). The discipline of CM is vital to the success of any
software effort. CM is an integrated process for identifying, documenting, monitoring,
evaluating, controlling, and approving al changes made during the life-cycle of the
program for information that is shared by more than one individual or organization.

People-aware Management Accountability. Management must be accountable for
staffing qualified people (those with domain knowledge and similar experience in

NASA-GB-8719.13 72



previously successful projects) as well as for fostering an environment conducive to high
morale and low voluntary staff turnover.

More information on project management can be found in the NASA Software Management
Guide[13]. Additiona information on project management can be found at:

4.3.2

Project Management Institute — http://www.pmi.org

Project manager http://www.project-manager.com/

ALLPM - The Project Manager's Homepage http://www.allpm.com

Center for Project Excellence — http://projectexcellence.com

Michael Greer's Project Management Resources — http://www.michaelgreer.com

. &
Requirements e EE \ )

Requirements solicitation, analysis, and management are key elements of a successful and safe
software development process. Many of the costly and critical system failures that are attributed
to software can ultimately be traced back to missing, incorrect, misunderstood, or incompatible
requirements.

Figure 4-7 Sour ces of Softwar e Requirements

Environmental

Where do Software Requirements Come

From?
System Requirements Risk
Analyses
Safety Standards A ‘Company” Requirements

h, N Hazard

Generic MIL.- Analyses
Software STD-
Safety o)

Hardware and
Customer

[nput

Constraints

Software Requirements

NASA-GB-8719.13 73



http://www.pmi.org/
http://www.project-manager.com/
http://www.allpm.com/
http://projectexcellence.com/
http://www.michaelgreer.com/

Software requirements are not delivered by the stork, but flow down from many sources,
including:

e System Requirements (Specification)
e Safety and Security Standards

e Hazard and Risk Analyses

e System Constraints

e Customer Input

e Software Safety “Best Practices’

Analyses described in Chapter 6 describe methods for assuring that all these requirements,
especially safety requirements, are in the software specification (requirements document).

Most people will think to look for requirements among the system specification, safety
standards, and the potentia hazards or risks. What may be overlooked are system
constraints, such as activities the hardware must not do or limitations in sensor precision.
These constraints need to be identified and verified as early as possible.  When
constraints are found to be more limiting as the system is built (such as motor speed
being less than expected), software will usually be asked to compensate. It is in the
software developer’s best interest to determine what items might constrain the software,
and at least make sure the issues are being tracked.

Another overlooked areais security. With more systems able to access a network, or be

% controlled over one, making sure that only authorized users can affect the system is a
requirement. Command authentication schemes may be necessary for network-controlled
systems. Access to the system may be inadvertent or malicious, but either needs to be
prevented or, in worst case, contained.

Software safety “best practices’ (also sometimes called generic requirements) should also be
considered when deriving the software requirements. Building in error handling, fault or
failure detection and recovery, or having the program terminate in a safe state is an obvious
“best practice.”. Other examples are:

e Notifying controller when automated safety-critical processis executed.
e Requiring hazardous commands to involve multiple, independent steps to execute.

e Requiring hazardous commands or data to differ from non-hazardous commands by
multiple bits.

e Making the current state of al inhibits available to controller (human or executive
program).

e Ensuring unused code cannot cause a hazard if executed.

All requirements must be specified and analyzed to insure completeness (to the extent possible),
clarity, and verifiability of the desired functions and performance. In addition, the software
system must be evaluated to determine if any of it is safety-critical or has safety-critical
characteristics. Top-down analyses, such as Software Fault Tree Analysis, are often used to
identify safety-critical software.  Any safety-critical characteristics found during the
requirements analyses should be written into the software and system requirements.

NASA-GB-8719.13 74



Requirements must be managed. They must be traced all the way through the development
process into the final test cases. The process of requirements management is described in
Section 6.4.

Once the requirements are known, it is possible to create the system and acceptance test plans.
Even if the plans are not completed at this stage (depending on the lifecycle chosen), beginning
the process may help identify ambiguous or confusing requirements. In addition, special safety
tests may need to be conducted as part of the safety verification process. These can be separate
tests or be included as one of the system tests.

Chapter 6 discusses requirements development and analysis in more detail.

i
i

l

4.3.3 Design

The process of design provides the structure for converting the requirements into the final code.
Where the requirements state what must be done, the design provides how it will be done. Many
requirements may be implemented in multiple ways. Design selects just one approach.

The process for designing software for safety-critical systems includes:

= |dentify design features and methods. The design process identifies design features
and methods (object/class choice, data hiding, functional distribution, etc.), including
safety features (e.g., inhibits, traps, interlocks, and assertions) that will be used
throughout the software to implement the software requirements.

= Allocate all software requirements to the software design. Each requirement is
implemented in a portion of the design, though design features may include more than
one requirement.

= |dentify safety-critical computer software components. Any component of the
software that implements a safety-critical requirement is flagged as safety-critical.

= Perform design analyses to assure feasibility and functionality. Analyses should be
performed as early as possible to verify that the design can meet its requirements.

= Perform a safety analysis of the design. Safety analyses identify potential hazards.
Bottom-up analyses, such as Software Failure Modes and Effects Analysis, are often
used. They may be combined with top-down analyses for a thorough look at the software
system. Each safety-critical component is analyzed to verify that it does not cause or
contribute to a hazard. All components must be reviewed to verify that a non-critical
component cannot affect safety-critical components.  Data, sequencing, timing
constraints, and other means of influencing safety-critical components should not be
overlooked.

= Develop and review software integration test plans; update system and acceptance
test plans. Integration testing deals with how the software components will be
incorporated into the final software system and what will be tested at each integration
step. When developing these plans, it is important to think about how the safety features
can be tested. Some may be able to be verified at ahigh level (system testing), othersat a
low level (unit testing), and some during a particular stage of the integration.

NASA-GB-8719.13 75



The Design phase may be divided into architectural and detailed design phases. Architectural
design is the high level design, where many components are undeveloped black boxes. The
Detailed Design phase fillsin the blanks. The level of analysis possible will vary with the details
available. Some analyses can be started early and then updated as more detail is added. Others
cannot begin until the design is nearly complete.

During Design, the operating system and development language are usually chosen. Tools such
as compilers and editors are chosen. These decisions can have a significant impact on the safety
of the software. Sections 11.1 and 11.2 discuss issues to consider when selecting these elements
in a safety-critical system.

Chapter 7 discusses design development and analysis in more detail.

4.3.4 Implementation =

Implementation (coding) is the proCéss of taking the design and trandating it into a specific
progranmming language. For a detailed design, the act of implementation is usualy very
straightforward. When working from a higher-level design, implementation will involve non-
structured design steps, often performed in the mind of the programmer. Leaving key design
decisions to a lower-level programmer is not recommended for safety-critical software. Safety-
critical components must be well designed before being created in code.

It is during software implementation that software controls of safety hazards are actually
implemented. All the requirements should have been passed down through the design(s) to the
coding level. Managers and software designers must communicate all issues relating to the
program and components they assign to programmers. Safety-critical designs and coding
assignments should be clearly identified. Programmers must recognize not only the explicit
safety-related design elements but should also be cognizant of the types of errors that can be
introduced into non-safety-critical code that can compromise safety controls. Coding checklists
should be provided to aert for these common errors.

Unit level testing begins during the software implementation phase. Each unit is tested
individually to verify correct functionality. The amount of unit testing is one of the negotiable
elements in a safety program. Remember, however, that units often cannot be thoroughly tested
during integration because individual component level inputs and outputs are no longer
accessible. Unit level testing can identify implementation problems that require changes to the
software. For these reasons, unit level testing must be mostly completed prior to software
integration.

Chapter 8 discusses implementation and code analysisin more detail.

435 Testing

Testing is the operational execution of a software component in area or simulated environment.
Testing serves several purposes. to find defects, to validate the system or an element of the
system, and to verify functionality, performance, and safety requirements. The focus of testing is
often on the verification and validation aspects. However, defect detection is probably the most
important aspect of testing. While you cannot test quality into the software, you can certainly
work to remove as many defects as possible.

NASA-GB-8719.13 76



Various types of testing can be done. Unit testing exercises individual components in isolation.
Integration testing occurs while the system is being assembled and focuses on interface
verification and component interaction. System testing comprises a range of tests that are
performed when the software is completely integrated. Functionality, performance, load, stress,
safety, and acceptance testing are just afew of the kinds of system tests.

Some basic principles of testing are:

..
Lo,
e,

Fad

%

All tests should be traceable to the requirements and all requirements should be tested.

Tests should be planned before testing begins. Test planning can occur as soon as the
relevant stage has been completed. System test planning can start when the requirements
document is complete.

The “80/20” principle applies to software testing. In general, 80 percent of errors can be
traced back to 20 percent of the components. Anything you can do ahead of time to
identify components likely to fall in that 20 percent (e.g. high risk, complex, many
interfaces, demanding timing constraints) will help focus the testing effort for better
results.

Start small and then integrate into larger system. Finding defects deep in the code is
difficult to do at the system level. Such defects are easier to uncover at the unit level.

You can’t test everything. Exhaustive testing cannot be done except for the most trivial
of systems. However, a well-planned testing effort can test all parts of the system.
Missing logic paths or branches may mean missing important defects, so test coverage
should be determined.

Testing by an independent party is most effective. It is hard for developers to see their
own bugs. While unit tests are usually written and run by the developer, it is a good idea
to have a fellow team member review the tests. A separate testing group will usually
perform the other tests. An independent viewpoint helps find defects, which is the goal
of testing.

Scheduling testing phases is aways an art, and depends on the expected quality of the
software product. Relatively defect free software passes through testing within a minimal
time frame. An inordinate amount of resources can be expended testing buggy software.
Previous history, either of the development team or similar projects, can help determine how
long testing will take. Some methods (such as error seeding and Halstead's defect metric)
exist for estimating defect density (number of defects per unit of code) when historical
information is not available.

Chapter 9 discusses testing and test analysis in more detail.

4.3.6 Productsfrom the Development Process % & gy

9

A collection of products will be produced as a result of the software development
process. Products include plans, diagrams, reports, procedures, code, and other items.
The exact complement of products will be determined during the tailoring process early
in the project. Tailoring will not only select the products to be produced, but the level of
detail that must be contained in the document or other artifacts. The size and criticality
of the software project will determine what documents need to be created. For smaller

NASA-GB-8719.13 77



projects, many of the documents can be combined, or the software sections can be part of
a system-wide document.

Documentation is quite often the last thing on the software developer’s mind. On many
s . projects, the documentation follows the completion of the code instead of preceding it.
224 On others, the documents are produced and then promptly ignored. These management
problems need to be addressed. Having a tailored document set is a start. Making sure

that usability is a prime factor within the documents will also help.
Products that may be created during the software devel opment process include:
e Requirements, including specifications, traceability matrices, and use case diagrams.

e Design, usuadly including a written document, but also diagrams (such as UML) and
notes. It isimportant to document why a particular approach was taken, to guard against
problems if the designer leaves, new requirements force design changes, or if
maintenance or upgrades lead to a change many years down the road.

e Code. Well commented source code, as well as any files required to build the system.

e Milestone Reviews. Many projects have major reviews at predefined milestones. One
beneficial outcome is making sure required documentation is completed by the review.
The reviews also allow others from different disciplines within the team to see what is
being considered. In addition, outside experts may also be present to point out problems
or suggest areas for further work.

e Inspection Reportsfrom formal inspections.

e Analyses Reports from various development and safety analyses performed. Analyses
are performed by the software developer, software assurance engineer, and software
safety engineer throughout the development process. The following describes some of
the analyses that may be performed:

o Software Requirements Analysis verifies that all requirements for the software
were properly flowed down, and that they are correct, consistent, complete,
unambiguous, and verifiable.

o Design Analyses look at feasibility, timing, interfaces, interdependence of
components, and other areas of concern. Chapter 7 describes many of the
analyses performed at this stage of development.

0 Code Analysis verifies that the coded program correctly implements the verified
design and does not violate safety requirements. Traceability from the code back
to the requirements will be verified by analysis.

0 Test Analysis includes two types of analyses. 1) anayses before the fact to
ensure validity of the tests, and 2) analyses of the test results.

e Plans. Some plansthat will be developed for all safety-critical systems are:

0 System Safety Plan. This plan should include software as a subsystem and
identify tasks associated with developing and assuring the safety-critical software.

o Software Concepts Document. This document identifies technically challenging
areas and any safety-critical processes.

NASA-GB-8719.13 78



4.3.7

o Software Management Plan. This plan documents what management processes
will be used to oversee the software development. Items to be included are work
breakdown structure, budget, schedule, and resource allocation. Coordination of
development with systems or software safety tasks should also be addressed here.
How requirements, especialy safety-critical requirements, will be managed may
be addressed here or in the Software Development Plan.

o Software Configuration Management Plan. All software products, which
includes far more than just code, must be configuration managed. Old filesin a
software build are a notorious problem, as are lost updates and other problems
with changed files. This plan specifies what will be under configuration
management (CM), what CM system will be used, and the process for moving an
item into or out of the CM system.

o Software Development Plan. This plan defines the process and activities used
by the developers in the creation of the software. Lifecycle, methodology, use of
prototypes, products to be produced, integration strategy, reviews to perform, and
baselines or increment descriptions are some of the items to include. The required
support environment for development or integration is also described in this plan.

o Software Security Plan. The plan addresses the security of safety-critical
software as well as other security issues.

o Software Assurance Plan. Also called a Software Quality Assurance Plan. This
plan describes how the software products will be assured and what the Software
Assurance engineer’s tasks will be. Areas to address include support to software
safety, verification of software safety requirements, and safety and software
assurance engineer participation in software reviews and inspections.

Management Reports, such aswork breakdown structure, schedule, or budget.

Softwar e Assurance Records, including process audit reports, document review notes,
and Functional Configuration and Physical Configuration Audit reports.

Test Verification Reports detailing the results of testing (unit, integration, System,
acceptance, or safety).

Problem or Anomaly Reports describing unexpected behavior of the software or
system, the analysis performed to determine the cause, and what was done to correct the
problem. Projects usually have a formal system for problem reports after the software
has reached a level of maturity. However, defects or problems that occur before this time
are also important. Tracking these problems, or at least reviewing them to make sure no
major defect slips through, is recommended in safety-critical systems.

Metrics, such as number of defects found by an inspection or percent of design complete.

Other Documents as negotiated during the tailoring process.

Managing Object-Oriented Projects %

While most of the tasks of project management are divorced from the type of software
development, object-oriented (OO) software development does add some twists to the process.
Some of the differences are listed below.

NASA-GB-8719.13 79



Lifecycle. OO software development is recursive and parallel in nature. The definition of
systems, subsystems, and objects can occur in paralel, rather than sequentially. This does not
map well to the waterfall lifecycle model. Also, a common idea in OO development is a short
interactive cycle of “analyze, design, implement, and test” until the software is complete. This
type of development fits well with lifecycles such as the spiral, incremental development, and
evolutionary devel opment.

Requirements. Some OO methodologies use iterative methods by which the system's
requirements are discovered, captured, documented, and communicated. Each “turn around the
spiral,” for instance, may start with an update to the requirements based on what was learned in
the last iteration. It should be noted, however, that many OOD methods are non-iterative as well.

Planning. A significant difference between object-oriented and traditional software projects is
the regularly repeated delivery (through the point of actual coding and testing) of a portion of the
end-product's functionality. Plans for object-oriented projects may have to reflect multiple
iterations, with the quantity varying based on size and complexity of the project. A suggested
limitation to the number of iterations per lifecycle phaseisthree. [106]

Reusability. As one of the principal goals of OO software development is reusability, project
managers may find it useful to identify a separate timeline for identifying reusable components.
Furthermore, project plans for object-oriented projects may be treated as a reusable set of
artifacts, which should have schedule and staffing templates that can be adapted to many
different projects.

Estimating. Estimating schedules is often difficult, especialy if your organization or project
manager has little experience with OO projects. One of the aspects to consider when defining
the schedule is the number of iterations an object will require. Simple objects can be designed,
implemented, and tested in one iteration. Complex and critical objects will require several
iterationsto fully define them.

Risk Management. The iterative style of object-oriented projects mitigates severa risks, such
as clarifying user requirements up front and pre-testing project feasibility. Regardless, a
proactive approach to risk management needs to be practiced. Risks of using OO include new
technology, new tools, tools that have many defects, and software devel oper inexperience.

Measuring Progress. Appropriate measures may include the number of key classes, support
classes, and classes per subsystem; number of interface operations, message sends, and nesting
levels; and classes per developer. A particularly useful measure illustrative of object-oriented
engineering is the number of classes reused in a project, determined by counting classes at the
outset of a project and at the end.

Team roles. For an object-oriented software development project team, new professional roles
may be necessary. Some roles to consider are librarians to manage class libraries, library-class
progranmers (at the foundation and application levels), application programmers and
prototypers, requirements analysts, implementation designers, modeling experts, and gurus.

Tools. Project management tools (software or “paper and pencil”) are geared toward the
waterfall lifecycle. It ismuch harder to represent an alternative lifecycle within these tools. One
way to deal with thisisto plan multiple iterations of the same set of activities. As each iteration
occurs, less and less time is required for the iteration. This adds an order of magnitude of
complexity to managing an OO project from a project management tool perspective. For alarge

NASA-GB-8719.13 80



project, managing this additional complexity can be a significant cost. Because project
management tools have not yet evolved to meet the requirements of OO project management;
project managers need to be careful to not let the limitations of the project management tool
control the actual management of the project.

Project Deliverables. OO project design documentation will typically include:
e Object and class specifications.

"

|
%@ ¢ Reusablecomponent information (including past-use and testing information).

e Class hierarchy and interaction information.
e Classinterface information (what is visible outside the class).

e Use-casesand UML diagrams. i

4.3.8 Software Development Capability Frameworks

Several standardized frameworks exist that measure a software development organization’s
process maturity. 1SO 9000 and the Software Capability Maturity Model (SW-CMM) are two of
the best known. The concept behind process maturity measurement is that if you follow a well-
structured process in developing your software, that software is more likely to be a quality
product. While this is not always true, such process measurements can provide a way to
compare development organizations (such as for contracts). They also provide a way for an
individual organization to measure improvements within software development.

While process maturity is important, the actual practices the software developer follows are also
essential. Having a well defined but inadequate process may slip by the assessors or auditors,
but it is unlikely to produce good software. It also does no good to have a process that no one
follows because it is too unwieldy, too inflexible, or designed for projects much larger or smaller
than the current one.

Frameworks fall into severa types:

e Standards and Guidelines used for contractual purposes. Standards and Guidelines
can be tailored and are often used as recommendations of good practices, if not imposed
as standards.

0 MIL-STD-498

o 1SO 9000

0 DO-178B (aviation safety)
o |EEE 1228

e Process Improvement Models and Internal Appraisal Methods. These frameworks
define characteristics of good process, but not specific implementations. They provide a
roadmap from the current process to the improved process.

o CMM family (SW-CMM, CMMI (integrated SW/Systems Engineering), €tc.)

0 Systems Engineering Capability Assessment Model (SECAM), International
Council on Systems Engineering

NASA-GB-8719.13 81



e Contractor Selection Vehicles. Assessment methods that can be used by an outsider
(e.g. software acquirer) to evaluate a companies software development process. Aidsin
selection of software development company, minimizes risk.

0 CMM-Based Appraisal for Internal Process Improvement (CBA 1PI), associated
with the SW-CMM

Software Capability Evaluation, an external SW-CMM evaluation

Software Development Capability Evaluation (SDCE), US Air Force

Standard CMMI Assessment Method for Process Improvement (SCAMPI)

ISO/IEC TR 15504 (originally Software Process Improvement Capability

dEtermination, or SPICE). Technical report describing assessment method.

e Quality Awards. Awards given to companies with a high focus on quality. Strict
selection criteria.

0 Malcolm Baldrige National Quality Award
0 European Quality Award
e Software Engineering Lifecycle Models. Standards that specify elements of a software
development process. Focused more on the “how” of software creation than process
improvement models.
0 MIL-STD-498
o |EEE 12207
e SystemsEngineering Models. Software isamajor element of a system, but it is not the
whole system. Many problems develop when the pieces (hardware, software, operators,
etc.) do not fit together will.
0 MIL-STD-499B (Systems Engineering)
0 Systems Engineering CMM (SE-CMM) and CMMI (integrated software and
systems CMM)
o SECAM
o |EEE 1220
0 Systems Engineering Capability Model (EIA/IS 731)
Understanding how these frameworks fit together is a complicated issue. The Software
Productivity Consortium maintains a website dedicated to showing the relationships among the

guagmire of various frameworks (http://www.software.org/quagmire). The interrelationships are
shown in Figure 4-8, reprinted with permission from the Software Productivity Consortium.

The Capability Maturity Model for Software (SW-CMM) is the most common standard used to
measure a software development organization’s software process capabilities. The SW-CMM
was developed by the Software Engineering Institute at Carnegie Mellon University. Their work
on the SW-CMM was initiated by the US Government’s need to solve a basic problem of
software acquisition -- “Why do all these software projects not work, come in late, and/or cost
too much?’

O O O O

NASA-GB-8719.13 82


http://www.software.org/quagmire

Figure 4-8 Development Framewor ks Quagmire

The Frameworks Quagmire

People CMM

DOD-

SDCE 4--- SCE g PSP DOD-
N/ S~. A PP y’ DOD- | STD- STD-
SW-CMM -___ STD- | 2167A 1 5168
cpyos, o TSP 7935A
SCAMPI 4
ISO/IEC
15504 J-STD MIL-STD-
ISO -- » 016 498
15939* ,
S v SSE-| '\ RTCA |
PSM \ CMM| %, DO-178B |
\ R S
SiX A \\ ‘\\ g
Sigma SE-CMM \\ | ','

N \
2 \ Baldrige | S, % ¢
l' S
4

series
Q9000 &«

~
~
~
~

B

EIA/IS

‘ 1220 Q& MIL-STD
632

499B* TL9000

EIA 632«

ltalic = obsolete

: integrating
—> supersedes

— based on
---- uses/references

#V2 also based on many others

*not released **based on CBA IPI, SAM, and others
See www.software.org/quagmire

Copyright ©2001, Software Productivity Consortium NFP, Inc. All rights reserved.

The Software CMM describes the principles and practices underlying software process maturity.
It is intended to help software organizations understand where they are now, and to improve the
maturity of their software processes. The SW-CMM provides an evolutionary path from ad hoc,

chaotic processes to mature, disciplined software processes.
The SW-CMM is organized into five maturity levels:

1. Initial. The software process is characterized as ad hoc, and occasionally even chaotic.
Few processes are defined, and success depends on individual effort and heroics.
Software products may be quite good (especially with a knowledgeabl e team), but quality

will vary between teams or products.

2. Repeatable. Basic project management processes are established to track cost, schedule,
and functionality. The necessary processes are in place to repeat earlier successes on

projects with similar applications.

3. Defined. The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software process for the
organization. All projects use an approved, tailored version of the organization's standard

software process for developing and maintaining software.

NASA-GB-8719.13 83

(orocoes arde

Process Stds
Quality Stds
Maturity or
Capability
Models
Appraisal
methods
Guidelines

N/

[0 1SO 9000 £=223] ISO/IEC

12207

» ISO/IEC 15288*

boehmquag5: 29 May 2001
SOFTWARE




4. Managed. Detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and controlled.

5. Optimizing. Continuous process improvement is enabled by quantitative feedback from
the process and from piloting innovative ideas and technol ogies.

Figure 4-9 Softwar e Capability Maturity M odel

Continuously ORDER
Improving
Process OPTIMIZING
ﬂ Level 5
Predictable
Process MANAGED
ﬂ Level 4
Standard
Consistent DEFINED
Drnr‘ncﬂ Level 3
Disciplined
Process REPEATABLE
Level 2
INITIAL
Level 1 CHAOS

For each level (except Level 1), key process areas specify where an organization should focus to
improve its software process.

The key process areas (KPA’'s) at Level 2 focus on establishing basic project management
controls. They are Requirements Management, Software Project Planning, Software Project
Tracking and Oversight, Software Subcontract Management, Software Quality Assurance, and
Software Configuration Management.

Level 3 addresses both project and organizational issues, as the organization establishes an
infrastructure that institutionalizes effective software engineering and management processes
across al projects. The KPA’s are Organization Process Focus, Organization Process Definition,
Training Program, Integrated Software Management, Software Product Engineering, Inter-group
Coordination, and Peer Reviews.

Level 4 focuses on establishing a quantitative understanding of both the software process and the
software work products being built. The KPA’s are Quantitative Process Management and
Software Quality Management.

The KPA’'s at Level 5 cover the issues that both the organization and the projects must address to
implement continual, measurable software process improvement. They are Defect Prevention,
Technology Change Management, and Process Change Management.

NASA-GB-8719.13 84



The SW-CMM is an especially important framework. Within NASA, many contracts are now
specifying that the software development company must be CMM level 3. NASA itsef is
moving toward implementing a process improvement strategy that will help the Agency achieve
a least the equivalent of CMM level 3. Other organizations are mandating some level of SW-
CMM or CMMI (Integrated Capability Maturity Model), which merges the SW-CMM with the
Systems CMM.

Issues with using SW-CMM or any other process framework to evaluate contractors for software

development are discussed in section 12.2.1.
=l
439 Metrics SPa

A measurement is the empirical, objective assignment of a value to a specific attribute. For
example, the number of days to complete a task is a measurement. A metric is a series of
measurements that yield insight into the state of processes or products, and that drives
appropriate action.

Metrics are used to understand a project’s status, a piece of software, or the process of creating
the software, among other things. Metrics can be defined to measure project status and product
quality. They provide insight and patterns that allow the project manager to better manage the
process. They can show when the project is getting out of hand, as well as when everything is
going smoothly.

The first step in good metrics collection is understanding the goal. Do you want to reduce risk
by maintaining the software complexity below a specific threshold? Do you want to keep the
development schedule to within 10% of the desired schedule? Determining the goals will
determine what metrics to use.

A metrics plan should be created to document the goals and associated metrics. The plan should
also detail how the metrics will be used, and what decisions might depend on the metrics.
Having a clear purpose will help reduce the number of measurements collected that are not
actually used.

Collecting metrics is not a “free” activity. In general, collection should be as unobtrusive as
possible and directed toward achieving your goal. Too much data is as problematic as too little
data. [107]

Specific data snapshots have curiosity value, but the real power comes from collecting and
analyzing metrics over time. The goa of analysisisthe identification of patterns. Patternsin the
software development for a specific project may point to the need for more training, more
developers, or more time for a particular phase. Patterns outside a specific project may point to
organizational factors that influence projects, for better or for worse.

Once you have analyzed the metric, an action needs to be taken. The action needs to be visible
and congruent, and it must close the feedback loop to the suppliers of the information. Consider
an OO project where many of the developers are new to the OO world. The metrics may show
that the software design is taking more time than expected. They may also show that the
developers with the least OO experience are the slowest. From this pattern, an action must be
generated. Perhaps OO gurus are hired (or moved from another project) to help the developers
who are new to come up to speed.

NASA-GB-8719.13 85



For a metrics program to succeed, it is necessary to establish trust, value, communication, and
understanding. Those providing the measurements must agree that the metrics have value. Asa
worst-case example, team members who do not understand why the measurements are being
collected and who feel that the data collection is a waste of time may not accurately collect the
measurements, or may even go so far asto “fake” them after the fact.

As a project continues, the metrics plan should be reviewed. [108] Are the metrics used in
decision making? Metrics that are never looked at or that never result in an action should be
discontinued. Are the metrics providing enough information? If not, perhaps additional
measurements need to be added (or new measurements defined to replace those that are currently
collected but not used).

What metrics to measure are determined by what you want to accomplish. The project
management resources listed in section 4.3.1 contain pointers to more information on metrics.
Many of the software engineering websites listed in Appendix A.2 also contain information on
project and software development metrics.

4.4  Tailoring your process @ % &

Tailoring the safety effort was discussed in section 3.2. This section looks at tailoring the
software development process. The goa is to do all the necessary work, but only what is
necessary.

There are quite a few elements of software development that can be tailored. In some cases,
tailoring will involve selecting the choice that best suits the project. In others, items will be
added to or subtracted from a particular process.

Before beginning a tailoring exercise, the software developer must consider the scope of the
software under development. The larger, more complex, more critical, and riskier the software
is, the more thorough the devel opment process must be.

Factors that affect the tailoring include:
e Safety and mission criticality.
e Size and complexity.
e Required standards, such as |EEE 12207.
e Cost and schedulerisks.
e Innovation and technical risks.

Depending on the software development process chosen, you may need to tailor down (from
“heavyweight” processes) or tailor up (from “lightweight” or agile processes). Processes include
such items as documentation required (or suggested), inspections or reviews, tests to be
conducted, and methods of handling change.

“Development process’ and “amount of documentation” are often considered synonymous.
While not strictly true, the development process chosen will often determine the amount of
documentation required and the level of detail necessary.

Lightweight or agile processes, such as Extreme Programming, the Crystal family, Adaptive
Software Development, and SCRUM, were developed partly because the heavyweight processes

NASA-GB-8719.13 86



did not fit in an environment with short time-to-market or constantly changing requirements.
Within each methodology are valuable ideas. However, there is a tendency among some
developers to use these processes as an excuse for ad hoc programming and no documentation.
Because of their newness and low rigor, this guidebook does not recommend using agile
processes for the safety-critical elements of your software.

Other issues to consider when tailoring the software development process include:

e Reviews. What reviews (requirements, design, code, or other ) and types of reviews
(formal inspections, code walkthroughs, informal design reviews, etc) will be conducted?
Will the reviews be formal, informal, or a combination? What products are subject to
wider review (outside of the development team)?

e Design methodology (structured, OO, FM, or other). What is the history of the project
(e.g. brand new or drawing on a previous project)? Will components be reused from
other projects? If so, how were they developed? Will COTS software be included, and
does it have any impact on the design methodology? What is the expertise of the team
members? Are resources available to train the team in a new methodology? Is the team
comfortable with, or doesit have significant experience with, a particular methodology?

e Lifecycle. What lifecycle best fitsthe project? Doesthe lifecycle need to be modified?

e Testing. When should testing start? Who will do the testing? What specific tests need
to be conducted? Many possible tests are listed in Chapter 9.

e Tools. What tools should be used to aid the project? Will CASE (Computer Aided
Software Engineering) tools be used? Simulators? Automatic code generators?

e Organization. Are the team members assigned to tasks according to their expertise? Do
senior members of the team handle flowdown of requirements and safety issues? What
should be done to maintain a good working relationship among the team members?

All of the above issues combine to create a tailored process. Each element must work well for
the specific aspect for which it was chosen (client, development organization, schedule,
technology) and work well with each of the other elements of development (the tools, the
organization, lifecycle, method).

“Process Tailoring for Software Project Plans’ [29] provides more detail on a tailoring method
that meets the Software Capability Maturity Model (SW-CMM) Level 3 process tailoring and
project planning activities.

45 Software Configuration Management % & g

Software Configuration Management (SCM) is often considered a part of project management
and not software development or testing. It is avital part of the development process, however,
that should not be overlooked. It isvery unlikely that you can produce “safe” software without
it. You certainly cannot convince the quality, assurance, or safety personnel that the software is
safeif you have not implemented SCM.

SCM is much more than just version control of source code. It is a process to maintain and
monitor the software development process aswell. SCM includes:

NASA-GB-8719.13 87



e Identification. Identifying the structure and kinds of components, making them unique
and accessible in some form by giving each component a name, version identification,
and configuration identification.

e Contral. Controlling the release of a product and changes to it throughout the lifecycle by
having controls in place that ensure consistent software via the creation of a baseline
product.

e Status Accounting. Recording and reporting the status of components and change
requests, and gathering vital statistics about components in the product.

e Audit and review. Validating the completeness of a product and maintaining consistency
among the components by ensuring that components are in an appropriate state
throughout the entire project life cycle and that the product is awell defined collection of
components.

Be aware of potential problems if you split control of software configuration management (e.g.
having software documents is maintained by a project or company configuration management
group, and the source code version control handled by the programmers). It may be difficult to
keep the documents (e.g. design) synchronized with the code. Someone with configuration
management experience should be “in charge” of the source code, to enforce change control and
comprehensive documentation of changes.

Software Configuration Management is usually performed using a tool (program). However, a
file or folder should be maintained, to collect information that is not in electronic form. This
information could include the design notes scribbled on a napkin or a fax that only exists in
hardcopy. The point is to collect al pertinent information in one place. It is a good idea to
catalog al the hardcopy information in the electronic SCM system, so that it can be found again
when needed.

45.1 Change Control

Change control is an important part of developing safe software. Arbitrary changes should be
avoided. Once a piece of software has reached a level of maturity, it should be subject to a
formal change control process. What that level of maturity is will vary by group. It could be
when the component compiles, when the CSCI (which may contain several components) is
completed, or when the whole program is at its first baseline.

Formal change control usually includes a form to request a change (Software Change Request,
Engineering Change Request, or other). The form isfilled out by the developer, the customer, or
someone else involved in the project. The form should include both what should be changed and
why. A Change Control Board (CCB), also called an Engineering Review Board, and by other
names, is convened to evauate the change request. The board consists of several people,
including a representative from the software quality assurance group. When safety is an issue,
someone from safety or risk management should also be included on the board. The requestor
may be at the CCB meeting, or the board may just evaluate the submitted form. The board may
approve the change, reject it, combine it with other requests, or suggest a modification.

Another way software changes occur is through a problem reporting/corrective action (PRACA)
process. A PRACA isissued during the operation of the software, usually during testing. If the
software is not operating as it should, a PRACA is written. The problem report goes to the

NASA-GB-8719.13 88



developers, who must find out what the problem is. If the fix to the problem involves a change
to the software, it must go through the CCB.

All the paperwork from the change control process should be archived in the configuration
management system. This includes software requests, PRACA’s, notes from CCB meetings, and
any other pertinent information. The configuration management system provides a repository for
storing this data for later retrieval.

In addition, a cross-index should be created between software changes, requirements, code
component versions, and tests. This could be a database, a spreadsheet, or some other format.
Being able to know what components a software change impacts determines what tests need to
be run. The change may aso indicate that a requirement changed, and that the software
requirements document needs to be updated.

45.2 Versioning

Versioning is the part of software configuration management that most people think of first. It
involves archiving the source code, keeping previous versions when a new version is added to
the SCM tool. Sometimes a complete previous version is kept; other tools use a “delta’
(difference) from the previous version to the new version.

Each component will have a version number associated with it. A “release” will consist of all
the components and their associated version numbers. Some SCM tools allow branching, where
a release will go down two or more paths (perhaps a “freeware” version and a commercial
enhanced version, for example). Versioning keeps the changes straight and allows “roll back” to
previous versions if abug isfound down the road.

Most SCM tools aso have a check-in/check-out policy to prevent changes by multiple
programmers on the same component. Some will allow only one programmer to work on the
component at one time. Other SCM tools will do a“merge” when multiple developers check in
the same component.

One weakness of many SCM tools is that the programmer can get away without good
documentation on what changes were made and why. The tool keeps the changes, but the
reasoning behind it usually is added as a comment upon check-in of the component. (Some tools
force the developer to say something, but not necessarily something useful.) At a minimum,
when a component is changed the following should be done:

e Clearly identify the area of code that is changed (within the source code). Use a
comment with some character string (such as *****) that is easy to spot when flipping
through the source code. Identify the end of the changed area the same way.

e Have a header at the top of the atered code that includes why the change occurred
(change request, problem report, or other reason), what was changed (in English, not
code-ese), when it was changed, and by whom.

¢ Include the what/when/why/who information in the component check-in comment. This
information can be extracted for status accounting (see below).

NASA-GB-8719.13 89



453 StatusAccounting

According to MIL-STD-482A, configuration status accounting is the “recording and reporting of
the information that is needed to manage configuration effectively, including a listing of the
approved configuration identification, the status of proposed changes to configuration, and the
implementation status of approved changes.”

Status accounting answers the question "how complete is the software?' Decide what stages of
incompl eteness, correctness, and obsoleteness need to be known about each item and to what
audience, give each stage a status name (e.g. draft, under review, ready for integration/delivery,
operational, superseded), and collect the status of each item. Collate the information into a
human-understandable format.

Part of status accounting is the ability to create reports that show the status of each document
(version, whether it is checked-out, when it was last updated, who made the changes, and what
was changed). The status of change requests and problem reports are aso included in status
accounting.

While the status information can be compiled by hand, it can be a tedious process. Many tools
exist that provide an integrated configuration management system for all kinds of documents,
including source code, and that can generate the status reports when requested. Some of these
tools are free or low-priced.

The configuration management system needs to be audited occasionally. The audit can be a
formal affair, or an informal look at the system by someone other than the configuration
manager, such as a software assurance engineer or a software quality assurance engineer. The
purpose of the audit is to verify that what the status accounting says about the project is actually
true, and to look for holesin the process that can lead to problems in the future.

45.4 Defect Tracking

Defect (bug) tracking is sometimes handled outside of SCM. However, integrating defect
tracking with the SCM process facilitates control of information. (When it is the middle of the
night and you're trying to find information on a bug you thought you had killed a week ago,
you'll appreciate awell-ordered system.)

Defect tracking has severa purposes. One isto record all the defects for future reference. This
can be simply for historical purposes, or to have something to reference to compare defects
found before. Having defect information from previous projects can be a big plus when
debugging the next project.

Recording the defects allows metrics to be determined. One of the easiest ways to judge whether
a program is ready for serious safety testing is to measure its defect density—the number of
defects per line of code. If testing has found the majority of defects, then the softwareislikely to
be stable. Safety testing then puts software through its paces, usualy by generating error
conditions and verifying graceful behavior by the program.

To determine the defects per lines of code, you need to know two pieces of information, both of
which can be extracted from a good configuration management system: lines of code and number
of defects. You also need a “history” from other projects on defects/lines of code (from your
projects, or general industry numbers). If the average defects/thousand lines of code (KLOC) is
6, and the software is 10,000 lines of code (LOC), then about 60 defects exist in the software. |1f

NASA-GB-8719.13 90



testing has only found 10, a lot more tests need to be done. The software in the example has a
high risk, because many more defects linger in the code.

4.5.5

One question in defect tracking is whether to use bugs found during unit testing by
developers. 1t would be best if those defects were documented. The developer can see if
he has a tendency to a certain kind of bug. Other programmers can learn from the
experience of the developer and avoid similar defects.

Metricsfrom your SCM system %

Monitoring the various elements of your software development project can show when the
project is getting into trouble (cost, schedule, cannot meet delivery date) and can aid in planning
future projects. Itemsto track, if possible, are:

»*

»*

»*

»*

»*

Lines of code (LOC)* for the project (total).
LOC per component, average component size, distribution of sizes.
Complexity per component, average complexity, distribution of complexities

Estimated and actual time to compl ete devel opment for a change request or problem
report.

Estimated and actual time to code a component.

Estimated and actual time to unit test a component.

Estimated and actual time for integration tests (black box) and system tests.

Number of defects found per test type. Defects can be categorized for further breakdown.

From these raw inputs, other determinations can be made. For example:

>
»*

»*

4.5.6

Number of defects per LOC for the team or organization.
How good estimations are for completion of a software change.

How much time it takes to unit testing. Correlated with the defects/L OC to see if more or
less time should be spent on unit testing.

How much time to estimate for the various development phases (design, coding, testing)
for the next project.

How much time it will take to update the software for a future change request.

Whereto put extraresourcesin testing. If the mgjority of the defects are found in system
testing, more time in unit and integration testing may find the defects earlier.

If there was a software devel opment process change, the numbers may show how much
of an improvement the change made.

What to includein the SCM system

Documents and plans (specifications, formal design documents, verification matrix,
presentation packages).

* Function points can be substituted for Lines of Code, or both numbers can be collected.

NASA-GB-8719.13 91



4.6

Design information (data flow charts, UML or OOD products, inputs to automatic code
generation programs, and any miscellaneous related information).

Interface information (Interface Control Documents, flow charts, message formats, data
formats).

Source code.

Test cases/scenarios.

Test scripts, for manual or automated testing.
Test reports.

Defect lists (or defect database).

Change requests.

Problem reports/corrective actions

Information for metrics, such as lines of code, number of defects, estimated and actual
start or completion dates, and estimated/actual time to complete a change.

Good Programming Practices for Safety

fid

A good software development process provides a solid foundation for creating safety-critical
software. However, there are many practices that can be incorporated into the design or
implementation that also increase the safety of the software. Some of these are listed below.
The practices come from various sources, which are referenced. In addition, they are
summarized in a checklist in Appendix H.

The following list of good software safety development practices is from “ Solving the Software
Safety Paradox” by Doug Brown [30].

CPU sdf test. If the CPU becomes partially crippled, it is important for the software to
know this. Cosmic Radiation, EMI, electrical discharge, shock, or other effects could
have damaged the CPU. A CPU self-test, usualy run at boot time, can verify correct
operations of the processor. If the test fails, then the CPU is faulty, and the software can
go to a safe state.

Guarding against illegal jumps. Filling ROM or RAM with a known pattern,
particularly a halt or illegal instruction, can prevent the program from operating after it
jumps accidentally to unknown memory. On processors that provide traps for illegal
instructions (or a similar exception mechanism), the trap vector could point to a process
to put the system into a safe state.

ROM tests. Prior to executing the software stored in ROM (EEPROM, Flash disk), it is
important to verify itsintegrity. Thisisusually done at power-up, after the CPU self test,
and before the software is loaded. However, if the system has the ability to alter its own
programming (EEPROMS or flash memory), then the tests should be run periodically.

Watchdog Timers. Usually implemented in hardware, a watchdog timer resets (reboots)
the CPU if it is not “tickled” within a set period of time. Usualy, in a process
implemented as an infinite loop, the watchdog is written to once per loop. In

NASA-GB-8719.13 92



multitasking operating systems, using a watchdog is more difficult. Do NOT use an
interrupt to tickle the watchdog. This defeats the purpose of having one, since the
interrupt could still be working while all the real processes are blocked!

Guard against Variable Corruption. Storing multiple copies of critical variables,
especially on different storage media or physically separate memory, is a ssmple method
for verifying the variables. A comparison is done when the variable is used, using two-
out-of-three voting if they do not agree, or using a default value if no two agree. Also,
critical variables can be grouped, and a CRC used to verify they are not corrupted.

Stack Checks. Checking the stack guards against stack overflow or corruption. By
initializing the stack to a known pattern, a stack monitor function can be used to watch
the amount of available stack space. When the stack margin shrinks to some
predetermined limit, an error processing routine can be called that fixes the problem or
puts the system into a safe state.

Program Calculation Checks. Simple checks can be used to give confidence in the
results from calculations.

“30 Pitfalls for Real-Time Software Developers,” by David B. Stewart [31][32] discusses
problems faced by real-time developers. Of the problems he considers, the following are
especially applicable to safety and reliability:

»*

Delays implemented as empty loops. This can create problems (and timing difficulties)
if the code is run on faster or slower machines, or even if recompiled with a newer,
optimizing compiler.

Interactive and incomplete test programs. Tests should be planned and scripted. This
prevents tests from being missed. Also, functional tests should be run after a change, to
make sure that the software change did not indirectly impact other code.

Reusing code not designed for reuse. If the code was not designed for reuse, it may
have interdependencies with other components. Usually, it will not use abstract data
types (if object-oriented) or have awell-defined interface.

One big loop. A single large loop forces all parts of the software to operate at the same
rate. Thisisusualy not desirable.

No analysis of hardware peculiarities before starting software design. Different
processors have peculiarities that can affect the time a calculation can take, or how long it
takes to access an area of memory, for instance. Understanding the hardware before
designing the software will decrease the number of “gotchas’ at integration time.

Fine-grain optimizing during first implementation. *“Some programmers foresee
anomalies (some are real, some are mythical). An example of a mythical anomaly is that
multiplication takes much longer than addition.”

Too many inter-component dependencies. To maximize software reusability,
components should not depend on each other in a complex way.

Only a single design diagram. “Most software systems are designed such that the entire
system is defined by a single diagram (or, even worse, none!). When designing software,
getting the entire design on paper is essential.”

NASA-GB-8719.13 93



Error detection and handling are an afterthought and implemented through trial
and error. Designinthe error detection and handling mechanisms from the start. Tailor
the effort to the level of the code — do not put it everywhere! Look at critical locations
where data needs to be right or areas where the software or hardware is especialy
vulnerable to bad input or output.

No memory analysis. Check how much memory your system uses. Estimate it from
your design, so that you can adjust the design if the system is bumping up against its
limits. When trying to decide between two different implementations of the same
concept, knowing the memory usage of each will help in making a decision.

Documentation was written after implementation. Write what you need, and use what
you write. Do not make unnecessarily verbose or lengthy documentation, unless
contractually required. It is better to have short documents that the developers will
actualy read and use.

Indiscriminate use of interrupts. Use of interrupts can cause priority inversion in
real-time systems if not implemented carefully. This can lead to timing problems and
the failure to meet necessary deadlines.

No measurements of execution time. “Many programmers who design real-time
systems have no idea of the execution time of any part of their code.”

Bill Wood, in “Software Risk Management for Medical Devices,” Table Il [33], gives a list of
mitigation mechanisms for various possible failures. Some of the practices that are not
duplicated in the lists above are summarized below (and expanded upon):

»*

Check variables for reasonableness before use. If the value is out of range, thereis a
problem — memory corruption, incorrect calculation, hardware problems (if sensor), or
other problem.

Use execution logging, with independent checking, to find software runaway, illegal
functions, or out-of-sequence execution. If the software must follow a known path
through the components, a check log will uncover problems shortly after they occur.

Come-from checks. For safety-critical components, make sure that the correct previous
component called it, and that it was not called accidentally by a malfunctioning
component.

Test for memory leakage. Instrument the code and run it under load and stress tests.
See how the memory usage changes, and check it against the predicted usage.

Use read-backs to check values. When a value is written to memory, the display, or
hardware, another function should read it back and verify that the correct value was
written.

In addition to the suggestions above, consider doing the following to enhance the software

safety:

Use a simulator or ICE (In-circuit Emulator) system for debugging in embedded
systems. These tools allow the programmer/tester to find some subtle problems more
easily. Combined with some of the techniques described above, they can find memory
access problems and trace back to the statement that generated the error.

NASA-GB-8719.13 94



e Reduce complexity. Calculate a complexity metric. Look at components that are very
complex and reduce them if possible. Complexity metrics can be very simple. One way
to calculate McCabe's Cyclomatic Complexity is to add the number of decisions and
subtract one. An“if” isal. A case/switch statement with 3 casesis 2. Add these up and
subtract one. If the complexity isover 10, look at simplifying the routine.

e Design for weak coupling between components (modules, classes, etc.). The more
independent the components are, the fewer undesired side effects there will be later in the
process. “Fixes’ when an error is found in testing may create problems because of
misunderstood dependencies between components.

e Consider the stability of the requirements. If the requirements are likely to change,
design as much flexibility as possible into the system.

e Consider compiler optimization carefully. Debuggers may not work well with
optimized code. It is hard to trace from the source code to the optimized object code.
Optimization may change the way the programmer expected the code to operate
(removing “unused” features that are actually used!).

e Becareful if using multi-threaded programs. Developing multi-threaded programs is
notoriously difficult. Subtle program errors can result from unforeseen interactions
among multiple threads. In addition, these errors can be very hard to reproduce since
they often depend on the non-deterministic behavior of the scheduler and the
environment.

e A dependency graph is avaluable software engineering aid. Given such adiagram, itis
easy to identify what parts of the software can be reused, create a strategy for incremental
testing of components, and develop a method to limit error propagation through the entire
system.

e Follow thetwo person rule. At least two people should be thoroughly familiar with the
design, code, testing and operation of each software component of the system. If one
person leaves the project, someone el se understands what is going on.

e Prohibit program patches. During development, patching a program is a bad idea.
Make the changes in the code and recompile instead. During operations, patching may be
anecessity, but the pitfalls should still be carefully considered.

e Keep Interface Control Documents up to date. Out-of-date information usually leads
to one programmer creating a component or unit that will not interface correctly with
another unit. The problem isn’t found until late in the testing phase, when it is expensive
to fix. Besides keeping the documentation up to date, use an agreed-upon method to
inform everyone of the change.

e Createalist of possible hardware failures that may impact the software, if they are
not spelled out in the software requirements document. Have the hardware and systems
engineers review the list. The software must respond properly to these failures. The list
will be invaluable when testing the error handling capabilities of the software. Having a
list also makes explicit what the software can and cannot handle, and unvoiced
assumptions will usually be discovered asthelist is reviewed.

NASA-GB-8719.13 95



The following programming suggestions are derived from SSP 50038, Computer-Based Control
System Safety Requirements for the International Space Station Program:

Provide separate authorization and separate control functions to initiate a critical or
hazardous function. This includes separate “arm” and “fire” commands for critical
capabilities.

Do not useinput/output portsfor both critical and non-critical functions.

Provide sufficient difference in addresses between critical 1/0 ports and non-critical 1/0
ports, such that a single address bit failure does not allow access to critical functions or
ports.

Make sure all interrupt priorities and responses are defined. All interrupts should be
initialized to areturn, if not used by the software.

Provide for an orderly shutdown (or other acceptable response) upon the detection of
unsafe conditions. The system can revert to a known, predictable, and safe condition
upon detection of an anomaly.

Provide for an orderly system shutdown as the result of a command shutdown, power
interruptions, or other failures. Depending on the hazard, battery (or capacitor) backup
may be required to implement the shutdown when there is a power failure.

Protect against out-of-sequence transmission of safety-critical function messages by
detecting any deviation from the normal sequence of transmission. Revert to a known
safe state when out-of -sequence messages are detected.

Initialize all unused memory locations to a pattern that, if executed as an instruction,
will cause the system to revert to a known safe state.

Hazar dous sequences should not be initiated by a single keyboard entry.

Prevent inadvertent entry into a critical routine. Detect such entry if it occurs, and
revert to aknown safe state.

Don’t use a stop or halt instruction. The CPU should be aways executing, whether
idling or actively processing.

When possible, put safety-critical operational software instructions in nonvolatile
read-only memory.

Don’t use scratch files for storing or transferring safety-critical information between
computers or tasks within a computer.

When safety interlocks are removed or bypassed for a test, the software should verify
the reinstatement of the interlocks at the completion of the testing.

Critical data communicated from one CPU to another should be verified prior to
operational use.

Set a dedicated status flag that is updated between each step of a hazardous operation.
This provides positive feedback of the step within the operation, and confirmation that
the previous steps have been correctly executed.

NASA-GB-8719.13 96



e Verify critical commands prior to transmission, and upon reception. It never hurts to
check twice!

e Makesureall flagsused are unique and single pur pose.

e Put the mgjority of safety-critical decisionsand algorithmsin asingle (or few) software
development component(s).

e Decision logic using data from hardware or other software components should not be
based on values of al ones or all zeros. Use specific binary patterns to reduce the
likelihood of malfunctioning hardware/software satisfying the decision logic.

e Safety-critical components should have only one entry and one exit point.
e Perform reasonableness checks on all safety-critical inputs.

e Perform a status check of critical system elements prior to executing a potentially
hazardous sequence.

e Always initialize the software into a known safe state. This implies making sure all
variables are set to an initial value, and not the previous value prior to reset.

e Don’t allow the operator to change safety-critical timelimitsin decision logic.

e When the system is safed, usually in response to an anomalous condition or problem,
provide the current system configuration to the operator.

e Safety-critical routines should include “come from” checks to verify that they are being
called from avalid program, task, or routine.

NASA-GB-8719.13 97



e T
L Y

Chapter 5 System and Softwar e Concept Stage ?"ﬂgl; Y

Safety must be an integral part of the system and softwar e from the very start

Two basic types of activities are performed by the software organizations during the concept
stage: system review and planning. While the system is being defined, the software and safety
teams have an opportunity to help ensure that a safe and functional system is created. For the
purposes of this guidebook, the concept phase includes all activities that occur prior to the
development of software requirements. Developing the high-level system concept, project
planning, and determining system level requirements are all included.

The distribution of functionality from hardware to software is one area where software and saf ety
engineers should be involved. Because software is flexible (i.e., easy to change, especialy at a
later date), it is tempting to implement functions in software rather than hardware. This may not
always be the best choice.

The questions below are meant to help the system engineer consider the consequences of
implementing functions in hardware or software. These questions should be considered a starting
point for deciding which requirements to allocate to software and which to hardware.

e For each requirement or function, where is the best place in the system to perform this
activity, and why? Should the functionality be in hardware, software, or a combination?
What are the benefits of the approach? What problems may occur as a result of the
approach?

e What will happen if a hardware or software safety component fails? What are the
backups, options, and plans for dealing with the failure? Does the outcome of a possible
failure indicate that any additional resources (hardware or software) are required?

e How confident are you in the estimates on time/budget to complete the task? For most
organizations, software estimates are usually inaccurate, as most projects come in late
and over budget.

e How much are things likely to change — that is, how much flexibility is needed by the
system?

e |s there adequate hardware to support the software? Will the software have al the
information it needs to perform a safety-critical function? Sometimes extra hardware
(sensors, backup systems) isrequired for the software to do itsjob safely.

During the system concept phase, the software team is involved in the initial planning of the
software development effort. Several plans are produced, or at least started, at thisstage. Thisis
the time to think about how you will be doing your job in the months ahead. Some plans
typically developed in the concept stage include:

e Software Management Plan
e Software Development Plan
e Software Assurance Plan

e Software Safety Plan

NASA-GB-8719.13 98



e Software Verification and Validation Plan
e Software Acquisition Plan
e Software Configuration Management Plan.

=== A good plan has practical details on the process to be followed. Information will include not
%> just what will be done, but how it will be done. External procedures that give the explicit
¥ steps may be referenced, or the steps may be given in the plan.

When developing the plans, think about issues that may affect safety, both now and in the
future. Consider the reliability of the system and software, and how that reliability may be
verified. Look at what can be done to improve the maintainability of the created software, so
that changes down the road will not create problems. Be creative. Up-front planning can
help prevent larger problemsin the future. However, keep in mind that not everything can be
thought of at any onetime. The project will evolve, so flexibility must also be “planned in.”

NASA-GB-8719.13 99



5.1 Tasksand Analyses

Although most project work during this phase is concentrated on the system level, software
developers and safety engineers have several tasks that must be initiated. These include the
creation of software documents and plans that will determine how, what, and when important
software products will be produced or activities will be conducted.

Table 5-1 System Concept Phase Tasks

. : System and Softwar e Safety Softwar e Assurance or
Softwar e Engineering Tasks Tasks V&V Tasks
Provide input to project Create the Software Safety Review project and software

concept and software concept
documents.

Plan, including planning and
tailoring the safety effort. The
plan can be an independent
document or part of the system
Safety Plan.

concept documents.

Provide input to Software Conduct Preliminary Hazard Review Software Safety
Safety Plan. Analysis (PHA) [Section Plan.

2.3.1].
Plan the software management | Set up hazards tracking and Review Software

and development processes

[Chapter 4].

problem resolution process

Management and
Development Plan.

Plan the configuration
management system [ Section
4.5].

Prepare hazard verification
matrix.

Review Software
Configuration Management
Plan.

Plan the verification and
validation process.

Review PHA for safety-critical
software.

Review the Software
Verification and Validation
Plan.

Participate in “make or buy”
decisions for software.
Review software acquisition
(including COTYS) [ Section
12.1]. Provide input to
contracts for acquiring

Participate in “make or buy”
decisions for software. Review
software acquisition (including
COTS) [Section 12.1]. Provide
input to contracts for acquiring

software [Section 12.2].

Participate in “make or buy”
decisions for software.
Review software acquisition
(including COTYS) [ Section
12.1]. Provideinput to
contracts for acquiring

software [Section 12.2]. software [Section 12.2].
Develop safety-critical Plan the software assurance
software tracking process. process.
Conduct Software Subsystem
Hazard Analysis [Section
2.3.4].

NASA-GB-8719.13 100




5.2 Documentation and Milestones

The exact documents that a project will produce, and when they will be produced, are
determined during this Concept phase. Documentation should reflect the project size,
complexity, and criticality. Contractual obligations or required standards may also influence the
amount of documentation produced.

The following table lists documents that are commonly produced for the concept phase of
development:

Table 5-2 Proj ect/Softwar e Conception Documentation

Document Softwar e Safety Section

Include software as a subsystem. Identify tasks

System Safety Plan (e.g. analyses, requirements tracing) and personnel.
Software Concepts Document | dentify safety-critical processes.
Discuss coordination with systems safety tasks,
Software Management Plan flow-down incorporation of safety requirements
and applicability to safety-critical software.
Software Security Plan Determine security of safety-critical software.

|dentify software risks, especially those related to

Risk Management Plan safety and reliability.

Identification and handling of safety-critical

Software Configuration Management Plan
components.

Discuss verification and validation of safety-

Software Verification and Validation Plan o
critical components.

|dentify quality assurance support to software
safety function, verification of software safety
requirements, and safety participation in software
reviews and inspections.

Software Quality Assurance Plan

Milestones that will usually occur during the concept phase include:
e Software Concept Review (SCR)

e Software Management Plan Review

At theend of alifecycle activity or phase, it isimportant to verify that
s All system safety requirements have been satisfied by this lifecycle phase.
+ No additional hazards have been introduced by the work done during this lifecycle phase.
|EEE 1228-1994

NASA-GB-8719.13 101



5.3 Tailoring Guidelines £53

Section 3.2 Tailoring the Effort describés how to determine the software safety effort required
(full, moderate, or minimal).

o

Table 5-3 Softwar e Safety Effort for Conception Phase

Technique or Analysis Safety Effort L evel
MIN MOD FULL

2.3.1 Preliminary Hazard Analysis (PHA) * * *
2.3.4 Software Subsystem Hazard Analysis F F F
6.5 Software Safety Requirements F F F
6.5.7 Checklists and cross references v v *

Recommendation Codes

F Mandatory 2 Highly Recommended

v Recommended S Not Recommended

"
r |

gl
e,
For high value systems with high-risk software, an IV&V organization is usually involved to
oversee the software development. Verification & Validation (V&V) is a system engineering
process employing a variety of software engineering methods, techniques, and tools for
evaluating the correctness and quality of a software product throughout its life cycle. 1IV&V is
performed by an organization that is technically, managerially, and financially independent of
the development organization.

5.4 Independent Verification and Validation

IV&V should supplement, not supersede, the in-house software quality/product assurance
efforts. Software QA and safety engineers should still be involved with the project from the
start, reviewing documents, offering advice and suggestions, and monitoring the software
development process. Depending on what is negotiated with the project manager, the IV&V
personnel may be a second set of eyes, shadowing the software QA engineers, conducting
independent audits, witnessing testing, or otherwise assisting the project team. This requires the
V&V team to be stationed with the project, or to visit frequently. A more remote form of IV&V
involves reviewing the software products (plans, designs, code, test results, code review reports,
etc.), with a few in-person audits to verify the software development process. V&V anaysts
usually conduct the more in-depth analyses and verifications of the software, rather than software
QA engineers.

When IV&YV is used within a project, the exact functions and roles should be negotiated among
al the parties. Currently, the relationship of 1IV&V activities and personnel to project software
assurance activities and personnel within NASA is not clearly defined in software policy.
However, 1IV&V does not take the place of software QA, but rather should be an integrated
addition. 1V&V does not replace the software safety role, either. The IV&V team may perform
some software safety activities, such as specific safety analyses. Even some software
engineering functions, such as requirements management, may be performed by the IV&V team.

The decision to use IV&V, and the level of V&V required, should be made during the Concept
phase. 1V&V may be required by your organization for all safety-critical software, or based on
the size and complexity of the project. For NASA, NPD 8730.4 provides the IV&V policy, and

NASA-GB-8719.13 102




NPG 8730.x (draft) provides the criteria under which a project must use Independent
Verification and Validation or Independent Assessment.

p— The NASA 1V&V Facility in Fairmont, West Virginia (http://www.ivv.nasa.gov), is an

% excellent resource for all NASA projects. The V&V Facility provides tailored technical,
program management, and financial analyses for NASA programs, industry, and other
Government agencies, by applying software engineering "best practices’ to evaluate the
correctness and quality of critical and complex software systems throughout the system
development life cycle.

5,5 Safety Analyses

Safety is an integral part of the software life-cycle, from the specification of safety-related
requirements, through inspection of the software controls, and into verification testing for
hazards. Within each life cycle phase, the safety engineer performs various analysis tasks. If
problems are found, they are fed back through the system until they are corrected or mitigated.
While finding unsafe elements of the system is often the focus of the analyses, a “negative”
analysis (no hazards or major problems) can give the project assurance that they are on the right
path to a safe system.

Analysistechnigques fall into two categories:

1. Top down system hazards and failure analyses, which look at possible hazards or faults
and trace down into the design to find out what can cause them.

2. Bottom up review of design products to identify failure modes not predicted by top
down analysis. This analysis ensures the validity of assumptions of top down analysis,
and verifies conformance to requirements.

Typicaly, both types of analyses are used in a software safety analysis activity, though the
specific techniques used are tailored for the project. Results of software safety analysis are
reported back to the system safety organization for integration in the system safety plan.

As the software becomes more defined within the software life cycle, individual program sets,
modules, or units are identified that are safety-critical. The analyses used vary with the phase of
development, building on previous analyses or using the new level of software definition to
refine the safety analysis.

Chapters 6-10 describe various techniques that have been useful in NASA activities and within
industry. Tailoring by safety effort level is provided in the X.3 sections (X = the chapter
number). In addition, a benefit and cost rating is given for most techniques, to assist in the
planning of software safety activities. The ratings are subjective and meant to be only one
consideration when choosing analysis techniques.

NASA-GB-8719.13 103


http://www.ivv.nasa.gov/

= u»
Chapter 6 Software Requirements % &O g "":-

The cost of correcting software faults and errors escalates dramatically as the development life
cycle progresses, making it important to correct errors and implement correct software
requirements from the very beginning. Unfortunately, it is generally impossible to eliminate all
errors.

Software devel opers must therefore work toward two goals:

1. To develop complete and correct requirements and correct code.

2. To develop fault-tolerant designs, which will detect and compensate for software faults.
Note that (2) isrequired because (1) isusually impossible.

This chapter of the guidebook describes developing and analyzing safety requirements for
software. The software safety requirements can be top-down (flowed down from system
requirements), bottom-up (derived from hazards analyses), or a combination of both. In some
organi zations, top-down flow is the only permitted route for requirements into software. Inthose
cases, newly derived bottom-up safety requirements must be flowed back into the system
specification first.

The requirements of software components are typically expressed as functions with
corresponding inputs, processes, and outputs, plus additional requirements on interfaces, limits,
ranges, precision, accuracy, and performance. There may also be requirements on the data of the
program set, its attributes, relationships, and persistence, among others. The term “functions,” in
this case, does not mean software components, but a more general set of “things the software
system must do.” Management of requirements is a vital function and is discussed in Section
6.4.

Software safety requirements are derived from the system and subsystem safety requirements,
which were developed to mitigate hazards identified in the Preliminary, System, and Subsystems
Hazard Analyses (see Section 2.3.1 PHA and Section 2.3.4 Software Subsystem Hazard
Analysis). Additional requirements may be imposed by standards, organizational requirements,
and other sources. Good software safety techniques may be written into the requirements to
make sure the software development process includes these techniques or practices.

The software safety requirements should be included in the following documents:
e Software Requirements Document (SRD) or Software Specification (SS)
e Software Interface Specification (SIS) or Interface Control Document (1CD)

Safety-related requirements must be clearly identified in the SRD. This can be in a separate
section, or mixed with other requirements organized by function, system element, or other
approach. Safety requirements should also be clearly identified in the requirements and interface
documents, as well as any requirements traceability matrix.

An interface specification identifies, defines, and documents interface requirements internal to the
[sub]system in which software resides, and between system (including hardware and operator
interfaces), subsystem, and program set components and operation procedures. Note that the
interface information is sometimes effectively contained in the SRD, or within an Interface Control

NASA-GB-8719.13 104



Document (ICD) which defines al system interfaces, including hardware to hardware, hardware to
software, and software to software.

6.1 Tasksand Analyses

Table 6-1 Software Requirements Tasks

Softwar e Engineering Tasks

System and Softwar e Safety
Tasks

Softwar e Assurance or
IV&V Tasks

Software requirements
development [Sections 6.4.2
and 6.5]

Development of software
safety requirements [ Section
6.5]

Formal methods for
verification [Sections 4.2.2.3

and 6.6.4]

Requirements management

[Section 6.4]

Safety Requirements Flow-
down Analysis[Section 6.6.1]

Model checking [Section
6.6.5]

Formal methods for
specification [Sections 4.2.2.3

and 6.6.4]

Requirements Criticality
Analysis[Section 6.6.2]

Formal inspections of
software requirements

[Section 6.5.5]

Formal inspections of
software requirements

[Section 6.5.5]

Specification Analysis of
Safety-critical Requirements
[Section 6.6.3]

Specification analysis [Section
6.6.3

System test planning [Section
6.5.6

Software Fault Tree Analysis
[Section 6.6.7 and Appendix
q

Timing, throughput and sizing
analysis [Section 6.6.6]

Timing, throughput and sizing
considerations [ Section 6.5.4]

Software Failure M odes and
Effects Analysis[Section
6.6.8 and Appendix D]

Formal inspections of
Software requirements

[Section 6.5.5]

Develop Safety Package for
Phase 0/1 Safety Review or
other external safety review.

NASA-GB-8719.13

105




6.2 Documentation and Milestones

Table 6-2 Softwar e Requirements Documentation

Document

Softwar e Safety Section

Software Requirements Document

Identification of all safety-critical software
requirements

Software Interface Specification

|dentification of any interfaces that are part of safety-
critical elements

Formal Inspection of Requirements
Report

Identification of any safety-critical requirements
defects that are considered major (must be fixed).

Requirements Traceability Matrix

Special identification given to safety-critical
requirements

Analysis Reports

Identification of any safety-related aspects or safety
concerns.

Acceptance Test Plan

Thisisthe customer acceptance test. Includesal
safety testing necessary to assure the customer that the
system is safe.

System Test Plan

Includes stress, load, disaster, stability, and other tests,
aswell asfunctional testing. Verifiesthat the system
cannot go into an unsafe mode under adverse
conditions.

Milestones that will usually occur during this phase include:

e Software Requirements Review (SRR)

e Phase 0/1 Safety Review or other carrier- or program-specific safety review

NASA-GB-8719.13

106




9

6.3 Tailoring Guidelines

See Section 3.2 Tailoring the Effort for how to determine the software safety effort required

(full, moderate, or minimal).

Table 6-3 Softwar e Safety Effort for Requirements Phase

Technique or Analysis

Safety Effort Level

MIN MOD FULL

2.3.1 Preliminary Hazard Analysis (PHA) (if not e e e
previously performed)
2.3.4 Software Subsystem Hazard Analysis (if not e e *
previously performed)
Software safety requirements devel opment
6.5.1 Generic requirements v v v
6.5.2 Fault and Failure Tolerance v vv *
6.5.3 Hazardous Commands * * Y
6.4 Requirements Management F LS LS
6.5.5 Formal Inspections v * ¢
6.6.1 Software Safety Requirements Flow-down v e e
Analysis
6.6.2 Requirements Criticality Analysis v Vv *
6.6.3 Specification Analysis S v vv

v vv
4.2.2.3and 6.6.4 Formal Methods o o (Specification &

(Specification) |/ ification)
6.6.5 Model Checking vv vv
Timing, Throughput, and Sizing
6.5.4 Development Considerations v H o
6.6.6 Analysis vv Y Y
6.6.7 Software Fault Tree Analysis v v ¢
6.6.8 Software Failure Modes and Effects Analysis N vv

Recommendation Codes

F Mandatory 2 Highly Recommended
v Recommended S Not Recommended
NASA-GB-8719.13 107




6.4 Requirements Management e &k

Requirements management is the process of eliciting, documenting, organizing, communicating,
and tracking requirements. Management of requirements is one of the most important activities
you can do to assure a safe system. Deficient requirements are the single largest cause of
software project failure, and usually are the root cause of the worst software defects.

Requirements management is also referred to as requirements engineering. It is a set of
processes relating to requirements, from gathering them to assuring that that they have all been
verified. The aspects of gathering and documenting requirements is outside the scope of this
guidebook. The process of specifying software safety requirements is covered in Sections 6.5.1
through 6.5.3. The process of verifying that all appropriate safety requirements have been
identified is described in Section 6.6.1.

The advantages of following a requirements management process include:

e Improve understanding and communications. During the process of requirements
elicitation, and the refinement into a specification, software development team members
obtain a clearer understanding of the system to be delivered. The software development
team should involve the customers in the process, so that the final system will meet the
customers needs. A central repository of information obtained through the process
provides a common knowledge base for the user community, management, analysts,
developers, and test personnel.

e Prevention of requirements creep or scope change. Requirements management works
to prevent (or at least expose to management attention) reguirements creep and scope
changes by identifying and tracking changes to the requirements. Trending analyses can
also be performed to look for project areas subject to frequent or critical requirements
changes. Control of these issues can be through the project’s risk management system or
through another designated process.

e Improved quality and end-user satisfaction. Higher quality results when customers,
developers, analysts, and assurance personnel have a common understanding of what
must be delivered.

e Reduced project costs and delays. Research shows that requirements errors are
pervasive and expensive to fix. Reducing the number of these errors early in the
development cycle lowers the total number of errors, lowers project costs, and maintains
the projected schedule.

e Compliance with standards or contracts. Requirements management is a “best
practice.” Following this process can help meet regulatory or contractual obligations,
such as obtaining a specific Software CMM level (see section 4.3.8). Managing the
project requirements will also help if you must present a “safety case” to a regulatory
body. (A safety case is a documented body of evidence that provides a demonstrable
and valid argument that a system is adequately safe for a given application and
environment over itslifetime. Safety cases are required by the FAA.)

NASA-GB-8719.13 108



6.4.1 Requirements Specification

Determining what your project’s requirements are is not necessarily an easy process. The first
step isto realize that there are different types of requirements.

Some basic types of requirements are:

e Business requirements. These describe why the product is being built and identify the
benefits that both customers and the business will reap. [98]

e User requirements. These detall the tasks a user will be able to perform with the
product and are often captured in the form of use cases. [98]

e Functional requirements. These identify the specific system behaviors that must be
implemented. The functional requirements are the traditional "shall" statements found in
a software requirements specification. [98]

e Quality requirements. Performance, efficiency, system availability, reliability,
robustness, usability, flexibility, maintainability, portability, and reusability are all quality
areas that should be considered.

e Safety requirements. Safety requirements development is discussed in section 6.5.

6.4.1.1 Requirements Elicitation

Requirements elicitation involves querying the customer, potential users or operators, domain
experts, and others (i.e. the stakeholders) to determine a set of features, functions, or activities
that must be included in the system. This s the time to be broad and inclusive. Requirements
can be combined or removed later in the process. Requirements elicitation is the most difficult of
the requirements management activities because you are creating something from nothing.

Some techniques that can be used include: [97]

e Structured interviews. These can be highly effective in collecting requirements from
experts and prospective users.

e Brainstorming. Thisis a structured yet creative technique for eliciting ideas, capturing
them, and then subjecting them to objective criteriafor evaluation.

e Domain environment. Placing engineers and designers in the environment where the
device will be used, even for aday, is a quick way to learn about potential problems and
iSsues.

e Structured workshops. Workshops are managed by trained facilitators and include as
many stakeholders as possible. Joint Application Development (JAD) [99] is a structured
process that uses workshops to elicit requirements.

One necessary step in the elicitation processis to record the requirements. This can be donein a
word processor, spreadsheet, or other office tool. It can aso be done in a requirements
management tool. A list of requirements management toolsis given in Table 6-4.

NASA-GB-8719.13 109



6.4.1.2 Requirements Refinement

The mass of requirements that result from the elicitation needs to be refined into a manageable
set. Some requirements will be deemed unnecessary, others may be combined, and many more
will need to be clarified. Priorities should be applied to the requirements at this stage, to separate
the “must have” requirements from those that are desired.

Requirements often start as an abstraction, such as "The spacecraft will have a color camera.”
As the process continues, the requirements become more specific, diverge, recombine in new
ways, and eventually emerge as a set of detailed requirements such as, "The camera will weigh
less than 12 ounces,” and "The camera will be able to take 30 pictures a second with aframe size
of 800 by 600 pixels." [97]

Good requirements have the following attributes:

e Unambiguous. If arequirement has multiple interpretations, what is built may not match
what the user wanted.

e Complete. It isimpossible to know al of a system's future requirements, but al of the
known ones should be specified.

e Consistent. Requirements must not conflict with each other.
e Traceable. The source of each requirement should be identified.

e Verifiable. Each requirement must be able to be verified, usually by test, analysis,
inspection, or demonstration.

Requirements can be very detailed, as long as they address external behaviors (as viewed by
users or by interfacing systems). They become design information, however, once they specify
the existence of particular subcomponents or algorithms.

Requirements specifications can include auxiliary information that is not a requirement. Such
information may include introductory text, summary statements, tables, and glossaries. The real
requirements should be clearly identified.

“Any project with resource limitations must establish the relative priorities of the requested
features, use cases, or functional requirements. Prioritization helps the project manager plan for
staged releases, make trade-off decisions, and respond to requests for adding more functionality.
It can also help you avoid the traumatic ‘rapid descoping phase’ late in the project, when you
start throwing features overboard to get a product out the door on time.” [98]

6.4.1.3 Requirements Documentation

The final result of the elicitation and refinement activities is a software requirements
gpecification or similar document. This document defines not only the complete external
behaviors of the software system to be built, but also its non-behaviora requirements. The
format of the document may be defined by a standard or company template. The SRS is most
often written in natural language, perhaps augmented by appropriate analysis models. It can also
be written in aformal specification language (see Section 4.2.2.3).

NASA-GB-8719.13 110



Requirements must have a way to be verified. This verification method should be
included in the software requirements document, either when the requirement is stated or
in a separate verification matrix at the end of the document. Verification methods
include test (exercising the software), inspection (software review or formal inspection),
anaysis, or demonstration (smply running the software). Test is usually the preferred
verification, but other methods may be much easier for some requirements or testing may
not be feasible. Software assurance engineers and software safety engineers should
concur with the verification method.

The software requirements need to be reviewed by all stakeholders and other interested
parties. Reviews help find ambiguous, conflicting, or incomplete requirements. They
also bring the team “up to speed” on the system and the software subsystem. Reviews
can be formal inspections, informal assessments, or formal project reviews. Formal
inspection (Section 6.5.5) is a valuable tool in finding requirements defects (e.g.,
ambiguity, conflicting requirements, missing requirements) and is highly recommended.

Requirements management tools (Table 6-4) store the project requirements and related
information in a multi-user database. These products let you manipulate the database contents,
import and export requirements, and connect requirements to objects stored in testing, design,
and project management tools. You can define attributes for each requirement, such as its
version number, author, status, origin or rationale, allocated release, and priority. Traceability
links between individual requirements and other system elements help you evaluate the impact of
changing or deleting a requirement. Web access permits real-time sharing of database updates
with members of geographically distributed teams.

Table 6-4 Requirements M anagement Tools

Tool Vendor

Caliber-RM Borland http://www.borland.com/caliber/

DOORS Telelogic http://www.telelogic.com/

RequisitePro Rational Software Corporation; http://www.rational .com/

RTM Workshop Integrated Chipware, Inc.; http://www.chipware.com/

Vital Link Compliance Automation, Inc. http://www.complianceautomation.com/

6.4.2 Requirements Traceability and Verification

Traceability is a link or definable relationship between two entities. Requirements are linked
from their more general form (e.g., the system specification) to their more concrete form (e.g.,
subsystem specifications). They are aso linked forward to the design, source code, and test
cases. Thisisimportant for all requirements, especially those that are safety-critical. Knowing
what part of the code implements the safety function, or what test verifies that function, isavital
part of creating a safe system.

The key benefits of tracing requirements include:

e Vaerification that all user needs are implemented and adequately tested. Full requirements
test coverage is virtually impossible without some form of requirements traceability.

e Vaerification that there are no "extra' system behaviors that cannot be traced to a user
requirement.

NASA-GB-8719.13 111


http://www.borland.com/caliber/
http://www.telelogic.com/
http://www.rational.com/
http://www.chipware.com/
http://www.complianceautomation.com/

e Improved understanding of the impact of changing requirements.

Requirements verification involves evaluating the correctness and completeness of the
requirements, to ensure that a system built to those requirements will satisfy the users' needs and
expectations. The goal of verification is to ensure that the requirements provide an adequate
basis to proceed with design, construction, and testing. As mentioned in 6.4.1.3, formal
inspection is an excellent way to verify the requirements. Analyses may aso be used, such as
those described in section 6.6.

A traceability matrix is one tool that can help detail how the requirements trace through the
design, source code, and test products. The matrix can be manually created and maintained, or
may be a by-product of a requirements management tool. The manual method can be tedious
and difficult to maintain.

6.4.3 Requirements Change Management

Requirements traceability provides a methodical and controlled process for managing changes
that inevitably occur as a system is developed and deployed. “Without traceability, every change
would require project team members to review all documents on an ad hoc basis in order to
determine what other elements of the project, if any, require updating. Because such a process
would make it difficult to establish whether all affected components have been identified over
time, changes to the system would tend to decrease its reliability and safety.” [1] With
traceability, when a change occurs the affected products (documentation, source code, test cases)
can be quickly identified.

The actual process of making changes should be a structured, defined process. This process
should describe how a proposed change is submitted, evaluated, decided upon, and incorporated
into the requirements baseline. Usually a change control board, consisting of people from
various disciplines and perspectives, will review potential changes and either approve or reject
them. A reguirements management tool can help manage the changes made to many individual
requirements, maintain revision histories, and communicate changes to those affected by them.

Part of the change management process should be an evaluation of the impact the change will
have on the system and other requirements. Traceability information is an important tool in this
evaluation. Further information on analysis that can be done to determine the impact of software
changes can be found in Section 10.5.2.

NASA-GB-8719.13 112



£
6.5 Development of Software Safety Requirements N O

Software safety requirements are obtained from various sources (see Figure 4-7), and are usually
sorted into two categories: generic and specific.

The generic software safety requirements are derived from sets of requirements that can be used
in different programs and environments to solve common software safety problems. Examples
of generic software safety requirements and their sources are given in Section 6.5.1 Generic
Software Safety Requirements.  Specific software safety requirements are system-unique
functional capabilities or constraints that are identified in the following three ways. For
complete identification of all software safety requirements, all three methods should be used.

Method 1  Through top- down analysis of system design requirements and specifications:

The system requirements may identify system hazards upfront and specify which

system functions are safety-critical, or a Fault Tree Analysis may be completed to
identify safety-critical functions. The software safety organization participates or
leads the mapping of these requirements to software.

Method 2  From the Preliminary Hazard Analysis (PHA):

PHA looks down into the system from the point of view of system hazards.
Preliminary hazard causes are mapped to, or interact with, software. Software
hazard control features are identified and specified as requirements.

Method 3  Through bottom-up analysis of design data, (e.g., flow diagrams, Failure Mode
Effects and Ciriticality Analysis (FMECA)).

Design implementations allowed but not anticipated by the system requirements
are analyzed and new hazard causes or contributors are identified. Software
hazard controls are specified via requirements when the hazard causes are linked
to or interact with software.

6.5.1 Generic Software Safety Requirements

Similar processors, platforms, and/or software can suffer from similar or identical problems.
Generic software safety requirements are derived from sets of requirements and best practices
used in different programs and environments to solve common software safety problems.
Generic software safety requirements capture these lessons learned and provide a valuable
resource for developers.

Generic requirements prevent costly duplication of effort by taking advantage of existing proven
techniques and lessons learned rather than reinventing techniques or repeating mistakes. Most
development programs should be able to make use of some generic requirements. However,
these requirements should be used with care and may have to be tailored from project to project.

As technology evolves, or as new applications are implemented, new "generic" requirements will
likely arise, and other sources of generic requirements might become available. A partial listing
of sources for generic requirement is shown below:

1. NSTS 19943, Command Requirements and Guidelines for NSTS Customers.

NASA-GB-8719.13 113




2. STANAG 4404 (Draft), NATO Standardization Agreement (STANAG) Safety Design
Requirements and Guidelines for Munition Related Safety-Critical Computing Systems.

3. EWRR 127-1, Range Safety Requirements - Western Space and Missile Center,
Attachment-3, Software System Design Requirements. See Section 3.16 Safety-
Critical Computing System Software Design Requirements.

4. AFISC SSH 1-1, System Safety Handbook - Software System Safety, Headquarters Air
Force Inspection and Safety Center.

5. EIA Bulletin SEB6, A System Safety Engineering in Software Development
(Electrical Industries Association).

6. Underwriters Laboratory - UL 1998, Standard for Safety - Safety-Related Software,
January 4th, 1994.

7. NUREG/CR-6263 MTR 94W0000114, High Integrity Software for Nuclear Power
Plants, The MITRE Corporation, for the U.S. Nuclear Regulatory Commission.

Appendix H has a checklist of generic software safety requirements developed by the Marshall
Space Flight Center.

Benefit Rating for Use of Generic Requirements: HIGH

6.5.2 Fault and Failure Tolerance & O

Most NASA space systems employ failure tolerance (as opposed to fault tolerance) to achieve an
acceptable degree of safety. This is primarily achieved via hardware, but software is aso
important, because improper software design can defeat the hardware failure tolerance and vice
versa.  While the actual implementation of fault or failure tolerance is a design issue, the
guestion of whether it is necessary, or to what extent it is necessary, must be captured in software
requirements.

While not al faults lead to afailure, every failure results from one or more faults. A fault isan
error that does not affect the functionality of the system, such as bad data from either input,
calculations, or output, an unknown command, or a command or data coming at an unknown
time. If properly designed, the software, or system, can respond to errors by detecting and
correcting them intelligently. This would include checking input and output data by doing limit
checking and setting the value to a known safe value, or requesting and/or waiting for the next
data point.

Occasional bad 1/0O, data, or commands should not be considered failures, unless there are too
many of them and the system cannot handle them. One or more intelligent fault collection
routines should be part of the program to track, and possibly log, the number and type of errors.
These collection routines can then either handle the caution, warning, and/or recovery for the
software system, or raise a flag to a higher level of control when the number of faults over time
or the combination of fault types indicates that a system failure is imminent. With faults, the
system should continue to operate normally.

A failure tolerant design detects a failure and puts the software and/or system into a changed
operating state, either by switching to backup software or hardware (e.g., aternate software

NASA-GB-8719.13 114



routine or program, backup CPU, secondary sensor input, or valve cut-off) or by reducing the
functionality of the system while it continues to operate.

It is important to decide early in the project whether the system will be fault tolerant,

=l . .

Bea failure tolerant, or both. Fault tolerant systems are built to handle most probable, and

% some less probable but hazardous, faults. Taking care of the faults will usualy help
prevent the software, or the system, from going into failure. The down-side to fault
tolerance is that it requires multiple checks and monitoring a very low levels. If a
system is failure tolerant, it will ignore most faults and only respond to higher-level
failures. A presumption isthat it requires less work and is simpler to detect, isolate, stop,
or recover from the failures. A project must weigh the costs and benefits of each
approach and determine what will provide the most safety for the least cost and effort.

For safety-critical systems, it is best to require some level of both fault and failure tolerance.
The fault tolerance keeps most of the minor errors from propagating into failures. Failures must
still be detected and dealt with, whether as a result of fault collection/monitoring routines or by
direct falure detection routines and/or hardware. In this guidebook, both fault and failure
tolerance are discussed. The proper blending of both to meet the requirements of your particular
system must be determined by the system engineers, software designers, and the safety
engineers.

If too many faults or very serious failures occur, it may be necessary for the system to shut itself
down in an orderly, safe manner. This is a good time to consider if the system will have the
required capabilities to perform the orderly shut down (such as battery backup). For example, if a
system has to close a valve before power down, a backup power supply is required to allow the
system to perform this action in the event of a power failure.

Software responses to off-nominal scenarios should address safety considerations, and be
appropriate to the situation. Complete system shutdown may not be appropriate in many cases.

Designing for safety is discussed in Sections 7.4.1 and 7.4.2 .

6.5.3 Hazar dous Commands & O

A hazardous command is one whose execution (including inadvertent, out-of-sequence, or
incorrect execution) could lead to an identified critical or catastrophic hazard, or a command
whose execution can lead to areduction in the control of a hazard (including reduction in failure
tolerance against a hazard or the elimination of an inhibit against a hazard). Commands can be
internal to a software set (e.g., from one component to another) or external, crossing an interface
to/from hardware or a human operator. Longer command paths increase the probability of an
undesired or incorrect command response due to noise on the communications channel, link
outages, equipment malfunctions, or (especially) human error.

Reference [34] NSTS 1700.7B section 218 defines “hazardous command” as “...those that can
remove an inhibit to a hazardous function, or activate an unpowered payload system”. It
continues to say “Failure modes associated with payload flight and ground operations including
hardware, software, and procedures used in commanding from Payload Operations Control
Centers (POCC'’s) and other ground equipment must be considered in the safety assessment to

NASA-GB-8719.13 115



determine compliance with the (failure tolerance) requirements. NSTS 19943 treats the subject
of hazardous commanding and presents the guidelines by which it will be assessed.”

NSTS 1700.7B section 218 focuses on remote commanding of hazardous functions, but the
principles can and should be generally applied. Both NSTS 19943 and EWRR 127-1
(Paragraphs 3.16.2.7 ¢ and d) recommend and require respectively, two-step commanding.
EWRR 127-1 states “Two or more unique operator actions shall be required to initiate any
potentially hazardous function or sequence of functions. The actions shall be designed to
minimize the potential for inadvertent actuation”. Note that two-step commanding is in addition
to any hardware (or software) failure tolerance requirements, and is neither necessary nor
sufficient to meet failure tolerance requirements. A two-step command does not constitute an
inhibit.

Software interlocks or preconditions can be used to disable certain commands during particul ar
mission phases or operational modes. However, provision should be made to provide access to
(i.e. enable) all commands in the event of unexpected emergencies. Flight crews generally
require emergency command access. For example, when Apollo 13 experienced major
problems, the nominal Lunar Module power up sequence timeline could not be completed before
the Command Module battery power expired. A different (shorter) sequence was improvised.

Benefit Rating: HIGH Cost Rating: LOW

6.5.4 Timing, Sizing and Throughput Considerations

System design should properly consider real-world parameters and constraints, including human
operator and control system response times, and flow these down to software. Adequate margins
of capacity should be provided for all these critical resources. As software requirements are
generated for these areas, the system design should be evaluated for appropriate capability.

This section provides guidance for developers in specifying software requirements to meet the
safety objectives. Subsequent analysis of software for these factorsis discussed in Section 6.6.6
Timing, Szing and Throughput Analysis.

e Timeto Criticality

Safety-critical systems sometimes have a characteristic “time to criticality”, which is
the time interval between a fault occurring and the system reaching an unsafe state.
This interval represents a time window in which automatic or manual recovery and/or
safing actions can be performed, either by software, hardware, or by a human operator.
The design of safing and recovery actions should fully consider the real-world
conditions and the corresponding time to criticality. Automatic safing can only be a
valid hazard control if there is ample margin between worst-case (long) response time
and worst-case (short) timeto criticality.

e Automatic safing

Automatic safing is often required if the time to criticality is shorter than the readlistic
human operator response time, or if there is no human in the loop. This can be
performed by either hardware or software or a combination depending on the best
system design to achieve safing.

NASA-GB-8719.13 116



e Control system design

Control system design can define timing requirements. The design is based on the
established body of classical and modern dynamic control theory, such as dynamic
control system design, and multivariable design in the s-domain (Laplace transforms)
for analog continuous processes. Systems engineers are responsible for overall control
system design. Computerized control systems use sampled data (versus continuous
data). Sampled analog processes should make use of Z-transforms to develop
difference equations to implement the control laws. This will also make most efficient
use of real-time computing resources. [35]

e Samplingrates

Sampling rates should be selected with consideration for noise levels and expected
variations of control system and physical parameters. For measuring signals that are
not critical, the sample rate should be at least twice the maximum expected signal
frequency to avoid aliasing. For critical signals, and parameters used for closed loop
control, it is generally accepted that the sampling rate must be much higher. A factor of
at least ten above the system characteristic frequency is customary. [35]

e Dynamic memory allocation

Dynamic memory allocation requires several varieties of resources be available and
adequate. The amount of actual memory (RAM) available, whether virtual memory
(disk space) is used, how much memory the software (programs and operating system)
uses statically, and how much is dynamically allocated are all factors in whether a
dynamic alocation will fail or succeed. Several factors may not be known in detail,
and worst-case values should be used.

How the software will deal with failed dynamic alocation should be specified.
Allowing a default similar to the MS-DOS “abort, retry, fal” is a very bad idea for
safety-critical software.

Protecting critical memory blocks from inadvertent corruption or deletion should be a
requirement.

e Memory Checking

Testing of random access memory (RAM) can be a part of BIT/self-test and is usually
done on power up of a system to verify that all memory addresses are available, and
that the RAM is functioning properly. Periodic verification of memory functionality
may be required, especially in environments where memory problems are likely to
occur, due to asingle event upset or hardware (RAM) problems.

(@
6.5.5 Formal Inspections of Software Requirements )

Formal Inspections’ are structured technical reviews of a“product” of the software development
life cycle, conducted for the purpose of finding and eliminating defects. The product can be any
documentation, including requirements, design notes, test plans, or the actua source code.

®> Formal inspections are also known as Fagan Inspections, named after John Fagan of IBM who devised
the method.

NASA-GB-8719.13 117



Formal Inspections differ from informal reviews or walkthroughs in that there are specified steps
to be taken, and roles are assigned to individual reviewers.

Formal inspections are not formal methods! Formal inspections are a structured way to find
defects in some software product, from a requirements document to the actual code. Formal
methods are a mathematical way of specifying and verifying a software system. The two
methods can be used together or separately.

NASA has published a standard and guidebook for implementing the Formal Inspection (FI)
process, Software Formal Inspections Standard (NASA-STD-2202-93) [37] and Software Formal
Inspections Guidebook (NASA-GB-A302) [22]. FI’s should be performed within every major
step of the software development process, including requirements specification, design, coding,
and testing.

Formal Inspections have the most impact when applied early in the life of a project, especialy
the requirements specification and definition stages of a project. Impact means that the defects
are found earlier, when it's cheaper to fix them. Studies have shown that the majority of all
faults and failures, including those that impinge on safety, come from missing or misunderstood
requirements. Formal Inspection greatly improves the communication within a project and
enhances understanding of the system while scrubbing out many of the major errors and defects.

For the FlI of software requirements, the inspection team should include representatives from
Systems Engineering, Operations, Software Design and Code, Software Product Assurance,
Safety, and any other system function that software will control or monitor. It isvery important
that software safety beinvolved inthe FI's. Each individual may review the requirements from a
generic viewpoint, or they may be assigned a specific point of view (tester, programmer,
designer, user, safety) from which to review the document.

It is aso very helpful to have inspection checklists for each phase of development that reflect
both generic and project specific criteria. A special safety checklist may aso be used when
reviewing the requirements. The requirements discussed in this section and in Robyn R. Lutz's
paper "Targeting Safety-Related Errors During Software Requirements Analysis' [6] will greatly
aid in establishing this checklist. Also, the checklists provided in the NASA Software Formal
I nspections Guidebook are helpful.

The method of reporting findings from FI's is described in references [22] and [37]. After the
inspection, the safety representative should review the official findings of the inspection and
trandate any that require safety follow-up on to a worksheet such as that in Table 6-5 Subsystem
Criticality Analysis Report Form. This form can then serve in any subsequent inspections or
reviews as part of the checklist. It will also allow the safety personnel to track to closure safety
specific issues that arise during the course of the inspection.

Benefit Rating: HIGH Cost Rating: MODERATE

NASA-GB-8719.13 118



Table 6-5 Example Subsystem Criticality Analysis Report Form

Document Number: CL-SPEC- 2001

Document Title: Software Requirements Specification - Cosmolab Program

Paragraph Number | Requirements(s) text | Problem /Hazard Recommendations Hazard Report
[ Title excerpt Description Reference
Number
3.3 Limit Checking | Parameterslistedin Tableonly givesone | During certain modes, | CL-1;9
Table 3.3 shdl be set of limitsfor each | false alarmswould
subjected to limit parameter, but result because proper
checking at arate of 1 | expected values for parameter values will
Hz. parameters will exceed preset limit
change from modeto | check values.
mode. Implement table

driven limit values
which can be changed
during transitions
from mode to mode.

6.5.6 Test Planning

At the end of the software specification phase, the system and acceptance test plans can be
written. System tests can be defined that verify the functional aspects of the software under
nominal conditions, as well as performance, load, stress, and other tests that verify acceptable
behavior in non-standard situations.

Safety tests of the system should also be designed at this time and documented in a software
safety test plan. These tests should demonstrate how the software and system meets the safety
requirements in the Software Requirements Document. The test plan should specify pass/fail
criteria for each test. Any special procedures, constraints, and dependencies for implementing
and running safety tests should aso be included. The review and reporting process for safety-
critical components, including problem and non-conformance reporting, should also be part of
this plan.

6.5.7 Checklistsand crossreferences

Checklists are a tool for making sure you haven't forgotten anything important, while doing an
analysis or reviewing a document. They are away to put the collective experience of those who
created and reviewed the checklist to work on your project. They are a starting point, and should
be reviewed for relevance for each project. A collection of checklistsis provided in Appendix H.
For the requirements phase, they include a safety checklist that contains standard hazards to |ook
for when reviewing the requirements specification.

Cross-references are matrices that list related items. A matrix that shows the software-
related hazards and hazard controls and their corresponding safety requirements should
be created and maintained. This should be a living document, reviewed and updated
periodically. Refreshing your mind on the hazards that software must control while
working on the software design, for example, increases the likelihood that the hazard
controls will be designed in correctly. Another cross-reference matrix would list each
requirement and the technique that will verify it (analysis, test, etc.).

NASA-GB-8719.13 119



Y ou should develop a systematic checklist of software safety requirements and hazard controls,
ensuring they correctly and completely include (and cross-reference) the appropriate
specifications, hazard analyses, test and design documents. This should include both generic and
specific safety requirements as discussed in Section 6.5 Development of Software Safety
Requirements. Section 6.5.5 Formal Inspections lists some sources for starting a safety
checklist.

Also, develop a hazard requirements flow-down matrix that maps safety requirements and hazard
controls to system and software functions and, from there, to software components. Where
components are not yet defined, flow to the lowest level possible and tag for future flow-down.

6.6 Software Safety Requirements Analysis

The Requirements Analysis activities verify that safety requirements for the software were properly
flowed down from the system safety requirements, and that they are correct, consistent and
complete. They also look for new hazards, software functions that can impact hazard controls, and
ways the software can behave that are unexpected. These are primarily top down analyses.

Bottom up analysis of software requirements, such as Requirements Criticality Analysis, are
performed to identify possible hazardous conditions. This results in another iteration of the PHA
(or Software Subsystem Hazard Analysis) that may generate new software requirements.
Specification analysisis also performed to ensure consistency of requirements.

Analyses related to the Software Requirements are:
e Software Safety Requirements Flow-down Analysis
e Requirements Criticality Analysis
e Specification Analysis
e Formal Methods
e Timing, Throughput And Sizing Analysis
e Preliminary Software Fault Tree Analysis
e Preliminary Software Failure Modes and Effects Analysis

6.6.1 Software Safety Requirements Flow-down Analysis

Generic safety requirements are established “a priori” and placed into the system specification
and overal project design specifications. From there they are flowed into the subsystem
specifications, such as the software subsystem requirements.

Other safety requirements, derived from bottom-up analysis, are flowed up from subsystems and
components to the system level requirements. These new system level requirements are then
flowed back down across al affected subsystems. During the software requirements phase,
software components may not be well defined. In this case, bottom-up analysis (such as a
Software Failure Modes and Effects Analysis) might not be possible until sometime in the design
phase.

Problems in the flow-down process can be caused by incomplete analysis, inconsistent analysis
of highly complex systems, or use of ad hoc techniques by biased or inexperienced anaysts. The

NASA-GB-8719.13 120



following references are a good starting point for anyone who falls into the “inexperienced”
category :

* MIL-STD-882C System Safety Program Requirements (the ‘C’ version, not the current
‘D’, has some description on how to verify flow down of requirements)

* NSTS-22254 Methodology for Conduct of Space Shuttle Program Hazard Analyses

= “Safeware: System Safety and Computers’ (Book), Nancy Leveson, April 1995

» “Safety-Critical Computer Systems’ (Book), Neil Storey, August 1996

»= “Software Assessment: Reliability, Safety, Testability” (Book), Michael A. Friedman and
Jeffrey M. Voas(Contributor), August 16, 1995

*= “Discovering System Requirements’, A. Terry Bahill and Frank F. Dean,
http://tide.it.bond.edu.au/inft390/002/Resources/sysreg.htm

The most rigorous (and most expensive) method of addressing this concern is adoption of
formal methods for requirements analysis and flow-down. This was described previously in
Section 4.2.2.3 Formal Methods. Less rigorous and less expensive ways include checklists and a
standardized structured approach to software safety as discussed below and throughout this
guidebook.

Benefit Rating: HIGH Cost Rating: LOW to HIGH (Formal Methods)

6.6.2 RequirementsCriticality Analysis

Criticality analysis identifies program requirements that have safety implications. A method of
applying criticality analysis is to analyze the hazards of the software/hardware system and
identify those that could present catastrophic or critical hazards. This approach evaluates each
program requirement in terms of the safety objectives derived for the software component.

The evaluation will determine whether the requirement has safety implications and, if so, the
requirement is designated “safety-critical”. It is then placed into a tracking system to ensure
traceability of software safety requirements throughout the software development cycle from the
highest level specification all the way to the code and test documentation.

The system safety organization coordinates with the project system engineering organization to
review and agree on the criticality designations. Software safety engineers and software
development engineers should be included in this discussion. Software is a vital component in
the whole system, and the “software viewpoint” must be part of any systems engineering
activity. Requirements can be consolidated to reduce the number of critical requirements. In
addition, they can be flagged for special attention during design, to reduce the criticality level.

Keep in mind that not all “safety-critical” requirements are created equal. Later in the process,
the concept of risk is used to prioritize which requirements or components are more critical than
others. For now, it's best to look at everything that can cause a safety problem, even atrivial
one. It'seasier, and cheaper, to remove or reduce requirements later than it isto add them in.

It is probable that software components or subsystems will not be defined during the
requirements phase, so those portions of the Criticality Analysis would be deferred to the design

NASA-GB-8719.13 121


http://tide.it.bond.edu.au/inft390/002/Resources/sysreq.htm

phase. In any case, the Criticality Analysis will be updated during the design phase to reflect the
more detailed definition of software components.

Y ou perform the Requirements Criticality Analysis by doing the following:

All software requirements are analyzed to identify additional potential system hazards
that the system PHA did not reveal. A checklist of PHA hazardsis agood thing to have
while reviewing the software requirements. The checklist makes it easier to identify
PHA-designated hazards that are not reflected in the software requirements, and new
hazards missed by the PHA. In addition, look for areas where system requirements
were not correctly flowed to the software. Once potential hazards have been identified,
they are added to the system requirements and then flowed down to subsystems
(hardware, software and operations) as appropriate.

Review the system requirements to identify hardware or software functions that receive,
pass, or initiate critical signals or hazardous commands.

Review the software requirements to verify that the functions from the system
requirements are included. In addition, look for any new software functions or objects
that receive/pass/initiate critical signals or hazardous commands.

Look through the software requirements for conditions that may lead to unsafe
situations. Consider conditions such as out-of-sequence, wrong event, inappropriate
magnitude, incorrect polarity, inadvertent command, adverse environment,
deadlocking, and failure-to-command modes.

The software safety requirements analysis also looks at characteristics of the software system.
Not all characteristics of the software are governed by requirements. Some characteristics are a
result of the design, which may fulfill the requirements in a variety of ways. It isimportant that
safety-critical characteristics are identified and explicitly included in the requirements.
“Forgotten” safety requirements often come back to bite you late in the design or coding stages.

All characteristics of safety-critical software must be evaluated to determine if they are safety-
critical. Safety-critical characteristics should be controlled by requirements that receive rigorous
quality control in conjunction with rigorous analysis and test. Often all characteristics of safety-
critical software are themselves safety-critical.

Characteristics to be considered include at a minimum:

DN NI NN

ANEERN

Specific limit ranges

Out of sequence event protection requirements

Timing

Relationship logic for limits. Allowable limits for parameters might vary depending on

operational mode or mission phase. For example, the temperature may be more
constrained during an experiment run than when the system isidle.

Voting logic
Hazardous command processing requirements (see Section 6.5.3 Hazardous Commands)
Fault response

NASA-GB-8719.13 122



v" Fault detection, isolation, and recovery

v" Redundancy management/switchover logic. What components to switch, and under what
circumstances, should be defined for any hazard control that requires redundancy. For
example, equipment which has lost control of a safety-critical function should be
switched to a good spare before the time to criticality has expired. Hot standby units (as
opposed to cold standby) should be provided where a cold start time would exceed time
to criticality.

This list is not exhaustive and often varies depending on the system architecture and
environment.

The following resources are available for the Requirements Criticality Analysis:

{ \ \ \

> Software Devel opment Activities Plan \> Background information relating to safety
[Software Development Plan] Software Assurance  reguirements associated with the contemplated
Plan [None], Software Configuration Management  testing, manufacturing, storage, repair, installation,
Plan [Same] and Risk Management Plan [Software  use, and final disposition of the system
Development Plan]

T2 &

\ System and Subsystem Requirements \ Storage and timing analyses and allocations
[System/Segment Specification (SSS),

System/Segment Design Document]

@& A\
\ Requirements Document [Software % Program structure documents
Requirements Specificationg]

-

@ @

> External Interface Requirements Document > Information from the system PHA concerning
[Interface Requirements Specifications] and other  system energy, toxic, and other hazardous event
interface documents sources, especially ones that may be controlled

directly or indirectly by software

@ @

> Functional Flow Diagrams and related data > Historical data such as |essons learned from
other systems and problem reports

Note: documents in [parentheses] correspond to terminology from DOD-STD-2167 [38]. Other
document names correspond to NASA-STD-2100.91.

Output products from this analysis are:
e Table 6-6 Subsystem Criticality Matrix
e Updated Safety Requirements Checklist
e Definition of Safety-critical Requirements

The results and findings of the Criticality Analyses should be fed back to the System
Requirements and System Safety Analyses. For all discrepancies identified, either the system
requirements should be changed because they are incomplete or incorrect, or else the software
requirements must be atered to match the system requirements. The Criticality Analysis

NASA-GB-8719.13 123




identifies additional hazards that the system analysis did not include, and identifies areas where
system or interface requirements were not correctly assigned to the software.

|The resuilts of the criticality analysis may be used to develop Formal Inspection (FI) checklists
for performing the FlI process described in Section 6.5.5 Formal Inspections of Software
Requirements.

Table 6-6 Example Subsystem Criticality Matrix

Mission Operational Hazards
Control Functions

IMI CA ICD

Communication X X X

Guidance

Navigation

Camera Operations

Attitude Reference X X

Control

Pointing

Specia Execution

Redundancy X
Management

Mission Seguencing

Mode Control

X
X
Key
IMI Inadvertent Motor Ignition
CA Collision Avoidance
ICD Inadvertent Component Deployment

The above matrix is an example output of a software Requirements Criticality Analysis. Each
functional subsystem is mapped against system hazards identified by the PHA. In this example,
three hazards are addressed.

[This matrix is an essential tool to define the criticality level of the software. Each hazard should
have arisk index as described in Section 2.3.2 Risk Levels of this guidebook. Therisk index isa
means of prioritizing the effort required in developing and analyzing respective pieces of
software.

Benefit Rating: HIGH Cost Rating: LOW

6.6.3 Specification Analysis

il

Specification analysis evaluates the completeness, correctness, consistency, and testability of
software requirements. Well-defined requirements are strong standards by which to evaluate a

NASA-GB-8719.13 124



software component. Specification analysis should evaluate requirements individually and as an
integrated set. Techniques used to perform specification analysis are:

e reading analysis

e traceability analysis

e control-flow analysis,

e information-flow analysis
e functiona simulation

These techniques are described in detail (plus background and theory) within a large, well
established body of literature. Look in books on software testing and software engineering for
further information on these techniques. A brief description of each technique will be given so
that the analyst can determine if further study is warranted.

The safety organization should ensure the software requirements appropriately influence the
software design and the development of the operator, user, and diagnostic manuals. The safety
representative should review the following documents and/or data:

T {

> System/segment specification and > Storage alocation and program structure

subsystem specifications documents

@ @

- Software reguirements specifications \ Background information relating to safety
regquirements

{ \ \ \

U Interface requirements specifications and > Information concerning system energy,

all other interface documents toxic and other hazardous event sources,
especially those that may be controlled directly
or indirectly by software

{ \ \ \

> Functional flow di agrams and related data > software Devel opment Plan, Software
Quality Evaluation Plan, and Software
Configuration Management Plan and Historical
data

6.6.3.1 Reading Analysis and Traceability Analysis

Reading analysis examines the requirements specification to uncover inconsistencies, conflicts,
and ambiguous or missing requirements. The analysis is usualy manual, involving a review of
the specification and supporting documents. A Formal Inspection (6.5.5) of the specification can
be used as areading analysis.

The Automated Requirement Measurement (ARM) Tool was developed by the Software
Assurance Technology Center (SATC) at the NASA Goddard Space Flight Center. This tool
was designed to assess requirements that are specified in natural language. The objective of the
ARM tool is to provide measures that can be used by project managers to assess the quality of a
requirements specification document. The tool is not intended to evaluate the correctness of the
specified requirements. Information on the tool and a free download can be found at
http://satc.gsfc.nasa.gov/tools/arm/index.html.

NASA-GB-8719.13 125


http://satc.gsfc.nasa.gov/tools/arm/index.html

Traceability Anaysis involves tracing the requirements throughout the various software
products. Section 6.6.1 discusses the flow-down (tracing) of various requirements into the
software specification. It isfocused on safety requirements, but the technique appliesto all other
requirements as well. Section 7.5.9 discusses tracing the requirements into the design, and
eventually into the code and test cases.

Benefit Rating: HIGH Cost Rating: LOW

6.6.3.2 Control-flow analysis

Control-flow analysis examines the order in which software functions will be performed. It
identifies missing and inconsistently specified functions. Control-flow examines which
processes are performed in series, and which in parallel (e.g., multitasking), and which tasks are
prerequisites or dependent upon other tasks.

Benefit Rating: HIGH Cost Rating: MODERATE

6.6.3.3 Information-flow analysis

Information-flow analysis examines the relationship between functions and data. Incorrect,
missing, and inconsistent input/output specifications are identified. Data flow diagrams are
commonly used to report the results of this activity. This technique can be effective for
understanding the basic data and command flow.

Benefit Rating: HIGH Cost Rating: MODERATE

6.6.3.4 Functional simulation models

Simulators are useful development tools for evaluating system performance and human
interactions. You can examine the characteristics of a software component to predict
performance, check human understanding of system characteristics, and assess feasibility.
Simulators have limitations in that they are representational models and sometimes do not
accurately reflect the real design, or make environmental assumptions which can differ from
conditionsin the field.

Benefit Rating: MEDIUM Cost Rating: MODERATE

6.6.4 Formal Methods - Specification Development & ﬁ.@
Among the most successful applications of Formal Methods is Foriial Specification. Thisisthe
process of writing the requirements (specification) in a formal, mathematical language. Even if
Formal Verification is not used (to verify that the specification, and later the design and code),

the act of creating a Formal Specification often catches many errors.

Formal Specification removes ambiguity and uncertainty. It allows errors of omission to
be discovered, including undocumented assumptions and inadequate off-nominal
behavior. Conflicting requirements and logic errors are also uncovered. When defects
are found and corrected early in the lifecycle, they are much less costly to fix.

More information on Formal Methods can be found in Section 4.2.2.3.

Benefit Rating: HIGH Cost Rating: MODERATE to HIGH

NASA-GB-8719.13 126




6.6.5 Model Checking

Model checking is a form of Formal Methods that verifies finite-state systems. Over the last 5
years, model checking has taken on alife of its own, apart from the rest of the Formal Methods
arena. Many projects that might not consider the full Formal Methods are using Model Checking
as an analysis and verification technique.

Mode checking is an “automatic” method, and tools exist to provide that automation (for
instance: SPIN and SMV). Model checking can be applied to more than just software, and has
been used to formally verify industrial systems.

The technique is especialy aimed at the verification of reactive, embedded systems, i.e. systems
that are in constant interaction with the environment. Model checking can be applied relatively
easily at any stage of the existing software process without causing mgjor disruptions. It has
been extended to work with at least some infinite-state systems and also with real-time systems.
Model checking can verify simple properties like reachability (does as system ever reach a
certain state) or lack-of-deadlock (is deadlock avoided in the system), or more complex
properties like safety (nothing bad ever happens) or liveness (something good eventually

happens).

Benefit Rating: HIGH Cost Rating: MODERATE

6.6.5.1 How Model Checking Works

The first step in model checking is to describe the system in a state-based, formal way. Each
model checker uses a different language for system description.

The second step is to express program flow using propositional temporal logic. Thislogic deals
with transitions from one state to another (stepping through the program), and what may or may
not be true in each state. For instance, you can express a formula (property) that is true in some
future state (eventually) or in all future states (always).

Once the system is modeled and the temporal logic is determined, algorithms are used to traverse
the model defined by the system and check if the specification holds or not. Very large state-
gpaces can often be traversed in minutes. The technique has been applied to several complex
industrial systems, ranging from hardware to communication protocols to safety-critical plants
and procedures.

For more details, the book “Model Checking” [39] describes the technique in detail. The website
http://www.abo.fi/%7Ejoliliusmclinks.ntm contains references to current model checking
research, people, tools, and projects.

6.6.5.2 Tools

Among the automated tools, the primary ones are SMV and SPIN. SMV is a symbolic model
checker specialized on the verification of synchronous and asynchronous systems. SPIN is an
on-the-fly model checker specialized on the verification of asynchronous systems.

Spin (http://netlib.bell-1abs.com/netlib/spin/whatispin.html) is designed to test the specifications
of concurrent (distributed) systems - specifically communications protocols, though it applies to
any concurrent system. It will find deadlocks, busy cycles, conditions that violate assertions, and

NASA-GB-8719.13 127


http://www.abo.fi/~jolilius/mclinks.htm
http://netlib.bell-labs.com/netlib/spin/whatispin.html

race conditions. The software was developed at Bell Labs in the formal methods and verification
group starting in 1980. Spin targets efficient software verification, not hardware verification. It
uses a high level language to specify systems descriptions (PROMELA - PROcess MEta
LANnguage). Spin has been used to trace logical design errors in distributed systems design, such
as operating systems, data communications protocols, switching systems, concurrent algorithms,
railway signaling protocols, etc. The tool checks the logical consistency of a specification. Spin
also reports on deadlocks, unspecified receptions, flags incompleteness, race conditions, and
unwarranted assumptions about the relative speeds of processes. It uses an “on-the-fly”
approach where not al of the model must be in memory at once.

SMV (Symbolic Model Verifier) (http://www.cs.cmu.edu/~model check/smv.html) comes from
Carnegie Méllon University. The SMV system requires specifications to be written in the
temporal logic CTL, and uses Kripke diagrams. The input language of SMV is designed to allow
the description of finite state systems that range from completely synchronous to completely
asynchronous, and from the detailed to the abstract. The language provides for modular
hierarchical descriptions, and for the definition of reusable components. Since it is intended to
describe finite state machines, the only data types in the language are finite ones - Booleans,
scalars and fixed arrays. The logic CTL allows safety, liveness, fairness, and deadlock freedom
to be specified syntactically.

In addition, other “academic” systemsinclude:
e HyTech (http://www-cad.EECS.Berkeley. EDU/~tah/HyTech/)
e Kronos (http://www-verimag.imag.fr//TEMPORI SE/kronos/index-english.html)
e MONA (http://www.brics.dk/mona/)
e Murphi (http://sprout.stanford.edu/dill/murphi.html)
e TREAT (http://www.cis.upenn.edu/~lee/inhye/treat.html)
e TVS (http://tvs.twi.tudelft.nl/)
e UPPAAL (http://www.docs.uu.se/docs/rtmv/uppaal/index.html)
e Verus (http://www.cs.cmu.edu/~model check/verus.html)
e Vis (http://www-cad.eecs.berkeley.edu/~vis/)

Commercial programsinclude:

e Time Rover (http://www.time-rover.com/TRindex.html)

6.6.5.3 Challenges

The main challenge in model checking is the state explosion problem - the fact that the number
of states in the model is frequently so large that model checkers exceed the available memory
and/or the available time. Several techniques are used to cope with this problem.

One type of technique is to build only a part of the state-space of the program, while still
maintaining the ability to check the properties of interest. These are “partial-order techniques’
(interleaving) and “abstraction techniques’ (ssimpler system).

NASA-GB-8719.13 128


http://www.cs.cmu.edu/~modelcheck/smv.html
http://www-cad.eecs.berkeley.edu/~tah/HyTech/
http://www-verimag.imag.fr//TEMPORISE/kronos/index-english.html
http://www.brics.dk/mona/
http://sprout.stanford.edu/dill/murphi.html
http://www.cis.upenn.edu/~lee/inhye/treat.html
http://tvs.twi.tudelft.nl/
http://www.docs.uu.se/docs/rtmv/uppaal/index.html
http://www.cs.cmu.edu/~modelcheck/verus.html
http://www-cad.eecs.berkeley.edu/~vis/
http://www.time-rover.com/TRindex.html

The “symbolic approach” is another way to overcome the problem. The idea is to implicitly
represent the states and transitions of the system, rather than explicitly. Binary Decision
Diagrams (BDDs) are an efficient encoding of Boolean formulas. The BDD is used with the
temporal formulas for the model checking. Therefore, the size of the BDD representation is the
limiting factor and not the size of the explicit state representation.

“On-the-fly” techniques analyze portions of the model as it goes along, so that not al of it must
be in memory at any one time.

6.6.6 Timing, Throughput And Sizing Analysis =

Timing, throughput and sizing analysis for safety-critical functions evaluates software
requirements that relate to execution time, 1/O data rates and memory/storage allocation. This
analysis focuses on program constraints. Typical constraint requirements are maximum
execution time, maximum memory usage, maximum storage size for program, and 1/O data rates
the program must support. The safety organization should evaluate the adequacy and feasibility
of safety-critical timing, throughput and sizing requirements. These analyses also evaluate
whether adequate resources have been allocated in each case, under worst case scenarios. For
example, will 1/0 channels be overloaded by many error messages, preventing safety-critical
features from operating?

Quantifying timing/sizing resource requirements can be very difficult. Estimates can be based
on the actual parameters of similar existing systems.

Items to consider include:
= Memory usage versus availability.

Assessing memory usage can be based on previous experience of software devel opment
if there is sufficient confidence. More detailed estimates should evaluate the size of the
code to be stored in the memory, and the additional space required for storing data and
scratch pad space for storing interim and final results of computations (heap size). As
code is developed, particularly prototype or simulation code, the memory estimates
should be updated.

Consider carefully the use of Dynamic Memory Allocation in safety-critical code or
software that can impact on the safety-critical portions. Dynamic memory allocation can
lead to problems from not freeing allocated memory (memory leak), freeing memory
twice (causes exceptions), or buffer overruns that overwrite code or other data areas.
When data structures are dynamically alocated, they often cannot be statically analyzed
to verify that arrays, strings, etc. do not go past the physical end of the structure.

= |/O channel usage (L oad) versus capacity and availability

Look at the amount of input data (science data, housekeeping data, control sensors) and
the amount of output data (communications) generated. “1/O channel” should include
internal hardware (sensors), interprocess communications (messages), and external
communications (data output, command and telemetry interfaces). Check for resource
conflicts between science data collection and safety-critical data availability. During
failure events, 1/0 channels can be overloaded by error messages and these important
messages can be lost or overwritten (e.g. the British “Piper Alpha’ offshore oil platform
disaster). Possible solutions includes adding components to capture, correlate and

NASA-GB-8719.13 129



manage lower level error messages or passing error codes through the calling routines to
a level that can handle the problem. This allows only passing on critical faults or
combinations of faults that may lead to afailure.

= Execution times versus CPU load and availability

Investigate the time variations of CPU load and determine the circumstances that
generate peak load. Is the execution time under high load conditions acceptable?
Consider the timing effects from multitasking, such as message passing delays or the
inability to access a needed resource because another task has it. Note that excessive
multitasking can result in system instability leading to “crashes’. Also consider whether
the code will execute from RAM or from ROM, which is often slower to access.

=  Sampling rates versusrates of change of physical parameters

Design criteria for this is discussed in Section 6.5.4 Timing, Szing and Throughput
Considerations. Analysis should address the validity of the system performance models
used, together with simulation and test data, if available.

= Program storage space ver sus executable code size

Estimate the size of the executable software in the device it is stored in (EPROM, flash
disk, etc.). This is may be less than the memory footprint, as only static or global
variables take up space. However, if not all components will be in memory at the same
time, then the executable size may be larger. The program size includes the operating
system as well as the application software.

= Amount of datato store versus available capacity

Consider how much science, housekeeping, or other data will be generated and the
amount of storage space available (RAM, disk, etc.). If the data will be sent to the
ground and then deleted from the storage media, then some analysis should be done to
determine how often, if ever, the “disk” will be full. Under some conditions, being
unable to save data or overwriting previous data that has not been downlinked could be a
safety related problem.

Benefit Rating: HIGH Cost Rating: LOW

)

It is possible for a system to meet requirements for a correct state and still be unsafe. Complex
systems increase the chance that unsafe modes will not be caught until the system isin the field.
Fault Tree Analysis (FTA) is one method that focuses on how errors, or even normal functioning
of the system, can lead to hazards. Software Fault Tree Analysis (SFTA) is an extension of the
hardware FTA into the software arena.

6.6.7 Software Fault Tree Analysis

The requirements phase is the time to perform a preliminary software fault tree analysis (SFTA).
This is a “top down” analysis, looking for the causes of presupposed hazards. The top of the
“tree” (the hazards) must be known before this analysis is applied. The Preliminary Hazard
Analysis (PHA) or Software Subsystem Hazard Analysisis the primary source for hazards, along
with the Requirements Criticality Analysis and other analyses described above.

NASA-GB-8719.13 130



The result of a fault tree analysis is a list of contributing causes (e.g., states or events), or
combination of such contributing causes, that can lead to a hazard. Some of those failures will
be in software. At thistop level, the failures will be very genera (e.g., “computer fails to raise
alarm”). When this analysis is updated in later phases (as more detail is available), the failures
can be assigned to specific functions or components.

FTA was originally developed in the 1960's for safety analysis of the Minuteman missile system.
It has become one of the most widely used hazard analysis techniques. In some cases, FTA
techniques may be mandated by civil or military authorities.

The quality of the analysis depends on the analyst’ s experience and capability. An inexperienced
analyst may miss possible hazards or hazard causes. Even with experienced people, it is
important that input from all project areas be included. Software is more of a symbiotic system
(working as part of the whole) than a subsystem. It has influence into many areas, especially
hardware and system operations. Separating out the “software only” aspects is difficult, if not
impossible.

Software Fault Tree Analysis (SFTA) works well in conjunction with the Software Failure
Modes and Effects Analysis (SFMEA) (section 6.6.8). While the SFTA is “top down”, working
from the hazard to possible causes, the SFMEA starts with individual components and works
from the bottom (component) up to a hazard. When used in combination, these two analyses are
very good at finding all the possible failure modes or areas of concern. However, they can be
time-consuming, and therefore expensive. On smaller projects, usually only one analysis is
performed. Because the experience of the analyst affects the quality of the analysis, analysts
may choose to use the analysis they are most familiar with (SFTA or SFMEA). Conversely, they
may choose to perform the analysis they are least familiar with, to force a new perspective on the
system.

Much of the information presented in this section is extracted from Leveson et a. [41,42].
SFTA isacomplex subject, and is described further in Appendix C.

Benefit Rating: HIGH Cost Rating: MODERATE

6.6.8 Software Failure Modes and Effects Analysis

A “bottom up” analysis technique is the FMEA (Failure Modes and Effects Analysis). It looks at
how each component could fail, how the failure propagates through the system, and whether it
can lead to a hazard. This technique requires a fairly detailed design of the system. At early
stages in the software development, such as requirements or early design, only a preliminary
analysis can be performed.

A Software FMEA uses the methods of a standard (hardware) FMEA, substituting software
components for hardware components in each case. A widely used FMEA procedure is MIL-
STD-1629, which is based on the following steps:

NASA-GB-8719.13 131



Define the system to be analyzed.

Construct functional block diagrams.

Identify all potential item and interface failure modes.

Evaluate each failure mode in terms of the worst potential consequences.

Identify failure detection methods and compensating provisions.

Identify corrective design or other actionsto eliminate / control failure.

Identify impacts of the corrective change.

Document the analysis and summarize the problems which could not be corrected.

© No ks~ wDdNPE

Software Fault Tree Analysis (SFTA) (section 6.6.7) works well in conjunction with the
Software Failure Modes and Effects Analysis (SFMEA). While the SFTA is “top down”,
working from the hazard to possible causes, the SFMEA starts with individual components and
works from the bottom (component) up to a hazard. When used in combination, these two
analyses are very good at finding all the possible failure modes or areas of concern. This bi-
directional analysis can provide limited but essential assurances that the software design has
been systematically examined and complies with requirements for software safety. [90]

Performing both analyses, while very useful, can be time-consuming and therefore expensive.
On smaller projects, usually only one analysis is chosen. Because the experience of the analyst
affects the quality of the analysis, analysts may choose to use the analysis they are most familiar
with (SFTA or SFMEA). Conversely, they may choose to perform the analysis they are least
familiar with, to force a new perspective on the system.

More detailed information on SFMEA (Software Failure Modes and Effects Analysis) can be
found in Appendix D.

Benefit Rating: HIGH Cost Rating: HIGH

NASA-GB-8719.13 132



Chapter 7 Software Design

The design of a program set represents the static and dynamic characteristics of the software that
will meet the requirements specified in the governing Software Requirements Document (SRD).
Projects developing large amounts of software may elect to separate design development into
multiple phases, such as preliminary (architectural) and detailed (critical). Those with relatively
small software packages will usually have only a single design phase.

For most lifecycles other than the waterfal, the various phases are broken up over time. Instead
of one monumental “design” phase, there will be several iterative requirements-design-code-test
phases. In some lifecycles, the initial design may be equivalent to the architectural design in the

waterfall, with subsequent design activities adding detail or functionality to the initial design.

7.1 Tasksand Analyses
Table 7-1 Software Design Tasks

Softwar e Engineering Tasks

System and Software
Safety Tasks

Softwar e Assurance or
IV&V Tasks

Create Design from
Requirements, incorporating

Trace safety-critical
requirements into the design

Review selection of
language, OS, and tools.

. Design Traceability Analysis | Pass any safety concerns to
safety requirements and features
[Section 7.5.9 Software Safety.
Review COTS and reused

Formal Inspection of Design

Products [ Section 7.5.4]

Update Criticality Analysis
[Section 7.5.1.1]

software. Pass any safety
concerns to Software Safety.

Design for reliability and
maintainability [Section 7.4.9]

Formal Inspection of Design

Products [ Section 7.5.4]

Review coding standards
and checklists for inclusion
of good practices and
exclusion of unsafe
functions or practices.

Select language, operating system

Hazard Risk Assessment

Review complexity
measurements. Work with

and tools [Section 7.4.4] [Section 7.5.1.2] developer if too high.
Select COTS and reusable Design Safety Analysis Review reliability and
components (7.4.3 and 12.1) Section 75.2 maintainability metrics.

= ' [Section 7.5. [Section 7.4.9]
Develop language restrictions Software Element Analysis | Formal Inspection of Design
and coding standards (7.4.5) [Section 7.5.10 Products [ Section 7.5.4]

NASA-GB-8719.13

133




Softwar e Engineering Tasks

System and Software
Safety Tasks

Softwar e Assurance or
IV&V Tasks

Evaluate complexity of software
design and individual
components. [Section 7.4.8]

Review previous analyses
and update with new
information. (PHA movesto
Sub-system Hazard Analysis
[SSHA] and Systems Hazard
Analysis[SHA])

Forma Methods and Model
Checking [Section 7.5.5]

Review coding standards and
checklists for inclusion of
good practices and exclusion
of unsafe functions or
practices.

Independence Anaysis
[Section 7.5.3]

Review Analysesfrom
Software Assurance for any
safety implications.

Design Logic Analysis
[Section 7.5.6]

Update Safety Data Package
for Phase Il Safety Review or
other carrier- or program-
specific safety review.

Design Data Analysis
[Section 7.5.7]

Design Interface Analysis
[Section 7.5.8

Design Traceability Analysis
[Section 7.5.9]

Dynamic Flowgraph
Analysis[Section 7.5.12]

Rate Monotonic Analysis
[Section 7.5.11]

Markov Modeling
[Section 7.5.13]

Requirements State
Machines

Section 7.5.14, Appendix E

Review previous analyses
and update with new
information.

NASA-GB-8719.13

134




7.2 Documentation and Milestones
The following table lists documents that are commonly produced for this phase of devel opment:

Table 7-2 Softwar e Design Documentation

Document

Softwar e Safety Section

Software Design Specification and other
design documents

Identify the safety-critical units, data, and interfaces
throughout the design. Identify non-critical units that
can interact with safety-critical ones.

Integration Test Plan

Specify the order of unit integration such that safety-
critical units can be fully tested. Include tests that
verify non-critical components cannot influence
critical components.

Formal Inspection Reports

Any safety-critical design defects should be
considered major (must be fixed).

Coding Standards

Include language restrictions, functions to avoid, and
unacceptable programming practices.

Analysis Reports

|dentification of any safety-related aspects or safety
concerns.

Traceability Matrix

|dentify Design components that incorporate safety-
critical requirements

Milestones that will usually occur during this phase include:
e Software Preliminary Design Review (PDR)
e Software Critical Design Review (CDR)
e Phasell Safety Review or other carrier- or program-specific system safety review

NASA-GB-8719.13

135




7.3 Tailoring Guidelines @

See Section 3.2 Tailoring the Effort for how to determine the software safety effort required
(full, moderate, or minimal).

Table 7-3 Softwar e Design Safety Effort

Technique or Analysis Safety Effort Level
MIN MOD FULL

7.4.5 Language Restrictions and Coding Standards b ¢ * b g
7.4.6 Defensive Programming vV * *
1512 Mg ok A v * *
7.5.2 Design Safety Analysis Vv * ¢
7.5.3 Independence Analysis v vv *
7.5.4 Formal Inspections of Design Products v vV *
7.5.5 Formal Methods and Model Checking N v Vv
7.5.6 Datalogic Analysis o v *
7.5.7 Design Data Analysis v vV *
7.5.8 Design Interface Analysis v vv *
7.5.9 Design Traceability Analysis * * *
7.5.10 Software Element Analysis v vv *
7.5.11 Rate Monotonic Analysis N v Vv
7.5.12 Dynamic Flowgraph Analysis o o v
7.5.13 Markov Modeling S v v
7.5.14 Requirements State Machines S v vv

Recommendation Codes

Lt Mandatory Vv Highly Recommended

v Recommended N Not Recommended

NASA-GB-8719.13 136




7.4 Dedign of Safety-Critical Software

7.4.1 Designing for Safety % & g

Creating a good design is an art as well as a science. This guidebook will not deal with the
process of creating a design or ensuring that it is a “good” design. Many books exist that teach
design methods. Section 4.2.2 discusses several design methodologies.

What this section will do, however, is list some concepts that should at least be considered for a
safety-critical design. Questions will be posed for the designer to answer. Specific activities
will be mentioned that support the process of creating a safe design. The intent of this section is
for the designer to think about the design from a safety perspective.

One of the most important aspects of a software design for a safety-critical system is designing
for minimum risk. This “minimum risk” includes hazard risk (likelihood and severity), risk of
software defects, risk of human operator errors, and other types of risk (such as programmatic,
cost, schedule, etc.). When possible, eliminate identified hazards or reduce associated risk
through design. Some ways to reduce the risk include:

e Reduce complexity of software and interfaces.

e Design for user-safety instead of user-friendly (though keep operator usage patternsin
mind). Section 11.9 discusses human factors for software safety.

e Design for testability during development and integration.

e Givemore design “resources’ (time, effort, etc.) to higher-risk aspects (hazard controls,
etc.)

SSP 50038, Computer-Based Control System Safety Requirements [42], provides a checklist of
design criteriafor minimum risk. Itemsinclude: Separation of Commands/Functions/Files/Ports,
Interrupts, Shutdown/Recovery/Safing, Monitoring/Detection, and other design considerations.

Tasks, ideas, and questions for the design phase include:
e Functional Allocation

o0 Determine what modules, classes, etc. will implement the safety-critica
requirements. Isolate these components from the non-critical components as
much as possible.

0 Minimize the number of safety-critical components. Interfaces between critical
components should also be designed for minimum interaction (low coupling).

0 Categorize the components as safety-critical or not. Software Safety should
review this determination for concurrence.

o0 Document the positions and functions of safety-critical components in the design
hierarchy.

0 Document how each safety-critical component can be traced back to original
safety requirements and how the requirement is implemented.

0 Specify safety-related design and implementation constraints.

NASA-GB-8719.13 137



(0]

Document  execution control, interrupt characteristics, initialization,
synchronization, and control of the components. Include any finite state
machines. For high risk systems, interrupts should be avoided as they may
interfere with software safety controls. Any interrupts used should be priority
based.

e Program Interfaces

(0}

o

o

Define the functional interfaces between all components. For safety-critical
components, limit their interaction with other components as much as possible.

Identify shared data within the software. The design should segregate safety-
critical data from other data. Non-critical components should not have access to
safety-critical data. How will the safety-critical data be protected from inadvertent
use or changes by non-safety-critical components?

Document the databases and data files which contain safety-critical data and all
the components that access them, whether they are safety-critical or not.

For each interface specify a design that meets the safety requirements in the ICD,
SIS document of equivalent.

|dentify safety-critical data used in interfaces.

e Fault Detection. Recovery and Safing

(0}
(0}

Specify any error detection or recovery schemes for safety-critical components.

Include response to language generated exceptions and to unexpected external
inputs, e.g. inappropriate commands or out-of-limit measurements.

Consider hazardous operations scenarios. How can the design prevent human
errors from occurring? How can the design recognize faults before they become
failures? What can be added to the design to reduce the risk of the hazard
occurring?

Will memory testing during operation be required? When will the tests be run?
Can the tests ever impact safety-critical functions?

Consider using memory utilization checks to give advance warning of imminent
saturation of memory.

The design of safing and recovery actions should fully consider the real-world
conditions and the corresponding time to criticality. Automatic safing can only be
a vaid hazard control if there is ample margin between worst-case (long)
response time and worst-case (short) timeto criticality.

Automatic safing is often required if the time to criticality is shorter than the
realistic human operator response time, or if there is no human in the loop. This
can be performed by either hardware or software or a combination depending on
the best system design to achieve safing.

How will critical memory blocks be protected from inadvertent corruption or
deletion? Processors with Memory Management Units (MMU) provide one
mechanism for protection. Checking the address range returned by the dynamic

NASA-GB-8719.13 138



allocation routine against the critical memory addresses will work in systems that
use physical (RAM) addresses or logical memory addresses. Care must be taken
that logical and physical addresses are not compared to each other. CRC values
or error-correcting codes are software ways to detect and/or correct critical data
that may be accidentally corrupted

0 What levels of fault and failure tolerance must be implemented, and how will this be
done? Will independent versions of software functiondity be used? How will the
independence be assured? Section 6.5.2 discusses fault and failure tolerance.
Section 7.4.2 provides more details on how to achieve it.

e Inherited or Reused Software and COTS (see Chapter 12)

0 Were any hazard analyses performed on COTS, inherited or reused software?
What information and documentation exists on the analysis, testing, or other
verification of the software?

0 How well understood is this software? What functionality is it missing? What
extra functionality doesit contain?

0 Document where this software is used and its relationship to safety-critical
components.

e Design Feasibility, Performance, and Margins

0 Show how the design of safety-critical components is responsive to safety
requirements.  Include information from any analyses of prototypes or
simulations. Define design margins of these components.

0 Sampling rates should be selected with consideration for noise levels and
expected variations of control system and physical parameters. For measuring
signals that are not critical, the sample rate should be at least twice the maximum
expected signal frequency to avoid aliasing. For critical signals, and parameters
used for closed loop contral, it is generally accepted that the sampling rate must
be much higher. A factor of at least ten above the system characteristic frequency
is customary. [35]

o Digitized systems should select word lengths long enough to reduce the effects of
guantization noise to ensure stability of the system [36]. Selection of word lengths
and floating point coefficients should be appropriate with regard to the parameters
being processed in the context of the overal control system. Too short word lengths
can result in system instability and misleading readouts. Too long word lengths
result in excessively complex software and heavy demand on CPU resources,
scheduling and timing conflicts etc.

o Computers take a finite time to read data and to calculate and output results, so
some control parameters will aways be out of date. Controls systems must
accommodate this. Also, check timing clock reference datum, synchronization
and accuracy (jitter). Anayze task scheduling (e.g., with Rate Monotonic
Analysis (RMA) — section 7.5.11).

NASA-GB-8719.13 139



e Traceability

o For each component, identify traceability to software requirements, especially
software safety requirements.

o0 All requirements must be flowed down into the design. Maintaining a traceability
matrix or other document helps to verify this.

0 ldentify test and/or verification methods for each safety-critical design feature.
e Testing

o Design for testability. Include ways that internals of a component can be
adequately tested to verify that they are working properly.

0 Results of preliminary tests of prototype code should be evaluated and
documented in the Software Development Folders (SDFs).

0 Any safety-critical findings should be reported to the Safety Engineer to help
work out viable solutions.

7.4.2 Designing around Faultsand Failures A

The main safety objective of the design phase is to define the strategy for achieving the required
level of failure tolerance in the various parts of the system. The degree of failure tolerance
required can be inversely related to the degree of fault reduction used (e.g. Formal Methods).
However, even the most rigorous level of fault reduction will not prevent al faults, and some
degree of failuretoleranceis generally required.

Fault Propagation is a cascading of a software (or hardware or human) error from one component
to another. To prevent fault propagation within software, safety-critical components must be
fully independent of non-safety-critical components. They must also be able to both detect an
error within themselves and not allow it to be passed on. Alternately, the receiving component
can catch and contain the error.

e Must Work Functions (MWF)®

MWF s achieve failure tolerance through independent parallel redundancy. For parallel
redundancy to be truly independent there must be dissimilar software in each paralel
path. Software can sometimes be considered “dissimilar” if N-Version programming
(section 7.4.2.1) is properly applied, though true independence is very difficult to
achieve.

For two paralel strings to be independent, no single failure may disable both strings.
For three parallel strings, no two failures may disable all three strings.

® Must Work and Must Not Work functions are discussed in Section F.2, along with examples.

NASA-GB-8719.13 140



Must Not Work Functions (MNWF)®

MNWF's achieve failure tolerance through independent multiple series inhibits. For
series inhibits to be considered independent, they must be (generally) controlled by
different processors containing dissimilar software.

For two in-series inhibits to be independent, no single failure, human mistake, event or
environment may activate both inhibits. For three seriesinhibits to be independent, no
two failures, human mistakes, events or environments (or any combination of two
single items) may activate al three inhibits. Generaly this means that each inhibit
must be controlled by a different processor with different software (e.g. N-Version
programming, see section 7.4.2.1).

Fault/Failure Detection, | solation and Recovery (FDIR)

FDIR is aproblematic area, where improper design can result in system false alarms,
“bogus’ system failures, or failure to detect important safety-critical system failures.
Consider the possible consequences as well as the benefits when determining FDIR
design.

Fault-tolerant design techniques include:

Shadowing (Convergence testing). For non-discrete continuously varying parameters
that are safety-critical, a useful redundancy technique is convergence testing or
“shadowing”. A higher level process emulates lower level process(es) to predict
expected performance and decide if failures have occurred in the lower level processes.
The higher-level process implements appropriate redundancy switching when it detects a
discrepancy. Alternatively, the higher-level process can switch to a subset or degraded
functional set to perform minimal functions when insufficient redundancy remains to
keep the system fully operational.

Built-in Test( BIT): Sometimes FDIR can be based on self-test (BIT) of lower tier
processors where lower level units test themselves, and report their good/bad status to a
higher processor. The higher processor switches out units reporting afailed or bad status.

Majority voting. Some redundancy schemes are based on majority voting. This
technique is especially useful when the criteria for diagnosing failures are complicated.
(e.0. when an unsafe condition is defined by exceeding an analog value rather than
simply a binary value). Magjority voting requires more redundancy to achieve a given
level of failure tolerance, as follows. 2 of 3 achieves single failure tolerance; 3 of 5
achieves two failure tolerance. An odd number of parallel units are required to achieve
majority voting.

N-Version programming. See section 7.4.2.1.
Fault containment regions. See section 7.4.2.2.
Redundant Architecture. See section 7.4.2.3.

Recovery blocks use multiple software versions to find and recover from faults. The
output from ablock is checked against an acceptance test. If it fails, then another version
computes the output and the process continues. Each successive version is more reliable

NASA-GB-8719.13 141



but less efficient. If the last version fails, the program must determine some way to fail
safe.

e Resourcefulness. Resourcefulness concentrates on achieving system goals through
multiple methods. For example, if the goa is to point a scan platform at a particular
target, the exact movement scenario is not specified. Whether it moves +10 degrees or —
350 degrees, it points at the same location. This approach allows the system to
compensate for problems. It requires systems that are functionaly rich, to provide the
options necessary to fulfill the goal.

e Abbott-Neuman Components. Components must be self-protecting and self-checking.
A self-protecting component does not allow other components to crash it; rather it returns
an error indication to the calling component. A self-checking component detects its own
errors and attempts to recover from them.

e Sdf-checksare atype of dynamic fault-detection that is used by other techniques (e.g. N-
Version programming and recovery blocks). Varieties of self-checks include replication
(copies that must be identical if the data is to be considered correct), reasonableness (is
the data reasonable, based on other data in the system), and structural (are components
mani pulating complex data structures correctly).

7.4.2.1 N-Version Programming

N-Version Programming is one method that can be used to implement failure tolerant behavior.
Multiple, independent versions of the software execute ssmultaneoudly. If the answers all agree,
then the process continues. If there is disagreement, then a voting method is used to determine
which of the answersis correct.

In the past, some NASA policy documents have essentialy stipulated the use of N-Version
programming in any attempt to achieve failure tolerance. Reference [42] discusses in more
detail the JSC position on N-Version programming. They recognize that the technique has
limitations. Many professionals regard N-Version programming as ineffective, or even counter
productive.

Efforts to implement N-Version programming should be carefully planned and managed to
ensure that valid independence is achieved. In practice, applications of N-Version programming
on NSTS payloads are limited to small ssimple functions. However, the NSTS power up of the
engines has N-Version programming as well.

Note that, by the NSTS 1700.7B stipulation, two processors running the same operating system
are neither independent nor failure-tolerant of each other, regardless of the degree of N-Version
programming used in writing the applications.

In recent years, increasing controversy has surrounded the use of N-Version programming. In
particular, Knight and Leveson [43] have jointly reported results of experiments with N-Version
programming, claiming the technique is largely ineffective. Within NASA, Butler and Finelli
[44] have also questioned the validity of N-Version programming, even calling it “counter
productive”. Though it has worked very effectively on some occasions, it should be evaluated
carefully before being implemented.

One major problem with N-Version programming is that it increases complexity, which has a
direct relationship with the number of errors. In one NASA study of an experimental aircraft, all

NASA-GB-8719.13 142



of the software problems found during testing were the result of the errors in the redundancy
management system. The control software operated flawlessly! Another difficulty with N-
Version programming is that achieving true independence is very difficult. Even if separate
teams develop the software, studies have shown that the software is ill often not truly
independent.

Reference [45] gives some useful background for N-Version programming.

7.4.2.2 Fault Containment Regions

One approach is to establish Fault Containment Regions (FCRs) to prevent propagation of
software faults. This attempts to prevent fault propagation such as from non-critical software to
safey-critical components; from one redundant software unit to another, or from one safety-
critical component to another. Techniques such as firewalling or “come from” checks should be
used to provide sufficient isolation of FCRs to prevent hazardous fault propagation.

FCRs are best partitioned or firewalled by hardware. Leveson [9] states that “logical” firewalls
can be used to isolate software components, such as isolating an application from an operating
system. To some extent this can be done using defensive programming techniques and interna
software redundancy (e.g., using authorization codes or cryptographic keys). However, within
NASA this is normally regarded as hazard mitigation, but not hazard control, because such
software/logical safeguards can be defeated by hardware failures or EMI/Radiation effects.

A typical method of obtaining independence between FCRs is to host them on different and
independent hardware processors. Sometimes it is acceptable to have independent FCRs hosted
on the same processor depending on the specific hardware configuration (e.g. the FCRs are
stored in separate memory chips and they are not simultaneously or concurrently multitasked in
the same Central Processing Unit (CPU)).

Methods of achieving independence are discussed in more detail in Reference [35], "The
Computer Control of Hazardous Payloads’, NASA/JSC/FDSD, 24 July 1991. FCRs are defined
in reference [42], SSP 50038 “Computer Based Control System Safety Requirements -
International Space Station Alpha’.

7.4.2.3 Redundant Architecture

Redundant architecture refers to having two versions of the operational code. Unlike N-Version
programming, the two versions do not need to operate identically. The primary software is the
high-performance version. This is the “regular” software you want to run — it meets al the
required functionality and performance requirements.

However, if problems should develop in the high-performance software, particularly problems or
failures that impact safety, then a “high-assurance” kernel (also called a safety kernel) is given
control. The high-assurance kernel may have the same functionality as the high-performance
software, or may have a more limited scope. The primary aspect is that it is safe. The high-
assurance kernel will amost certainly be less optimized (slower, stressed more easily, lower
limits on the load it can handle, etc.).

The Carnegie Méellon Software Engineering Institute (SEI) Simplex Architecture [46] is an
example of a redundant architecture. This architecture includes the high-performance/high-
assurance kernels, address-space protection mechanisms, real-time scheduling algorithms, and
methods for dynamic communication among components. This process requires using analytic

NASA-GB-8719.13 143



redundancy to separate major functions into high-assurance kernels and high-performance
subsystems.

7.4.3 Seection of COTSand Reusing Components % &

Early in the design phase, and sometimes even during requirements definition, decisions are
made to select Off-The-Shelf (OTS) items (software, hardware, or both) that are available “asis’
from a commercia source (Commercial Off-The-Shelf (COTS)) or to reuse applications
developed from other similar projects (i.e., Government Off-The-Shelf (GOTS) items). Any
modifications of these items place them in another category — Modified Off-the-Shelf (MOTS)
items.

OTS items commonly used include operating systems, processor and device microcode, and
libraries of functions. It is becoming prohibitively expensive to custom develop software for
these applications. In addition, the desire to not “reinvent the wheel” is strong, especially when
faced with budget and schedule constraints. There is also a trend in government to use
commercial productsinstead of custom developing similar but much more expensive products.

Section 12.1 Off-the-Shelf Software covers the pros and cons of OTS and reused software in
more detail. Many issues need to be considered before making the decision to use OTS software,
or to reuse software from a previous project. While OTS software may appear cost-effective, the
additional analyses, tests, glueware code development, and other activities may make it more
expensive than developing the software in-house. The section also provides recommendations
for additional analyses and tests for OTS software in safety-critical systems.

Section 12.2 Contractor-devel oped Software discusses issues relating to having custom software
created by a contractor, rather than in-house.

7.4.4 Selection of language, development tools and oper ating systems

It is during the design phase that the language used to develop the software, the tools used in the
creation of software, as well as the operating system (OS) it will run on, are often selected. The
choice of language, tools, and OS can have an impact on the safety of the software. Some
operating systems have more “safety” features than others. Some tools make finding errors
easier.

When choosing a programming language, many factors are important. For example, consider the
variations of memory size (footprint) and execution speed of an algorithm between candidate
languages. The existence of tools (compiler, integrated development environment, etc.) that
support the language for the specified processor and on the development platform, and the
availability of software engineers who have training and experience with the language are also
important. When developing safety-critical applications or components, however, the “safeness’
of the programming language should be a high priority factor.

A “safe’ programming language is one in which the tranglation from source to object code can
be rigorously verified. Compilers that are designed to use safe subsets of a programming
language are often certified, guaranteeing that the object code is a correct trandation of the
source code. In amore general sense, a“safe” language is one that enforces good programming
practices, and that finds errors a compile time, rather than at run time. Safe languages have
strict data types, bounds checking on arrays, and discourage the use of pointers, among other
features.

NASA-GB-8719.13 144




Section 4.6 Good Programming Practices for Safety contains a technical overview of safety-
critical coding practices for developers and safety engineers. Many of the coding practices
involve restricting the use of certain programming language constructs.

Section 11.1 provides an introduction on the criteria for evaluating the risks associated with the
choice of a particular programming language. Some are well suited for safety-critical
applications, and therefore engender a lower risk. Others are less “safe” and, if chosen, require
additional analysis and testing to assure the safety of the software. Where appropriate, safe
subsets of languages will be described. Common errors (“bugs’) in software development are
also included.

When choosing a language, consider the language “environment” (compiler, Integrated
Development Environment (IDE), debugger, etc.) as well. |s the compiler certified? Isthere a
list of known defects or errors produced by the compiler? Does the code editor help find
problems by highlighting or changing the color of language-specific terms? Does the compiler
allow you to have warnings issued as errors, to enforce conformance? Is there a debugger that
allows you to set break points and look at the source assembly code?

No programming language is guaranteed to produce safe software. The best languages enforce
good programming practices, make bugs easier for the compiler to find, and incorporate
elements that make the software easier to verify. Even so, the “safeness’ and reliability of the
software depend on many other factors, including the correctness of the requirements and design.
Humans are involved in all aspects of the process, and we are quite capable of subverting even
the “safest” of languages. Select alanguage based on a balance of all factors, including safety.

Suggestions for what to look for when selecting an operating system, programming language,
and development tool are included in Chapter 11 Software Development I ssues.

111 Programming Languages
11.2 Compilers, Editors, Debuggers, IDEs and other Tools
11.3 CASE tools and Automatic Code Generation
114 Operating Systems
7.45 Language Restrictionsand Coding Standards &

When it comes to safety-critical software, some aspects of various programming languages
should be avoided. These aspects may be undefined by the standard (and therefore vary between
compilers). They may perform a function or activity that is undesired or detrimental to the
system (such as disabling interrupts for too long). Or they may simply be “bad practice” —
functions or constructs that are often used improperly or lead to many defects.

It isimportant that the chosen language is surveyed for such potential problems before the design
is actually implemented in code. This can be done as part of the initial language selection
process. It isfar easier to implement “good practice” early on, than to have to retrain software
engineers to avoid certain language constructs when they have been using them for some time.

A Coding Standard is one way to implement such language restrictions. The standard can
indicate what software constructs, library functions, and other language-specific information

NASA-GB-8719.13 145



must or must not be used. As such, it produces, in practice, a “safe” subset of the programming
language. Coding standards may be developed by the software designer, based on the software
and hardware system to be used, or may be general standards for a*“safer” version of a particular
language.

The process compilers use internally to convert the higher level language into machine
operations may be undefined and is often highly variable between compilers. For example, the
implementation method for dynamic memory allocation is not part of most language
specifications, and therefore varies between compilers. Even for a specific compiler,
information on how such a process is implemented is difficult to obtain. The location of the
allocated memory is usually not predictable, and that may not be acceptable for a safety-critical
software component. Another example is the order that global items are initialized. Coding
standards can be used to make sure that no global item depends on another global item having
been aready initialized.

It is important that all levels of the project agree to the coding standards, and that they are
enforced. If the programmers disagree, they may find ways to circumvent it. Safety requires the
cooperation of everyone. Include those who will actualy do the programming, as well as
software designers and software leads, in any meetings where coding standards will be
discussed.

Coding standards may also contain requirements for how the source code is to look, such as
indentation patterns and comment formats. However, it is best to separate these requirements
into a separate coding style document. This avoids the problem of developers shelving the
coding standards because they disagree with the coding style. While trivial in many ways,
coding style requirements help make the software more readable by other developers. In
addition, they make it more difficult for “typical” errors to be inserted in the code, and easier for
them to be found during an inspection.

Create a checklist from the agreed-upon coding standard, for use during software formal
inspections and informal reviews. Enforce conformance to the standard during the inspections.
Do not rate “style” issues as highly as safety issues. In fact, style issues can be ignored, unless
they serioudly impact on the readability of the code, or the project decides that they must be
enforced.

Coding standards can be enforced some development tools. See section 11.2 for details on what
to look for when choosing devel opment tools.

Benefit Rating: HIGH Cost Rating: LOW

7.4.6 Defensive Programming &

Defensive programming is the art of making sure your software can gracefully handle anything
thrown at it. In other words, it is a collection of methods, techniques, and algorithms designed to
prevent faults from becoming failures. The faults (defects) you want to be concerned about can
be in your own software (e.g. incorrect logic), another program in the system (e.g. sends invalid
message), hardware faults (e.g. sensor returns bad value), and operator error (e.g. mistyping
command). Consider the system to be a hostile environment that might throw anything at you
and design your software to handle it gracefully.

NASA-GB-8719.13 146



A simple example of defensive programming is range checking on an input variable. If the
variable is only supposed to be in the range of 1 to 10, check for that before the variable is used.
If the input variable is outside that range, the software needs to do something. What that
something is should be part of an overall strategy. One option is to stop processing in that
function and return with an error code. Another is to replace the out-of-range value with a preset
default value. A third option is to throw an exception or use another high-level error handling
method. Of course, one option is to just proceed onward, alowing the fault (bad input number)
to eventually lead to afailure. This approach is not recommended.

Another example of defensive programming is “come from” checks. Critical routines test
whether they should be executing at some particular instant. If the checks are not validated, then
the critical routine does not execute, and usually issues an error message. One method of
implementing these “come from” checksis for each preceding processto set a bit flag. If all the
appropriate bits are set, then the critical routine is authorized to execute.

The strategy for dealing with defects, errors, and faults should be thought-out early in the
program. Will each function (routine, method, etc.) check input variables, or will variables be
checked before they are passed during a function call? Will faults be handed up to higher-level
error handling software? Will certain faults be alowed, and the resulting failure handled when
(or if) it occurs? Regardless of the strategy chosen, consistency is important. All functions,
methods, modules, units, etc. should use the same strategy, unless there is a very good reason to
deviate.

Section 7.4.2 dealt with fault and failure tolerance. Defensive programming is, in many ways, a
lower-level part of that strategy. However, it deals more with the actual implementation details,
and is language-specific. Defensive programming is discussed here because it needs to be
planned into the software design, not tacked-on later.

Section 8.4.1 calls for the development of a defensive programming checklist. This checklist
will be used by the programmers while developing the code. The defensive programming
strategy must be included in this checklist, as well as language-specific problem areas and good
practices.

Benefit Rating: HIGH Cost Rating: LOW

7.4.7 Integration Test Planning

At this devel opment phase, the main components (units) of the software have been defined. This
is the time to determine the integration order of the units, and the integration tests that will be
run. Consider the hardware development schedule, as some units may require the real hardware
to run on. You do not want to hold up integration testing while waiting for a piece of hardware
to be completed.

Consider where to integrate the safety-critical components. Integration testing is the time to ook
for unexpected interactions among the units. Whether safety-critical units are integrated first
with non-critical units added later, or the reverse, does not really matter. However, testing for
interactions with the safety-critical units as each unit is added is recommended. One advantage
of early integration of the safety-critical unitsis that they will undergo more testing than if they
are integrated later in the process. Each additional test opens up the possibility of finding
defects. Each defect-free test increases the confidence in the safety-critical unit.

NASA-GB-8719.13 147



748 Complexity 288 \ |

The complexity of the software components and interfaces should be eval uated, because the level
of complexity can affect the understandability, reliability and maintainability of the code.
Highly complex data and command structures are difficult, if not impossible, to test thoroughly.
Complex software is difficult to maintain, and updating the software may lead to additional
errors. Not all paths can usually be thought out or tested for, and this leaves the potential for the
software to perform in an unexpected manner. When highly complex data and command
structures are necessary, ook at techniques for avoiding a high alevel of program interweaving.

Linguistic and structural metrics exist for measuring the complexity of software, and are
discussed below. The following references provide a more detailed discussion of and guidance
on the techniques.

1. “Software State of the Art: selected papers’, Tom DeMarco, Dorset House, NY,
2000.

2. “Black-Box Testing: Techniques for Functional Testing of Software and Systems”,
Boris Beizer, Wiley, John & SonsInc., 1995

3. “Applying Software Metrics’, Shari Lawrence Pfleeger and Paul Oman, | EEE Press,
1997

4. *A Framework of Software Measurement”, Horst Zuse, Walter deGruyter, 1998

5. “Metrics and Models in Software Quality Engineering”, Stephen Kan, Addison
Wesley, 1995

6. “Object-Oriented Metrics: Measures of Complexity”, Brian Henderson-Sellers,
Prentice Hall, 1996

7. “Software Metrics: A Rigorous and Practical Approach”, Norman E. Fenton, PWS
Publishing, 1998

8. “Function Point Analysis: Measurement Practices for Successful Software Projects’,
David Garmus and David Herron, Addison, 2000

Linguistic measurements assess some property of the text without regard for the contents (e.g.,
lines of code, function points, number of statements, number and type of operators, total number
and type of tokens, etc). Halstead's Metrics is a well-known measure of several of these
arguments.

Structural metrics focuses on control-flow and data-flow within the software and can usually be
mapped into a graphics representation.  Structural relationships such as the number of links
and/or calls, number of nodes, nesting depth, etc. are examined to get a measure of complexity.
McCabe's Cyclomatic Complexity metric is the most well-known and used metric for this type of
complexity evaluation.

Object-oriented software does not aways fit easily into the structured complexity metrics.
Reference 6 (above) describes complexity metrics for OO software. Such metrics include:
Weighted Methods per Class, Depth of Inheritance Tree, Number of Children (subclasses),
Degree of Coupling Between Objects, Degree of Cohesion of Objects, and Average Method
Complexity.

NASA-GB-8719.13 148



Resources used by these techniques are the detailed design, high level language description, any
source code or pseudocode, and automated complexity measurement tool(s). Outputs from this
process are the complexity measurements, predicted error estimates, and areas of high
complexity identified for further analysis or consideration for simplification.

Several automated tools are available that provide these metrics. The level and type of
complexity can indicate areas where further analysis or testing may be warranted. Do not take
the numbers at face value, however! Sometimes a structure considered highly complex (such asa
case statement) may actualy be a simpler, more straightforward method of programming, thus
decreasing the risk of errors during maintenance.

Recommendations:

Apply one or more complexity estimation techniques, such as McCabe or Halstead, to the design
products. If an automated tool is available, the software design, pseudo-code, or prototype code
can be run through the tool. If there is no automated tool available, examine the critical areas of
the detailed design and any preliminary code for areas of deep nesting, large numbers of
parameters to be passed, intense and numerous communication paths, etc. The references above
give detailed instructions on what to look for when estimating compl exity.

Complexity limits may be imposed. Limiting complexity at all stages of software development
helps avoid the pitfalls associated with high complexity software. McCabe recommends a
Cyclomatic Complexity limit of 10, though limits as high as 15 have been used successfully.
“Limits over 10 should be reserved for projects that have several operational advantages over
typical projects, for example experienced staff, formal design, a modern programming language,
structured programming, code walkthroughs, and a comprehensive test plan. In other words, a
development group can pick a complexity limit greater than 10, but only if they make an
informed choice based on experience and are willing to devote the additional testing effort
required by more complex modules.” [93]

Complexity involves more than just individual modules or classes. Complexity of interfaces is
another type of complexity that must be considered. As the number of modules increases
(perhaps due to limits on individua module complexity), the number of interfaces increases.
Other elements of the software may also contribute to its complexity. For example, global data
introduces the possibility that virtually any part of the software can interact with any other part
through their operations on the same data. This can dramatically increase the complexity,
especially for a human reader attempting to understand the program. [92]

Reducing the complexity of software is a complicated task. It involves balancing al the various
types of complexity (module, interface, communication, etc.). Often, reducing complexity in one
area will increase the complexity of another area. The correct balance will have to be
determined by the project team. Limit the complexity in areas that are not well understood, that
will not undergo detailed inspections or reviews, or that may not be tested comprehensively.
Higher complexity can be tolerated in software that the team has experience in, that are well
understood, or that will be subjected to rigorous reviews and testing.

Benefit Rating: HIGH Cost Rating: LOW

NASA-GB-8719.13 149



7.4.8.1 Function Points

The most common size metric used is software lines of code (SLOC). While easy to measure,
this metric has some problems. The lines of code it takes to produce a specific function will vary
with the language — more lines are needed in assembly language than in C++, for instance.
Counting the lines can only be done once the code is available, and pre-coding estimates are
often not accurate.

Function Points are an alternative measurement to SLOC that focuses on the end-user, and not on
the technical details of the coding. Function Point Analysis was developed by Allan Albrecht of
IBM in 1979, and revised in 1983. The FPA technique quantifies the functions contained within
software in terms which are meaningful to the software users. The measure relates directly to the
requirements which the software is intended to address. It can therefore be readily applied
throughout the life of a development project, from early requirements definition to full
operational use.

The function point metric is caculated by using a weighted count of the number of the
following elements:

e User inputs provide application-oriented data to the software.

e User outputs provide application-oriented information to the user. This includes reports,
screens, error messages, etc. Individual data items within a report are not counted

separately.
e User inquiries are an on-line input that results in the generation of some immediate

software response in the form of an on-line output. Typing a question in a search engine
would be an inquiry.

e Filesinclude both physical and logical files (groupings of information).

e External interfaces are all machine readable interfaces used to transmit information to
another system.

The weighting factors are based on the complexity of the software.

“Function Point Analysis. Measurement Practices for Successful Software Projects’, by David
Garmus and David Herron (reference 8 in section 7.4.8), provides information on calculating and
using function points. The International Function Point Users Group (IFPUG,
http://www.ifpug.org/) supports and promotes the use of function points.

7.4.8.2 Function Point extensions

Function points are business (database, transaction) oriented. Extensions are needed for systems
and engineering software applications, such as rea-time, process control, and embedded
software.

Feature points are one such extension. This metric takes into account algorithmic complexity. A
feature point value is the sum of the weighted function point factors and the weighted algorithm
count. Algorithms include such actions as inverting a matrix, decoding a bit string, or handling
an interrupt. Feature points were developed in 1986 by Capers Jones.

The “3D function point” was developed by Boeing for real-time and embedded systems. The
Boeing approach integrates the data, functional, and control dimensions of a software system.

NASA-GB-8719.13 150


http://www.ifpug.org/

The data dimension is essentialy the standard function point. The functional dimension counts
the transformations, which are the number of internal operations to transform the input data into
output data. The control dimension is measured by counting the number of transitions between
states.

7.4.9 Design for Maintainability and Reliability E;i & i’

To build maintainable software, numerous metrics can be collected to evaluate the quality of the
design from a maintainability point of view. Metrics developed prior to object-oriented software
include cyclomatic complexity, lines of code, and comment percentage. Object-oriented metrics
include weighted methods per class, response for a class, lack of cohesion of methods, coupling
between objects, depth of inheritance tree, and number of children. A Maintainability Index was
developed by the Software Engineering Institute (SEI), and is calculated using a combination of
widely used and commonly available measures [103].

Basically, what these metrics do is evaluate a design for qualities that enhance the software's
ability to be maintained over a long period of time. A lot of the metrics provide a way for
evaluating parts of the design and giving it a numerical value. For instance, cohesion is the
degree to which methods within a class are related to one another and work together to provide
well-bounded behavior. A high cohesion vaue indicates good class subdivision. Lack of
cohesion or low cohesion indicates more complexity and a higher likelihood of errors occurring.

In addition to the metrics, a project should also set itself up to build maintainable software by
doing the following:

e Plan early - anticipating what and how software might be modified

e Modular design - define subsets; simplify functionality (1 function/module)
e Object-oriented design

e Uniform conventions

e Naming conventions

e Coding standards

e Documentation standards

e Common tool sets

e Configuration Management

The Maintenance Phase (section 10.5) is also critical. JSC estimates that in a large system,
software life cycle costs typically exceeds hardware, with 80-90% of the total system cost going
into software maintenance. If this phase is not properly planned for, the extra effort that was put
into the development phase will be wasted. It is critical that the Maintenance Phase be planned
for early so that maintainability is built into the software.

The Maintenance Phase, including the transition from development to maintenance, needs to be
planned in order to make the change without disrupting the system. Planning needs to include
how maintenance will be carried out, what types of changes will be covered, who is responsible
for each aspect of maintenance, what is the process by which maintenance changes will be made,
what resources will be needed, etc.

NASA-GB-8719.13 151



Building reliable software also depends on collecting the right metrics and analyzing them
properly, aong with having good processes in place. The IEEE Standard 982.2-1988 lists 39
metrics which can be used to determine software reliability. The IEEE standard does not
recommend to collect them all, but to do a determination of which ones will apply to your
system. It also recommends that different metrics be collected in the different life cycle phases
and has a table that cross-references metrics and phases. The standard also provides practical
advice for building reliable software:

e Dot right first - get skilled, competent personnel; early user involvement; use modern
methods, languages and tools.

e Detect it early; fix it as soon as possible - detect faults early through reviews, inspections,
prototyping, simulation, etc.; reliability cannot be tested into a product

e Monitor it - collect metrics; state objective of how a metric will be used, otherwise don't
useit.

AIAA/ANSI R-013-1992 has an 11 step generic procedure for estimating software reliability:
e Identify application

Define the requirement

e Allocate the requirement

e Definefailure

e Characterize the operational environment
e Select tests

e Select modes

e Collect data

e Estimate parameters

e Validate the model

e Performanalysis

The document also provides details of analysis procedures for some common engineering or
management activities that can be aided by software reliability engineering technology. Section
6 of the document provides many software reliability estimation models.

The IEEE Technical Council on Software Engineering (TCSE) Committee on Software
Reliability Engineering has aweb site with more information. It is http://www.tcse.org/sre.

A software reliability case can be written to provide justification of the approach taken and
document evidence that verifies that the software meets reliability requirements. The reliability
case should be a living document that records what has been done in the various phases of
software development pertaining to reliability.

NASA-GB-8719.13 152


http://www.tcse.org/sre

Resources for more information:
e |EEE Std 1219-1998 | EEE Standard For Software Maintenance
e "Redlities of Software Sustainment vs. Maintenance", Crosstalk magazine, May 1997

e Review of "Practical Software Maintenance", Journal of Software Maintenance and
Practice, May 2000

e "A JPL Software Reliability Study and a Windows-based Software Reliability Tool" by
Allen P. Nikora/JPL

e "ThePrediction of Faulty Classes Using Object-Oriented Design Metrics' by Emam and
Melo, November 1999, National Research Council Canada

e "A Practical Software-Reliability Measurement Framework Based on Failure Data' by
Minyan, Yunfeng and Min, |EEE 2000 Proceedings Annual Reliability and
Maintainability Symposium

e "Software Quality Metrics for Object Oriented System Environments”,
http://ourworld.compuserve.com/homepages/qual azur/$swmesu2.htm

e "Software Reliability Cases. The Bridge Between Hardware, Software and System Safety
and Reliability”, |EEE 1999 Proceedings Annual Reliability and Maintainability
Symposium

e "Maintainability Index Technique for Measuring Program Maintainability",
http://www.sei.cmu.edu/activities/str/descriptions/mitmpm.html

e "Software Design For Maintainability” from JSC

e |EEE Std 982.2-1988 |EEE Guide for the Use of |IEEE Standard Dictionary of Measures
to Produce Reliable Software

e AIAA/ANSI R-013-1992 Recommended Practice for Software Reliability

7.5 Design Analysis

The software preliminary (architectural) design process develops the high level design that will
implement the software requirements. All software safety requirements developed in Section 6.5
are incorporated into the high-level software design as part of this process. The design process
includes identification of safety design features and methods (e.g., inhibits, traps, interlocks and
assertions) that will be used throughout the software to implement the software safety
requirements.

As part of the architectural design process, the software requirements are allocated to software
subsystems and various software layers (operating system, device driver, application, API, etc.).
These higher-level components generally correspond to Computer Software Configuration Items
(CSCls). Individual Computer Software Components (CSCs) are then identified within these
higher level components.

Some of the CSCs will implement safety-critical requirements or features, or work with other
safety-critical CSCs. These CSCs are designated as safety-critical. These components

NASA-GB-8719.13 153


http://ourworld.compuserve.com/homepages/qualazur/$swmesu2.htm
http://www.sei.cmu.edu/activities/str/descriptions/mitmpm.html

implement the safety features, can potentialy impact the safety features, or can potentialy
impact any other safety-critical component. A software component that can write to a safety-
critical data area, even if it does not do so during normal operations, is safety-critical.
Malfunctioning of that component will affect the safety of the system.

Safety analyses are performed on the design to identify potential hazards and to define and
analyze safety-critical components. Early test plans are reviewed to verify incorporation of
safety-related testing. Software safety analyses begun earlier are updated as more detail becomes
available.

During the detailed (critical) design phase, the software artifacts (design documents) are greatly
enhanced. This additional detail now permits rigorous analyses to be performed. Detailed
design analyses can make use of products such as detailed design specifications, emulators and
Pseudo-Code Program Description Language products (PDL). Preliminary code produced by
code generators within CASE tools should be evaluated.

Many techniques to be used on the final code can be "dry run" on these design products. In fact,
it is recommended that all analyses planned on the final code should undergo their first iteration
on the code-like products of the detailed design. This will catch many errors before they reach
the final code where they are more expensive to correct.

7.5.1 Update Previous Analyses

At this stage of development, the software functions begin to be allocated to components.
Software for a system, while often subjected to a single development program, actually consists
of a set of multipurpose, multifunction entities. The software functions need to be subdivided
into many components and further broken down to modules.

A software safety checklist should have been produced during the requirements phase that lists
all safety-related software requirements. This checklist can be used to help verify that all safety
requirements are incorporated into the design, and ultimately into the software code.

Many previous analyses could only be started, as the necessary detail was lacking. During the
design process, these analyses should be revisited and updated.

Table 7-4 Previous Softwar e Safety Analyses

Analysis Guidebook Section
Preliminary Hazard Analysis (PHA) 23.1

Software Subsystem Hazard Analysis 2.34

Software Safety Requirements Flow-down

Analysis 66.1

Requirements Criticality Analysis 6.6.2

Timing, Sizing, and Throughput 6.6.6

Software Fault Tree Analysis 6.6.7

Software Failure Modes and Effects Analysis 6.6.8

Control-flow and Information-flow Analyses 6.6.3.2,6.6.3.3

NASA-GB-8719.13 154



7.5.1.1 Criticality Analysis

Some of the software components will be safety-critical, and some will not. Each component
that implements a safety-critical requirement must now be assigned a criticality index, based on
the criticality analysis (See Section 6.6.2 Requirements Criticality Analysis). The safety activity
during the design phase is to relate the identified hazards to the Computer Software Components
(CSCs) that may affect or control the hazards.

Develop a matrix that lists al safety-critical Computer Software Components and the safety
requirements they relate to. Include any components that can affect the safety-critical
components as well. This would include components that write to data in memory shared with
the safety-critical components, or that provide information to the safety-critical components.
The safety-critical designation should be applied to any component (class, module, subroutine or
other software entity) identified by this analysis.

7.5.1.2 Software Component Risk Assessment

Once safety-critical Computer Software Components (CSCs) have been identified, they need to
be prioritized based on risk. Not all safety-critical components warrant further analysis beyond
the design level, nor do all warrant the same depth of analysis. Several factors determine how
risky an individual safety-critical component is, including:

e Systemrisk index (Table 2-3)

e Degree of software control of hazard or influence over other controls or mitigations
e Amount of redundant control (e.g. hardware control as backup for software)

e Complexity of the component

e Timing criticality of the system

While Sections 6.6.2 Requirements Criticality Analysis and 7.5.1.1 Criticality Analysis simply
assign a “Yes’ or “No” to whether each component is safety-critical, the Risk Assessment
process takes this further. Each safety-critical component is prioritized for degree of
development effort, analysis and verification activities according to the five levels of ranking
given previously in Table 3-3 Software Risk Matrix.

The purpose of this activity is to identify safety-critical components that require extra

@ attention (above that determined by the software safety effort (Table 3-5)) or less effort.
While many of the techniques and analyses apply to the software as a whole, some can be
applied to individual components at varying levels. For example, Formal Inspections of
safety-critical design or code elements should be performed. Within that broad activity,
the number of inspections for each component can be tailored. High risk components
may be inspected at all stages of design and coding. Low risk components may only
have a code inspection.

Determination of the severity and the probability of failure for the software components is
sometimes a source of contention between the safety group and the project. It isbest to sit down
and work out any disagreements at an early stage. Getting the software development group’s
“buy in” on what is truly safety-critical is vital. Software developers may give less attention to
what they do not see as important. Getting everybody on one “side” early prevents the problem
of having to force the project to add safety code or testing later in the development cycle.

NASA-GB-8719.13 155



7.5.1.3 Software FTA and Software FMEA

The preliminary Software Fault Tree generated in the requirements phase can now be expanded.
Broad functions can be specified down to some component, at least at a high level. In addition,
the system is now understood in greater depth. Failures that were credible during the
requirements phase may no longer be possible. Additional causes for the top hazard may be
added to the tree.

The individual components have now been specified, at least to some degree. The Software
Fallure Modes and Effects Anaysis (SFMEA) can be updated to reflect the improved
understanding of the system. The SFMEA will improve throughout the design phase, as more
detaill becomes available. Be especiadly aware of the interactions of non-critical components
with those that are safety-critical. A non-critical component that can influence the safety-critical
components becomes safety-critical itself.

7.5.2 Design Safety Analysis

Okay, you've got your list of SCCSCs that will be further analyzed. Next you analyze the design
of those components to ensure all safety requirements are specified correctly and completely. In
addition, review the design, looking for places and conditions that lead to unacceptable hazards.
Thisis done by postulating credible faults or failures and evaluating their effects on the system.

Consider the following types of events and failures:
e input/output timing
e multiple event
e out-of-sequence event
o failureof event
e wrong event
e inappropriate magnitude
e incorrect polarity
e adverse environment
e deadlocking in a multitasking system
e hardwarefailures

Formal Inspections (see 6.5.5 Formal Inspections of Software Requirements) or design reviews
can be used to augment this process. As a design is reviewed, asking the “what if” questions
with a diverse group of reviewers may lead to identification of weaknesses (or strengths) within
the software. Prototype, animation or simulation of aspects of the design may also show where

the software can fail.

7.5.2.1 Design Reviews % &

Design reviews are conducted to verify that the design meets the requirements. Often the
reviews are formal (e.g. Preliminary Design Review (PDR) and Critical Design Review (CDR))
and for the whole system. Separate software PDRs and CDRs may be held, or the software may
be a part of the system review.

NASA-GB-8719.13 156



At al reviews, software safety must be addressed. Does the design meet al the applicable
software safety requirements? Does the design use “best practices’ to reduce potentia errors?
Are safety-critical components properly separated from the rest of the software? Thisis the time
to make design changes, if necessary, to fulfill the safety requirements.

Applicability matrices, compliance matrices, and compliance checklists are resources which can
be used to assist in completing this task. Output products from the reviews are engineering
change requests, hazard reports (to capture design decisions affecting hazard controls and
verification) and action items.

7.5.2.2 Prototype and Simulation

Some aspects of the safety system may require certain constraints to be met, such as response
time or data conversion speed. Creating a prototype or simulation early in the project may
answer the question of whether the software (and system) will be able to meet that constraint.

Prototypes are usually “quick and dirty” and used only for determining if the system can do what
it needs to do. Prototypes may also be used to get the customer’s input into a user interface.
They can show if the user interface is confusing, especially regarding the safety-critical
information or commands. Different ways to present data to the operator can be prototyped, and
the best way selected. The operator can try hazardous commanding sequences, and either the
interface or procedures can be “tweaked” if the processis not as anticipated.

Simulations of all or part of the software and system can be used to test out some of the
constraints, such as timing or throughput. Full ssimulations can be used to “try out” various
failure scenarios to see how the system will respond. They can provide preliminary verification
of the safety features designed into the system, or can show areas where more safety-related
work will need to be done.

Documented test results can confirm expected behavior or reveal unexpected behavior. Keep in
mind, however, that the tests are of a prototype or ssmulation. The behavior of the real software
may differ. If the prototype or simulation shows that a requirement can not be met, then the
requirement must be modified as appropriate.

7.5.3 Independence Analysis

The safety-critical Computer Software Components (CSCs) should be independent of non-
critical functions. Independence Analysisis away to verify that.. Those CSCs that are found to
affect the output of safety-critical CSCs are designated as safety-critical themselves. Areas
where FCR (Fault Containment Region) integrity is compromised are identified. As a side
result, the interdependence between safety-critical components and other software components
will aso beidentified.

To perform this analysis, map the safety-critical functions to the software components, and then
map the software components to the hardware hosts and FCRs. All the input and output of each
safety-critical component should be inspected. Consider global or shared variables, as well as
the directly passed parameters. Consider “side effects’ that may be included when a component
is run. If a non-critica CSC modifies a safety-critical one, either directly, by violation of an
FCR or indirectly through shared memory, then it becomes safety-critical itself.

NASA-GB-8719.13 157



The exact definition of a component will vary with the type of software development. Structured
or procedural development will use functions and modules as components. Higher-level
components may be files (a collection of functions) or applications. Dependence is determined
by the calling structure (what module calls what module) and by access to global or shared data.
Object-oriented development will use classes as the primary component. Packages are one
example of higher-level components. Interactions among classes are determined by inheritance,
composition (one class is a component of another), method calling sequences, and access to any
shared data.

Resources used in this analysis are the definition of safety-critical functions (MWF and MNWF)
that need to be independent (from Section 6.5.3 Hazardous Commands), design descriptions,
and control flow and data diagrams.

Design changes to achieve valid FCRs and corrections to safety-critical components may be
necessary.

Benefit Rating: HIGH Cost Rating: MODERATE

7.5.4 Formal Inspections of Design Products m

The process of Formal Inspection begun in previous requi rements phase (e.g. Section 6.5.5
Formal Inspections) should continue during the design phase. At the preliminary (architectural)
design phase, Formal Inspection should focus on the major breakdown of software components,
verifying the modularity and independence of all safety-critical components. At the detailed
level, pseudo-code or prototype code may be available for inspection.

For the design inspections, create new checklists that are appropriate to the design products.
Include “lessons learned” from the requirements phase and any previous inspections.

While inspecting all design products would be best, projects may choose to inspect only
the design aspects that deal with the safety-critical components. Be aware, however, that
unexpected interactions between non-critical and critical code may not be detected under
these circumstances.

Benefit Rating: HIGH Cost Rating: LOW to MODERATE

7.5.5 Formal Methods and Model Checking

Formal methods (sections 4.2.2.3 and 6.6.4) may be used only to create the software
specification. If this is the case, then the work was completed during the requirements phase.
Otherwise, the formal specification may be “fleshed out” with increasing detail during as the
software design progresses.

The formal method “design” or model may be the complete architectura design, or it may be
created in paralel with a “normal” design process. If using the parallel approach (normal
software development life cycle and formal methods on separate tracks, usualy with separate
teams), it isimportant to verify that the designs created by the development team match those of
the forma methods team.

NASA-GB-8719.13 158



Model checking (section 6.6.5) may be used to verify the design still meets the required
properties.

7.5.6 Design Logic Analysis(DLA)

Design Logic Analysis (DLA) evaluates the equations, algorlthms and control logic of the
software design. Logic analysis examines the safety-critical areas of a software component. A
technique for identifying safety-critical areas is to examine each function performed by the
software component. If it responds to, or has the potential to violate one of the safety
requirements, it should be considered critical and undergo logic analysis. A technique for
performing logic analysis is to compare design descriptions and logic flows and note
discrepancies.

The ultimate, fully rigorous DLA uses the application of Forma Methods (FM). Where FM is
inappropriate, because of its high cost versus software of low cost or low criticality, ssmpler
DLA can be used. Less forma DLA involves a human inspector reviewing a relatively small
quantity of critical software products (e.g. PDL, prototype code), and manually tracing the logic.
Safety-critical logic to be inspected can include failure detection and diagnosis, redundancy
management, variable alarm limits, and command inhibit logical preconditions.

Commercial automatic software source analyzers can be used to augment this activity, but should
not be relied upon absolutely since they may suffer from deficiencies and errors, a common
concern of COTStools and COTSin general.

Benefit Rating: HIGH Cost Rating: MODERATE to HIGH

7.5.7 Design Data Analysis

Design data analysis evaluates the description and intended use of each dataitem in the software
design. Data analysis ensures that the structure and intended use of data will not violate a safety
requirement. A technique used in performing design data analysis is to compare description to
use of each dataitem in the design logic.

Interrupts and their effect on data must receive specia attention in safety-critical areas. Analysis
should verify that interrupts and interrupt handling routines do not alter critical data items used
by other routines.

The integrity of each data item should be evaluated with respect to its environment and host.
Shared memory and dynamic memory allocation can affect data integrity. Data items should
also be protected from being overwritten by unauthorized applications. Considerations of EM|
and radiation affects on memory should be reviewed in conjunction with system safety.

Benefit Rating: HIGH Cost Rating: MODERATE

7.5.8 Design Interface Analysis &‘ &

Design interface analysis verifies the proper design of a software component's interfaces with
other components of the system. The interfaces can be with other software components, with

NASA-GB-8719.13 159



hardware, or with human operators. This analysis will verify that the software component's
interfaces, especially the control and data linkages, have been properly designed. Interface
requirements specifications (which may be part of the requirements or design documents, or a
separate document) are the sources against which the interfaces are eval uated.

Interface characteristics to be addressed should include interprocess communication methods,
data encoding, error checking and synchronization.

The analysis should consider the validity and effectiveness of checksums, CRCs, and error
correcting code. The sophistication of error checking or correction that is implemented should
be appropriate for the predicted bit error rate of the interface. An overall system error rate
should be defined, and budgeted to each interface.

Examples of interface problems:
e Sender sends eight bit word with bit 7 as parity, but recipient believes bit O is parity.
e Sender transmits updates at 10 Hz, but receiver only updates at 1 Hz.

e Message used by sender to indicate its current state is not understood by the receiving
process.

e Interface deadlock prevents data transfer (e.g., receiver ignores or cannot recognize
“Ready To Send”).

e User reads data from wrong address.

e Dataput in shared memory by one processisin “big endian” order, while the process that
will useit is expecting “little endian”.

e In alanguage such as C, where data typing is not strict, sender may use different data
types than receiver expects. (Where there is strong data typing, the compilers will catch
this).

Benefit Rating: HIGH Cost Rating: MODERATE

7.5.9 Design Traceability Analysis

This analysis ensures that each safety-critical software requirement is covered and that an
appropriate criticality level is assigned to each software element. Tracing the safety
requirements throughout the design (and eventually into the source code and test cases) is vital to
making sure that no requirements are lost, that safety is “designed in”, that extra care is taken
during the coding phase, and that all safety requirements are tested. A safety requirement
traceability matrix is one way to implement this analysis. See section 6.4.2 Requirements
Traceability and Verification for more information.

Some of the requirements will deal with system constraints or restrictions. They should include
real world and environmental limitations. Part of the traceability analysis should verify that the
proposed design solution meets these constraints. If new constraints are uncovered as part of this
analysis, they should be flowed back up to the requirements.

The design materials should describe all known or anticipated restrictions on a software
component. These design constraints must be clear to those who will develop the source code.

NASA-GB-8719.13 160



Restrictions or constraints to consider include:

Update timing, throughput and sizing constraints as per Section 6.6.6 Timing, Throughput
And Szing Analysis

Equations and algorithms limitations

Input and output data limitations (e.g., range, resolution, accuracy)
Design solution limitations

Sensor and actuator accuracy and calibration

Noise, EMI

Digital word length (quantization/roundoff noise/errors)

Actuator power or energy capability (motors, heaters, pumps, mechanisms, rockets,
valves, etc.)

Capability of energy storage devices (e.g., batteries, propellant supplies)
Human factors, human capabilities and limitations [47]

Physical time constraints and response times

Off nominal environments (fail safe response)

Friction, inertia, backlash in mechanical systems

Validity of models and control laws versus actual system behavior

Accommodations for changes of system behavior over time: wear-in, hardware wear-out,
end of life performance versus beginning of life performance, degraded system behavior
and performance.

Benefit Rating: HIGH Cost Rating: LOW

7.5.10 Software Element Analysis

Each software element that is not safety-critical is examined to assure that it cannot cause or
contribute to a hazard. When examining a software element, consider, at a minimum, the
following ideas:

»*

»*

»*

Does the element interface with hardware that can cause a hazard?

Does the element interface with safety-critical software elements?

Can the software element tie up resources required by any safety-critical components?
Can the software element enter an infinite loop?

Does the software element use the same memory as safety-critical data, such that an error
in addressing could lead to overwriting the safety-critical information?

Is priority inversion or deadlocking a possibility, and can it impact a safety-critical task?

Can the software element affect the system performance or timing in away that would
affect a safety-critical component?

NASA-GB-8719.13 161



* Does the software element call any functions also called by a safety-critical component?
Can it change any aspect of that function, such that the safety-critical component will be

affected?
* |sthe software element on the same platform and in the same partition as a safety-critical
component?
Benefit Rating: MEDIUM Cost Rating: MODERATE

7.5.11 Rate Monotonic Analysis

Rate Monotonic Analysis (RMA) is a mathematical method for predicting, a priori, whether a
system will meet its timing and throughput requirements when the system is operational. RMA
works on systems that use static priority for the tasks. This includes nearly all commercial
operating systems. RMA requires that timing information can be measured or reliably estimated
for each task. For systems with hard real-time deadlines (deadlines that absolutely must be met),
RMA isavaluabletool.

For further details on this technique, refer to publications by Sha and Goodenough, References
[48] and [49]. A case study using RMA when integrating an intelligent, autonomous software
system with Flight software, as part of the NASA New Millennium project, is discussed in
reference [50].

Benefit Rating: MEDIUM Cost Rating: HIGH

7.5.12 Dynamic Flowgraph Analysis @

Dynamic Flowgraph Analysisis arelatively new technique that is not yet widely used and still in
the experimental phase of evaluation. It does appear to offer some promise, building on the
benefits of conventional 6.6.7 Software Fault Tree Analysis (SFTA).

The Dynamic Flowgraph Methodology (DFM) is an integrated, methodical approach to
modeling and analyzing the behavior of software-driven embedded systems for the purpose of
dependability assessment and verification. The methodology has two fundamental goals: 1) to
identify how events can occur in a system; and 2) identify an appropriate testing strategy based
on an analysis of system functional behavior. To achieve these goals, the methodology employs
a modeling framework in which models expressing the logic of the system being analyzed are
developed in terms of causal relationships between physical variables and temporal
characteristics of the execution of software components.

Further description of this method is given in the paper by Garrett, Yau, Guarro and
Apostolakais [51].

Benefit Rating: LOW Cost Rating: HIGH

NASA-GB-8719.13 162



7.5.13 Markov Modeling

Markov Modeling techniques were developed for complex systems and some analysts have
adapted these techniques for software intensive systems. They can provide reliability,
availability and maintainability data. They model probabilistic behavior of a set of equipment as
a continuous time, homogeneous, discrete state Markov Process. The statistical probability of
the system being in a particular macro state can be computed. These statistics can be trand ated
into a measure of system reliability and availability for different mission phases.

However, attempting to apply these types of reliability modeling techniques to software is
guestionable because, unlike hardware, software does not exhibit meaningful (random) failure
statistics. Also, unlike hardware component failures, software failures are often not independent.
Software errors depend on indeterminate human factors, such as aertness or programmer skill
level.

Benefit Rating: LOW Cost Rating: HIGH

7.5.14 Requirements State M achines

Requirements State Machines (RSM) are sometimes called Finite State Machines (FSM). An
RSM is a model or depiction of a system or subsystem, showing states and the transitions
between the states. Its goal isto identify and describe ALL possible states and their transitions.

RSM analysis can be used on its own, or as a part of a structured design environment, (e.g.,
Object Oriented Design (4.2.2.2) and Formal Methods (4.2.2.3)).

Whether or not Formal Methods are used to develop a system, a high level RSM can be used to
provide a view into the architecture of an implementation without being engulfed by all the
accompanying detail. Semantic analysis criteria can be applied to this representation and to
lower level models to verify the behavior of the RSM and determine that its behavior is
acceptable.

Details on using Requirements State Machines are given in Appendix E.

Benefit Rating: LOW Cost Rating: HIGH

NASA-GB-8719.13 163



[+ %
S,
e,

)

Chapter 8 Implementation

It is during software implementation (coding) that software controls of safety hazards are
actually realized. Safety requirements have been passed down through the designs to the coding
level. Managers and designers must communicate all safety issues relating to the program sets
and code components they assign to programmers. Safety-critical designs and coding
assignments should be clearly identified. Programmers must recognize not only the explicit
safety-related design elements but should also be cognizant of the types of errors which can be
introduced into non-safety-critical code which can compromise safety controls. Coding
checklists should be provided to alert for these common errors.

Code analysis verifies that the software correctly implements the verified design and does not
violate safety requirements. Having the source code permits real measurements of size,
complexity and resource usage of the software. These quantities could only be estimated during
the design phase, and the estimates were often just educated guesses. The results of code
analyses may lead to significant redesign if the analyses show that the “guesses’ were wildly
incorrect. However, the main purpose is to verify that the code meets the requirements
(traceable through the design) and that it produces a safe system.

Which analyses will be performed, and who will perform them, was part of the early project
negotiations. A tailored set of plans (software development, software assurance, and safety)
should contain this information. Table 8-3 lists the various safety-related techniques and
analyses and provides broad tailoring suggestions (by safety effort).

Some of the code analysis techniques mirror those used in design analysis. However, the results
of the analysis techniques might be significantly different than during earlier development
phases, because the final code may differ substantially from what was expected or predicted.
Many of these analyses will be undergoing their second iteration, since they were applied
previously to the code-like products of the detailed design.

There are some commercial tools available which perform one or more of these analyses in a
single package. These tools can be evaluated for their validity in performing these tasks, such as
logic analyzers and path analyzers. However, unvalidated COTS tools, in themselves, cannot
generally be considered valid methods for formal safety analysis. COTS tools are often useful to
revea previously unknown defects.

Note that the definitive formal code analysis is that performed on the final version of the code.
A great deal of the code analysisis done on earlier versions of code, but a complete check on the
final version is essential. For safety purposes it is desirable that the final version has no
“instrumentation” (i.e., extra code) added to detect problems, such as erroneous jumps. The code
may need to be run on an instruction set emulator which can monitor the code from the outside,
without adding the instrumentation, if such problems are suspected.

NASA-GB-8719.13 164



8.1 Tasksand Analyses

Table 8-1 Software I mplementation Tasks

Softwar e Engineering Tasks

System and Softwar e Safety
Tasks

Softwar e Assurance or
IV&YV Tasks

Create source code that
implements the design, including
safety features.

Participate in Source code Formal
Inspections of safety-critical code.

Participate in Source code
Formal Inspections

Perform unit testing on
individual source units. Prepare
and follow test procedures for
safety-critical units.

Review Analyses from Software
Assurance for any safety
implications.

Verify unit tests adequately test
the software and are actually
performed.

Maintain source code within a
Configuration Management
system, with adequate
documentation of changes.

[Section 4.5]

Verify that safety-critical software
is designated as such, and that it
will receive special treatment by
the programmers.

Witness any formal unit
testing.

Follow coding standards and
checklists.

[Section 8.4.1]

Review unit test plans and results
for safety-critical units,

Review previous analyses and
update with new information.

Participate in Formal Inspections
and informal code reviews.

[Section 8.5.7]

Review previous analyses and
update with new information.

Audit software configuration
management system to verify

proper usage.

Follow formal change process for
changes to baselined system.

[Section 4.5.1]

Program Slicing for safety-critical
variables or data.

[Section 8.4.4]

Audit software development to
verify processes followed and
coding standards used.

Program Slicing for debugging.
[Section 8.4.4]

Safety Data Package for Phase I11
Safety Review

Participate in formal change
process (change control board)

Test Coverage Analysis
[Section 8.5.6

Audit software change process.

Code Logic Analysis
[Section 8.5.1]

Code Data Analysis
[Section 8.5.2]

Code Interface Analysis

[Section 8.5.3]

Unused Code Analysis
[Section 8.5.4]

Program Slicing

[Section 8.4.4]

Interrupt Analysis
[Section 8.5.5

NASA-GB-8719.13

165




8.2 Documentation and Milestones

The following table lists documents that are commonly produced or updated for this phase of

devel opment:

Table 8-2 Softwar e Implementation Documentation

Document

Software Safety

Source Code

Safety-critical software should be so designated
(viacomment block or other mechanism).
Traceability from safety requirements to the source
code that implements them should be clear.

Unit Test Plans and Procedures

Safety-critical software units should have formal
Unit Test Plans and Procedures. Unit tests for non-
critical units may be informally documented, e.g. in
alab notebook.

Unit Test Reports

Formal reports should be written for safety-critical
unit tests. Reports for other unit tests may be
informally documented (e.g. notes in alog book).

Formal Inspection Reports

All defectsin safety-critical software should be
tracked through correction and testing.

Analysis Reports

|dentification of any safety-related aspects or safety
concerns.

Traceability Matrix

Add traceability to software components (modules,
classes, methods, etc.) and unit test cases.

Milestones that will usually occur during this phase include:
e Software Code reviews or Formal Inspections
e Phaselll Safety Review or other carrier- or program-specific safety review

NASA-GB-8719.13 166




e
=
=

8.3 Tailoring Guidelines W

See Section 3.2 Tailoring the Effort for how to determine the software safety effort required
(full, moderate, or minimal).

Table 8-3 Softwar e Safety Effort for | mplementation Phase

Technique or Analysis Softwar e Safety Effort Level
MIN MOD FULL
8.4.1 Coding Checklists and Standards * * *
8.4.2 Unit Testing (Mandatory for safety-critical
unlts) Vv v *
8.5.8 Safety-critical Unit Test Plans
8.4.4 Program Slicing of Safety-critical Data v v Vv
8.5.1 Code Logic Analysis N N v
8.5.2 Code Data Analysis v Vv *
8.5.3 Code Interface Analysis v vv *
8.5.4 Unused Code Analysis v Vv *
8.5.5 Interrupt Analysis v v *
8.5.6 Test Coverage Analysis v * *
8.5.7 Formal Inspections of Source Code vv b ¢ D¢
8.5.9 Fina Timing, Throughput, and Sizing vV e e
Analysis
Recommendation Codes
H Mandatory vV Highly Recommended
v Recommended S Not Recommended

Table 9-4 lists various tests that might be performed during unit (or integration) testing and
provides tailoring guidance.

NASA-GB-8719.13 167



http://nmp-techval-reports.jpl.nasa.gov/DS1/Remote_Integrated_Report.pdf
http://www.fda.gov/cdrh/ode/1252.pdf
http://www.esa.int/export/esaCP/Pr_20_1996_p_EN.html
http://www.esa.int/export/esaCP/Pr_20_1996_p_EN.html
http://shelob.ce.ttu.edu/daves/lpfaq/faq.html
http://www.sei.cmu.edu/activities/str/descriptions/mitmpm.html
http://hsb.baylor.edu/ramsower/ais.ac.96/papers/OOFINI.htm
http://www.stsc.hill.af.mil/crosstalk/1999/06/index.html
http://www.safeware-eng.com/index.php/products
http://foldoc.doc.ic.ac.uk/foldoc/index.html

8.4  Software Development Techniques

8.4.1 Coding Checklistsand Standards

Software developers should use coding checklists in software coding and implementation. The
coding checklists should be an on-going activity, beginning in the requirements phase. As more
knowledge is gained about the system (e.g. as the design progresses) the checklists can be
updated with the subset of information relevant to the software implementation. Checklists
should contain questions that can serve as reminders to programmers to look for common
defects.

Coding standards are best used to identify unsafe functions or procedures that the software
developer should avoid. They may also contain programming style information, naming and
commenting formats, and other aspects necessary to create consistency among the various
components. Coding standards should have been specified during the design phase (or earlier),
and used throughout the coding (implementation) phase.

Additional checklists that might be used include:

o Safety Checklists. A software safety checklist will list all software safety requirements
for the project. Use this checklist as a “reminder”, so that all safety features and
requirements will be incorporated into the software code. A software safety traceability
matrix will also be helpful. This matrix should map the requirements into the design
elements, and ultimately into the source code components.

e Defensive Programming Checklist. This checklist should detail the chosen techniques
to implement defensive programming. The checklist should include both generic and
language-specific techniques and practices. Practices may be positive (“Always declare
the C++ class destructor to be virtual”) or negative (“Do not use the memcpy library
routine”). Coding standards, Appendix H.14 (Safety Programming), Appendix H.5
(Generic practices) and Appendices H.6 though H.12 (language-specific practices) are
good starting places to develop this checklist. Lessons learned from other projects,
personal experience of the software developers, and other resources should also be
included in the checklist.

e Code Review Checklists. These checklists are for use by the developer, when reviewing
her own code or the code of afellow developer. The checklist should be derived from a
“master” list that includes common errors as well as the project coding standards.
Personalize the checklist to include individual “common” errors, such as forgetting to end
a comment block. This serves as a means to find those errors, and as reminder not to
make the same mistakes. Additional, more formal checklists should be used during
Formal Inspections (see section 8.5.7). These will emphasize the coding standards and
the most common errors. Common errors may be gleaned from the individual
developers, from this guidebook, or from other sources such as textbooks and articles.

e Requirements checklist. Often during this development phase, missing requirements are
identified, or new system requirements are added and flowed down to software, such as
fault detection and recovery. It may become apparent that various capabilities were
assumed but not explicitly required, so were not implemented. Checklists can help
identify these missing requirements. Once missing requirements are identified, they must

NASA-GB-8719.13 168



be incorporated by “back-filling” (updating) the requirements specifications prior to
implementation in order to maintain proper configuration control. Thisislesslikely to be
necessary if Formal Methods or Formal Inspections are used, at least during the
requirements phase.

e Automated tools that aid in enforcing coding standards, such as style checkers, context-
sensitive editors, lint, and profilers are discussed in section 11.2.

84.2 Unit Level Testing &

The unit level tests were planned during the detailed design phase, when the functions within a
unit were defined. These tests are executed once the code compiles. Since the code is likely to
contain defects, these tests will be re-executed with each new iteration of the unit. Thistesting is
usually performed by the developer, though another developer in the group may perform the unit
testing. A basic entry criterion for unit testing is that the unit compile without errors.

Unit level testing is important because it can access levels of the software that might not be
reachable once the units are integrated. Testing the possible inputs to a unit may not be feasible
once the unit is integrated into the system. Unit level testing can also identify implementation
problems or performance issues requiring changes to the software. The earlier these issues are
identified, the less costly they areto fix.

Special safety tests should be designed for any safety-critical units, if thislevel of code accessis
required. These tests should demonstrate coverage of the safety test requirements (see Section
9.4.7 Software Safety Testing). Each safety test should have pass/fall criteria. The test plan or
software management plan should describe the review and reporting process for safety-critical
components, including how to report problems discovered in unit test. A test report should be
written for unit tests of safety-critical items.

The formality of the testing will vary with the software safety effort level (full, moderate, or
minimum) and any extratailoring. Safety-critical units should always be formally tested (written
test plan, witnessed testing, written test report) at least once, before they are integrated into the
system. For afull software safety effort, all unit tests may be formal. For moderate, al units
that may interact with the safety-critical unit should be considered for formal unit testing.

Informal unit testing does not mean ad-hoc testing. The tests should still be well thought out and
documented. Documentation could be in a lab notebook, in a Software Development Folder, or
even as comments within the test code. The point is to provide evidence both that the test was
performed and that the test was thorough.

Unit level tests come in two varieties: white-box and black-box. White-box tests include all
those where you must know something about the innards of the component. Black-box tests
check the inputs/outputs of the component only, and are not concerned about what happens
inside. White-box tests include those that check the path and branch coverage, loop
implementation and statement execution. Black-box tests look at the input domain (values),
output ranges, and error handling.

Unit tests for object-oriented software consists of testing the class methods in the same way that
procedures and functions are tested in structured programs. Construction, destruction, and
copying of the class should also be tested.

NASA-GB-8719.13 169



Automated testing programs are available for many operating systems and languages. When a
test will be run more than a few times, such automated testing will usually save time and effort.
Automated testing also removes the possibility of human error when atest procedure is followed.
This removes the random error component, but does leave open the possibility of systematic
error (i.e. the automated test makes the same error every timeit isrun).

It is good practice for the developer to keep alist of bugs found while unit testing. Thislistisa
learning tool for the developer to discover what his common errors are. Feed those errors back
into the code review checklist, so they are found earlier (at review, rather than test) in the
development cycle. In ateam where the developers are not penalized for the defects they find,
sharing the bug list with other developers and the QA department can help in education and
process improvement. Developers can learn from the mistakes of others, and the metrics derived
from them can help identify areas to focus on when trying to improve the software development
process.

Test coverage analysis verifies that an adequate number of tests have been performed. See
Section 8.5.6 Test Coverage Analysis for more details.

Benefit Rating: HIGH Cost Rating: LOW to MODERATE

8.4.3 Refactoring

Refactoring is a technique to restructure object-oriented code in a disciplined way. It is the
process of taking an object design and rearranging it in various ways to make the design more
flexible and/or reusable. There are severa reasons you might want to do this, efficiency and
maintainability being probably the most important. Refactoring is included here because the
technique is becoming more widely used, and it may have implications for safety-critical
software.

The term “refactoring” comes from mathematics, where you factor an expression into an
equivalence. The factors are cleaner ways of expressing the same statement. In software
refactoring, there must also be equivalence. The beginning and end products must be
functionally identical.

Practically, refactoring means making code clearer, cleaner, smpler and elegant. Refactoring is
a good thing, in general, because complex expressions are typicaly built from simpler, more
easily understood components. Refactoring either exposes those simpler components or reduces
them to the more efficient complex expression (depending on which way you are going).

Some of the benefits of refactoring are:
e Unify duplicate code
e Make the code read better (typically introducing more "why")
e Remove unused indirection
e |solate existing logic from a needed change
e Replace one agorithm with another
e Makethe program run faster

NASA-GB-8719.13 170



Be careful if using refactoring for safety-critical code, however. Regression tests should show if
the refactored unit is functionally identical to the original. If it is not, then the code has been
broken by the refactoring, or was broken originally and is now corrected. Either way, you now
have a problem that needs to be fixed.

Too much refactoring may also invalidate code inspections that were done on the origina code.
Refactoring safety-critical units should be avoided. If performed, a re-inspection of the code is
necessary, preferably by the original Formal Inspection team.

8.4.4 Program Slicing

When you get awrong answer from your software, program slicing can help. It is atechnique to
trace back through the program and show you all, and only, the statements that affect the variable
you are interested in. In a large, complex program, slicing can focus in on the statements of
interest.

Slicing has been mainly used in debugging (finding the source of an error) and reengineering
(pulling out part of a program to create a new program). It can also be used to check the
“lineage” of any safety-critical data. Using a slicing tool to pull out all the statements that affect
the safety-critical variable, and then examining the results, may point to errors or unexpected
interactions with other, non-critical data. You may even wish to do a Formal Inspection on the
dliced code.

Slicing comes in two forms:. static and dynamic. Static slicing, introduced in 1982, is done on
the source code (compile-time). Originally, it had to be an executable subset of the program,
though that is not always necessary now. Static slicing shows every statement that may impact
the variable of interest. Dynamic slicing first appeared around 1988, and works on programs as
they operate (run-time). While static slicing shows all the statements that may affect the variable
of interest, dynamic slicing shows only those that do affect the variable as the software is
exercised.

Program dlicing by hand would be a tedious job. Tools are beginning to be available for a
variety of languages.

Program dlicing to determine what statements can (or do) affect safety-critical data may find
defective code that can unintentionally impact that data. It can also be used as a verification that
non-critical code does not interact with the safety-critical data.

Benefit Rating: MEDIUM Cost Rating: MODERATE

8.5 Code Analyses

8.5.1 Codelogic Analysis

Code logic analysis evaluates the sequence of operations represented by the coded program.
Code logic analysis will detect logic errors in the coded software. This analysis is conducted by
performing logic reconstruction, equation reconstruction and memory decoding. For complex
software, this analysis is applied only to safety-critical components. Other software components
may be analyzed if they are deemed important to the system functionality.

NASA-GB-8719.13 171



e Logic reconstruction entails the preparation of flow charts from the code and comparing
them to the design material descriptions and flow charts.

e Equation reconstruction is accomplished by comparing the equations in the code to the
ones provided with the design materials.

e Memory decoding identifies critical instruction sequences even when they may be
disguised as data. The analyst should determine whether each instruction is valid and if
the conditions under which it can be executed are valid. Memory decoding should be
done on the final un-instrumented code.

This analysis is tedious if done by hand, and automatic tools are sparse. I|mplementation errors,
from the design into the code, are possible, but are not the primary source of problems. Other
methods, such as Formal Inspections, will usually find many of the same errors as this analysis.

Benefit Rating: LOW Cost Rating: HIGH

8.5.2 CodeDataAnalysis &®

Code data analysis concentrates on data structure and usage in the coded software. Data analysis
focuses on how data items are defined and organized. Ensuring that these data items are defined
and used properly is the objective of code data analysis. This is accomplished by comparing the
usage and value of all data items in the code with the descriptions provided in the design
materials.

Of particular concern to safety is ensuring the integrity of safety-critical data against being
inadvertently altered or overwritten. For example, check to see if interrupt processing is
interfering with safety-critical data.  Also, check the “typing” of safety-critical declared
variables.

Benefit Rating: MEDIUM Cost Rating: MODERATE

® X

Code interface analysis verifies the compatibility of internal and external interfaces of a software
component. A software component is composed of a number of code segments working together
to perform required tasks. These code segments must communicate with each other, with
hardware, other software components, and human operators to accomplish their tasks.

8.5.3 Codelnterface Analysis

Each of these interfaces is a source of potential problems. Code interface analysisis intended to
verify that the interfaces have been implemented properly. Check that parameters are properly
passed across interfaces. Verify that data size, measurement unit, byte sequence, and bit order
within bytes are the same on all sides of the interface.

Benefit Rating: HIGH Cost Rating: MODERATE

NASA-GB-8719.13 172



8.5.4 Unused Code Analysis

A common real world coding error is generation of code which is logically excluded from
execution; that is, preconditions for the execution of this code will never be satisfied. Such code
isundesirable for three reasons:

1. Itispotentially symptomatic of amaor error in implementing the software design.

2. It introduces unnecessary complexity and occupies memory or mass storage which is
often alimited resource.

3. The unused code might contain routines which would be hazardous if they were
inadvertently executed (e.g., by a hardware failure or by a Single Event Upset. SEU isa
state transition caused by a high speed subatomic particle passing through a
semiconductor - common in nuclear or space environments).

There is no particular analysis technique for identifying unused code. However, unused code is
often identified during the course of performing other types of code analysis. Unused code can
be found during Formal Inspections, Code Logic Analysis, or during unit testing with code
coverage analyzer tools.

Care should be taken to ensure that every part of the code is eventually exercised (tested) at some
time, within al possible operating modes of the system.

Benefit Rating: MEDIUM Cost Rating: MODERATE

5@
8.5.5 Interrupt Analysis

Interrupt Analysis looks at how interrupts are used by the software. The effect of interrupts on
program flow and data corruption is the primary focus of this analysis. Can interrupts lead to
priority inversion or prevent a high priority or safety-critical task from completing? If interrupts
are locked out for a period of time, can the system stack incoming interrupts to prevent their
loss? Can alow-priority process interrupt a high-priority process and change critical data?

When performing interrupt analysis, consider the following areas of the code:

e Program segments/components where interrupts are inhibited (locked out). Look at
how long the interrupts are inhibited and whether the system can buffer interrupts for this
period of time. The expected and maximum interrupt rates would be needed to check for
buffering capacity. Identify impacts from lost interrupts. Look for possible infinite
loops.

e Reentrant code. Re-entrant code is designed to be interrupted without loss of state
information. Check that re-entrant components have sufficient data saved for each
interruption, and that the data and system state are correctly restored. Make sure that
components that need to be re-entrant are implemented as such.

e Interruptible code segments/components. Make sure that timing-critical areas are
protected from interrupts, if a delay would be unacceptable. Check for sequences of
instructions that should not be interrupted.

NASA-GB-8719.13 173



e Priorities. Look over the process priorities of the rea-time tasks. Verify that time-
critical events will be assured of execution. Also consider the operator interface. Will
the interface update with important or critical information in atimely fashion?

e Undefined interrupts. What happens when an undefined interrupt is received? Is it
ignored? Isany error processing required?

Benefit Rating: HIGH Cost Rating: LOW

: G
856 Test Coverage Analyss -Q @

Test coverage analysis (also called code coverage analysis) is the process of:
e Identifying areas of a program not exercised by a set of test cases.
e |dentifying redundant test cases that do not increase coverage.
e Providing a quantitative measure of code coverage.

Various types of “coverage’ can be measured. Each has advantages and disadvantages. Idedly,
all varieties of test coverage would be used. In readlity, usually only a subset isused. For safety-
critical code, Table 9-4 recommends what types of coverage to verify, depending on the software
safety effort for the project.

There is a strong connection between software complexity and amount of testing required. For
example, “numerous studies and general industry experience have shown that the cyclomatic
complexity measure correlates with errors in software modules. Other factors being equal, the
more complex a module is, the more likely it is to contain errors.” [93] Since complex
components are more likely to have errors, testing should focus on these components, though not
to the exclusion of all others.

The types of Test Coverage include:

e Statement Coverage verifies that each executable statement is executed. The chief
disadvantage of statement coverage is that it is insensitive to some control structures,
such as loops, logical operators, and switch statements. Also, test cases generaly
correlate more to decisions than to statements.

e Decision Coverage verifies that Boolean expressions tested in control structures (such as
if and while) evaluated to both true and false. Additionally, this measure includes
coverage of switch-statement cases, exception handlers, and interrupt handlers. A
disadvantage is that this measure ignores branches within Boolean expressions which
occur due to short-circuit operators.

e Condition Coverageis similar to decision coverage. It verifies the true or false outcome
of each Boolean sub-expression, separated by logical-and and logical-or if they occur.
Condition coverage measures the sub-expressions independently of each other.

e Multiple Condition Coverage reports whether every possible combination of Boolean
sub-expressions occurs. As with condition coverage, the sub-expressions are separated
by logical-and and logical-or, when present. A disadvantage of this measure is that it can

NASA-GB-8719.13 174



be tedious to determine the minimum set of test cases required, especialy for very
complex Boolean expressions.

e Path Coverage verifies that each of the possible paths in each function has been
followed. A path is a unique sequence of branches from the function entry to the exit.
Since loops introduce an unbounded number of paths, this measure considers only a
limited number of looping possibilities. Path coverage has the advantage of requiring
very thorough testing. Path coverage has two severe disadvantages: 1) the number of
paths is exponential to the number of branches and 2) many paths are impossible to
exercise due to relationships of data.

e Function Coverage reports whether each function or procedure was invoked. It is useful
during preliminary testing to assure at least some coverage in all areas of the software.

e Call Coverage verifiesthat each function call has been executed.

e Loop Coverage reports whether each loop body was executed zero times, exactly once,
and more than once (consecutively). This measure determines whether while-loops and
for-loops execute more than once.

e Race Coverage reports whether multiple threads execute the same code at the same time.
It hel ps detect failure to synchronize access to resources.

e Relational Operator Coverage reports whether boundary situations occur with
relational operators (<, <=, >, >=). The hypothesis is that boundary test cases find off-
by-one errors and mistaken uses of wrong relational operators such as < instead of <=.

Many tools are available to provide the test coverage analysis. They are often bound with, or can
be integrated with, automated testing tools. Testing tools will be operating system and language
dependent. The coverage tools often require instrumentation (adding extra code) of the source
code. Section 9.5.1 provides alist (sample) of available tools.

8.5.7 Formal Inspections of Source Code h b

Formal Inspections, introduced in Section 6.5.5 Formal Inspections, should be performed on the
safety-critical software components, at aminimum. Consider doing Formal Inspections on other
complex or critical software components. Formal Inspections are one of the best methodologies
available to evaluate the quality of code components and program sets. Having multiple eyes and
minds review the code, in aformal way, makes errors and omissions easier to find.

Checklists should be developed for use during formal inspections to facilitate inspection of the
code. They should include:

e requirementsinformation for components under review
e design details for components under review

e coding standards (subset/most important)

e |language-independent programming errors

e language-specific programming errors

NASA-GB-8719.13 175



Appendix H contains a sample checklists of common errors, both independent of language and
language specific.

Benefit Rating: HIGH Cost Rating: MODERATE

8.5.8 Safety-Critical Unit Test Plans

Because unit tests are usualy in the hands of the software developers, they are often not
reviewed by software assurance or safety. However, safety-critical units must be treated more
formally. Written test plans should be produced and reviewed by Software Assurance and
Software Safety. Ideally, the plans should be Formally Inspected.

Software Assurance and Software Safety should witness tests of safety-critical units. Formal test
reports should be written for these tests, and the test results reviewed by Software Assurance and
Software Safety.

The goal of this formal activity is not to create more useless paperwork. The earlier problems
are found, the less costly they are to fix. Also, some aspects of the safety-critical code may not
be accessible once it is integrated. These tests may be the only time certain safety-critical
components can be thoroughly tested. Documentation is required to prove adequate safety

testing of the software.
y X0 o %{,
8.5.9 Final Timing, Throughput, and Sizing Analysis h ’ ety

With the completion of the coding phase, the timing, throughput, and sizing parameters can be
measured. The size of the executable component (storage size) is easily measured, as is the
amount of memory space used by the running software. Special tests may need to be run to
determine the maximum memory used, as well as timing and throughput parameters. Some of
these tests may be delayed until the testing phase, where they may be formally included in
functional or load/stress tests. However, simple tests should be run as soon as the appropriate
code is stable, to alow verification of the timing, throughput, and sizing requirements. The
earlier aproblem is discovered, the easier and cheaper it isto fix.

Benefit Rating: HIGH Cost Rating: LOW

8.5.10 Update Previous Analyses

Softwar e Fault Tree Analysis and Softwar e Failure M odes and Effects Analysis
Review any changes to the design that developed during the coding phase. Often creating the
actual code will point out problems with the design, or elements that are missing. If the design

was modified during this phase, review the Software FMEA and FTA and make any updates as
necessary.

Complexity Measurement

Now that code exists, the complexity metrics can be recalculated. Complex code should be
evaluated by a human. Some logic structures (such as case statements) may be flagged as
complicated, when they really improve the comprehensibility of the software.

NASA-GB-8719.13 176



Complex software increases the number of errors, while making it difficult to find them. This
makes the software more likely to be unstable, or suffer from unpredictable behavior. Reducing
complexity is generally a good idea, whenever possible. Modularity is a useful technique to
reduce complexity. Encapsulation can also be used, to hide data and functions from the “user”
(the rest of the software), and prevent their unanticipated execution.

Software flagged as complex should be analyzed in more depth, even if it is not safety-critical.
These components are prime candidates for formal inspections and the logic/data/constraint
analyses.

Design Traceability Analysis

The criteria for design constraints applied to the detailed design in Section 7.5.9 Design
Traceability Analysis, can be updated using the final code. At the code phase, real testing can be
performed to characterize the actual software behavior and performance in addition to analysis.

The physical limitations of the processing hardware platform should be addressed. Timing,
sizing and throughput analyses should also be repeated as part of this process (see section 8.5.9)
to ensure that computing resources and memory available are adequate for safety-critical
functions and processes.

Underflows or overflows in certain languages (e.g., Ada) give rise to “exceptions’ or error
messages generated by the software. These conditions should be eliminated by design if
possible. If they cannot be precluded, then error handling routines in the application must
provide appropriate responses, such as automatic recovery, querying the user (retry, etc.), or
putting the system into a safe state.

NASA-GB-8719.13 177



Chapter 9 Testing

Testing is the operational execution of a software component in area or simulated environment.
Software testing verifies analysis results, investigates program behavior, and confirms that the
program complies with safety requirements. Software testing beyond the unit level (integration
and system testing) is usually performed by someone other than the developer, except in the
smallest of teams.

Normally, software testing ensures that the software performs all required functions correctly,
and can exhibit graceful behavior under anomalous conditions. Safety testing focuses on
locating program weaknesses and identifying extreme or unexpected situations that could cause
the software to fail in ways that would violate safety requirements. Safety testing complements
rather than duplicates devel oper testing.

One example of a special safety testing technique is software fault injection. It has been
successfully used to test safety-critical software (e.g. BART in San Francisco), and also for
security testing and COTS verification. Faults are inserted into code before starting a test and
the response is observed. In addition, all boundary and performance requirements should be
tested at, below and above the stated limits. It is necessary to see how the software system
performs, or fails, outside of supposed operational limits.

The safety testing effort should be encompass those software requirements classed as
safety-critical items, but is not necessarily limited to just those items. If the safety-critica
components are separated from the others via a partition or firewall, the integrity of the
partitioning must be tested. In addition, testing should be performed to verify that non-safety-
critical software cannot adversely impact the safety-critical software. Remember that any
software that impacts or helps fulfill a safety-critical function is safety-critical as well. Safety
testing must verify that all safety requirements have been correctly implemented. The actual
safety tests can be performed independently or as an integral part of the developer's test effort.

Integration testing is often done in a simulated environment, and system testing is usually done
on the actual hardware. However, hazardous commands or operations should be tested in a
simulated environment first. You don’t want to start the rocket engines or set off the ordnance
by accident!

Any problems discovered during testing should be analyzed and documented in discrepancy
reports and summarized in test reports. Discrepancy reports contain a description of the
problems encountered, recommended solutions, and the final disposition of the problem. These
reports are normally generated after the software has reached a level of maturity (e.g. is
baselined or in beta version). Changes that result from identified problems usually go through a
software Change Control Board for discussion and approval or rgjection. These problem reports
need to be tracked, and management needs to have visibility into the past and current software
problems.

As software is being developed, defect information may be kept in a defect tracking database.
Such a database not only allows tracking of problems for a particular project, but can serve as a
source for “lessons learned” and improvement for subsequent projects. When the software
“moves up” into the formal system, some defects should be written up as problem reports for
continued tracking. In particular, defects that may indicate system problems (e.g. problems
when running on incomplete flight hardware that could not be reproduced) or fixes that had far-

NASA-GB-8719.13 178



reaching impacts (e.g. many components or an interface affected) should be considered for

“formal” problem reports.

9.1 Tasksand Analyses

Table 9-1 System Testing Tasks

Softwar e Engineering Tasks

System and Softwar e Safety
Tasks

Softwar e Assurance or
IV&V Tasks

Integrate individual software
units into a complete software
system. Test throughout the
process.

Participate in Test Plan and
Procedures Formal Inspections
when safety-critical functions
are to be tested. [Section

9.5.2

Participate in Formal
Inspections of test plans and
procedures. [Section 9.5.2]

Integrate the software with the
hardware system and perform
testing throughout the process.

Review Analyses from
Software Assurance for any
safety implications.

Analyze test reports for
completeness and
requirements coverage.

[Section 9.5.4]
Create and follow written test | Verify all safety requirements | Verify all requirements have
procedures for integration and | have been adequately tested been adequately tested.
system testing.* (Safety Verification Matrix). [Section 9.5.1]

Perform regression testing
after each change to the
system.*

Witness testing of safety-
critical software and special
safety tests.

[Section 9.4.8

Review problem reports

Participate in Formal

Review problem reports for

Witness al integration tests,
or at least those involving

Inspections of test plans and L P ) :
procedures, [Section 9.5.2] safety implications. Saie;y critical units. [Section
Prepare Test Report upon Reliability Modeling [Section | Witness all system tests.
completion of atest. 9.5.3 [Section 9.4.8]

Verify COTS software Review previous analysesand | Review previous analyses and
operates as expected. update with new information. | update with new information.

Use forma Configuration
Management system for
source code , executables, test
plans and procedures, and test

data. [Section 4.5]

Safety Verification Tracking
Log Closeout

Follow problem reporting and
corrective action procedures
when defects are detected.

* Testing may be performed by a separate Test group

NASA-GB-8719.13

179




9.2 Documentation and Milestones

The following table lists documents that are commonly produced for this phase of devel opment:

Table 9-2 Softwar e Testing Documentation

Document

Softwar e Safety Section

Integration Test Plan

Testing should exercise the connections between safety-
critical units and non-critical units or systems.

System Test Plan

Extreme, but possible, environments should be tested
(heavy load, other stressors) to verify the system
continues to function safely within all plausible
environments.

Test Reports

Verify test was completed as planned and all safety-
critical elements were properly tested. Report results of
testing safety-critical interfaces versus the
requirements outlined in the Software Test Plan.
Any safety-critical findings should be used to update
the hazard reports.

Configuration Management Audit Report

Verify that configuration management systemis properly
used, especially for safety-critical elements.

Formal Inspections Report

All defects related to safety-critical elements should be
considered major (must fix).

Analysis Reports

Identification of any safety-related aspects or safety
concerns.

Problem or Failure Reports (with Corrective
Action)

Problem or Failure reports should be reviewed for any
safety implications. Any corrective action should be
verified to not cause an additional hazard, or to adversely
impact any other safety-critical software or hardware.

Traceability Matrix

Verify that requirements are traceable all the way into the
test cases. Verify that al safety requirements have been
adequately tested.

Milestones that will usually occur during this phase include:

e Test Readiness Review

o Safety Verification Tracking Log Closeout (post Phase 1)

NASA-GB-8719.13

180




9.3 Tailoring Guidelines @

See Section 3.2 Tailoring the Effort for how to determine the software safety effort required
(full, moderate, or minimal). .

Table 9-3 Softwar e Safety Effort for Testing Phase

Techniqueor Analysis Safety Effort Level
MIN MOD FULL

9.4.3 Integration Testing v vv Y
ST * *
%ﬁ}] gR:asgtr roar;) l‘l;)estl ng (amount of % e e
9.4.7 Software Safety Testing * * *
12.1.4 OTS Analysesand Test v Vv *
9.5.1 Test Coverage Analysis v v *
9.5.2 Formal Inspections of Test Plan and v v e
Procedures
9.5.3 Reliability Modeling S v vv
9.5.4 Test Results Analysis * * *

Recommendation Codes

LS Mandatory vV Highly Recommended

4 Recommended N Not Recommended

The tables below list various tests that might be performed. Recommendations are based on a
balance of the benefits to the cost. What tests are actually performed should be determined by
project-specific factors. The availability of automated tools or analysis software, the cost of such
tools or analysis software, number of team members and their level of knowledge, and schedule
are some factors that will influence the number of tests performed. Use the tailoring
recommendations in the following tables as a starting point for further tailoring.

Table 9-4 Dynamic Testing (Unit or Integration Level)

Technique Safety Effort Level
MIN MOD FULL

Typical sets of sensor inputs 44 F F*
Test specific functions v o F
Volumetric and statistical tests o v Vv
Test extreme values of inputs 44 F F*
Test al modes of each sensor a4 * o
Every statement executed once v o F

NASA-GB-8719.13 181




Technique

Safety Effort Level

Every branch tested at least once a4 * o
Every predicate term tested v vV *
Every loop ex.ecuted 0, 1, many, max-1, v * *
max, max+1 times
Every path executed v Vv F*
Every assignment to memory tested (M v vV
Every reference to memory tested © v vV
All mappings from inputs checked ) v vV
All timing constraints verified v v *
Test worst case interrupt sequences v vV *
Test significant chains of interrupts 4 v *
Test Positioning of datain 1/0 space v v ¢
Check accuracy of arithmetic © v vV
All components executed at least once * * H
All invocations of components tested 44 * F
Table 9-5 Softwar e System Testing
Technique Safety Effort Level

MIN MOD FULL
Simulation (Test Environment) v Vv *
Load Testing [9.4.5] vV * F
Stress Testing [9.4.5] vV * *
Boundary Value Tests v Vv *
Test Coverage Analysis[9.5.1] 4 Vv *
Functional Testing [9.4.5] * * ¢
Performance Monitoring v Vv *
Disaster Testing [9.4.5] 4 Vv Vv
Resistance to Failure Testing [9.4.5] v vy *
“Red Team” Testing [9.4.5] N 4 vv
Regression Testl ng [m (Tallored to * * %
the level of original testing)
NASA-GB-8719.13 182




9.4  Software Integration and Test
Various tests that can be performed include:
e Integration Testing
*  Unit integration and testing
*  Integration of the software with the hardware
e System Testing
*  Functional testing
*  Performance testing
* Loadtesting
*  Stresstesting
* Disaster testing
*  Stability testing
*  Acceptance testing
*  “Red Team” testing

Note that the “system test” is not a single test, but a collection of possible tests to perform.
These tests are done using the full system (hardware and software), though a simulator may be
used under certain circumstances. The point of the system testsis to exercise the system in such
a way that al functionality is tested, its limits are known, and its ability to survive faults and
failuresiswell understood.

A very useful tool for testers, developers, and project management is a high level view of
all test activities for a system (including subsystems and software). Thisinformation may
% be displayed in alarge table (often as a wall chart) listing all the various levels of testing
in the column headers. Pertinent data that differentiates each level of testing (e.g., who is
responsible, when will it occur, what is the objective of the test, what is the characteristic
of the test data, what environment is used to execute the tests, what products are
produced, and what is the entry and exit criteria) is placed in the table rows.
9.4.1 Testing Techniquesand Considerations & h ;
This section provides an introduction to software testing for those unfamiliar with it. The section
includes descriptions of various tests, how to write test cases, what to do when a defect is found,
and suggestions for dealing with a tight testing schedule. If you are familiar with software
testing, you may wish to skip to section 9.4.2 which continues the safety-specific information.

All of this section is taken, with permission, from the Frequently Asked Questions (FAQ) created
by Rick Hower, © 1996-2000. The website is “ Software QA and Testing Fregquently-Asked-
Questions’, http://www.softwaregatest.com/, and is an excellent introduction to software testing.

NASA-GB-8719.13 183


http://www.softwareqatest.com/

9.4.1.1 What kinds of testing should be considered?

>

Black box testing - not based on any knowledge of internal design or code. Tests are
based on requirements and functionality.

White box testing - based on knowledge of the internal logic of an application’'s code.
Tests are based on coverage of code statements, branches, paths, and conditions.

unit testing - the most 'micro’ scale of testing; to test particular functions or code
components. Typically done by the programmer and not by testers, as it requires detailed
knowledge of the internal program design and code. Not always easily done unless the
application has a well-designed architecture with tight code; may require developing test
driver modules or test harnesses.

incremental integration testing - continuous testing of an application as new functionality
is added; requires that various aspects of an application's functionality be independent
enough to work separately before all parts of the program are completed, or that test
drivers be developed as needed; done by programmers or by testers.

integration testing - testing of combined parts of an application to determine if they
function together correctly. The 'parts can be code components, individual applications,
client and server applications on a network, etc. Thistype of testing is especialy relevant
to client/server and distributed systems.

functional testing - black-box type testing geared to functional requirements of an
application; this type of testing should be done by testers. This doesn't mean that the
programmers shouldn't check that their code works before releasing it (which of course
appliesto any stage of testing.)

system testing - black-box type testing that is based on overal requirements
specifications; covers all combined parts of a system.

end-to-end testing - similar to system testing; the 'macro’ end of the test scale; involves
testing of a complete application environment in a situation that mimics real-world use,
such as interacting with a database, using network communications, or interacting with
other hardware, applications, or systemsif appropriate.

sanity testing - typically an initial testing effort to determine if a new software version is
performing well enough to accept it for a major testing effort. For example, if the new
software is crashing systems every 5 minutes, bogging down systems to a crawl, or
destroying databases, the software may not be in a 'sane’ enough condition to warrant
further testing in its current state.

regression testing - re-testing after fixes or modifications of the software or its
environment. It can be difficult to determine how much re-testing is needed, especially
near the end of the development cycle. Automated testing tools can be especialy useful
for this type of testing.

acceptance testing - final testing based on specifications of the end-user or customer, or
based on use by end-users/customers over some limited period of time.

load testing - testing an application under heavy loads, such as testing of a web site under
arange of loads to determine at what point the system's response time degrades or fails.

NASA-GB-8719.13 184



stress testing - term often used interchangeably with 'load’ and 'performance’ testing.
Also used to describe such tests as system functional testing while under unusually heavy
loads, heavy repetition of certain actions or inputs, input of large numerical values, large
complex queries to a database system, etc.

performance testing - term often used interchangeably with 'stress' and 'load' testing.
Ideally ‘performance’ testing (and any other 'type' of testing) is defined in requirements
documentation or QA or Test Plans.

usability testing - testing for 'user-friendliness. Clearly this is subjective, and will
depend on the targeted end-user or customer. User interviews, surveys, video recording
of user sessions, and other techniques can be used. Programmers and testers are usually
not appropriate as usability testers.

install/uninstall testing - testing of full, partial, or upgrade install/uninstall processes.

recovery testing - testing how well a system recovers from crashes, hardware failures, or
other catastrophic problems.

security testing - testing how well the system protects against unauthorized internal or
external access, willful damage, etc; may require sophisticated testing techniques.

compatibility testing - testing how well software performs in a particular
hardware/software/operating system/network/etc. environment.

user acceptance testing - determining if software is satisfactory to an end-user or
customer.

comparison testing - comparing software weaknesses and strengths to competing
products.

alpha testing - testing of an application when development is nearing completion; minor
design changes may still be made as aresult of such testing. Typically done by end-users
or others, not by programmers or testers.

beta testing - testing when development and testing are essentially completed and final
bugs and problems need to be found before final release. Typically done by end-users or
others, not by programmers or testers.

9.4.1.2 What steps are needed to develop and run software tests?
The following are some of the steps to consider:

»*

Obtain requirements, functional design, and internal design specifications and other
necessary documents

Obtain budget and schedule requirements

Determine project-related personnel and their responsibilities, reporting requirements,
required standards and processes (such as rel ease processes, change processes, €etc.)

Identify application's higher-risk aspects, set priorities, and determine scope and
limitations of tests

Determine test approaches and methods - unit, integration, functional, system, load,
usability tests, etc.

NASA-GB-8719.13 185



» Determine test environment requirements (hardware, software, communications, etc.)

= Determine testware requirements (record/playback tools, coverage analyzers, test
tracking, problem/bug tracking, etc.)

»= Determine test input data requirements

* ldentify tasks, those responsible for tasks, and labor requirements

* Set schedule estimates, timelines, milestones

»* Determine input equivalence classes, boundary value analyses, error classes
*= Prepare test plan document and have needed reviews/approvals

* Write test cases

*= Have needed reviews/inspections/approvals of test cases

* Prepare test environment and testware, obtain needed user manualS/reference
documents/configuration guides/installation guides, set up test tracking processes, set up
logging and archiving processes, set up or obtain test input data

* Obtain and install software releases
* Perform tests

»= Evaluate and report results

* Track problems/bugs and fixes

* Retest as needed

* Maintain and update test plans, test cases, test environment, and testware through life
cycle

9.4.1.3 What's a 'test case' ?

A test case is a document that describes an input, action, or event and an expected response, to
determine if a feature of an application is working correctly. A test case should contain
particulars such as test case identifier, test case name, objective, test conditions/setup, input data
requirements, steps, and expected results.

Note that the process of developing test cases can help find problems in the requirements or
design of an application, since it requires completely thinking through the operation of the
application. For this reason, it's useful to prepare test cases early in the development cycle if
possible.

9.4.1.4 What should be done after a bug isfound?

The bug needs to be communicated and assigned to devel opers that can fix it. After the problem
is resolved, fixes should be re-tested, and determinations made regarding requirements for
regression testing to check that fixes didn't create problems elsewhere. If a problem-tracking
system is in place, it should encapsulate these processes. A variety of commercial problem-
tracking/management software tools are available (see the "Tools' section for web resources with
listings of such tools). The following are itemsto consider in the tracking process:

NASA-GB-8719.13 186



»*

>

Complete information such that developers can understand the bug, get an idea of its
severity, and reproduce it if necessary.

Bug identifier (number, ID, etc.)

Current bug status (e.g., 'Released for Retest', 'New', etc.)

The application name or identifier and version

The function, component, feature, object, screen, etc. where the bug occurred
Environment specifics, system, platform, relevant hardware specifics

Test case name/number/identifier

One-line bug description

Full bug description

Description of steps needed to reproduce the bug if not covered by a test case or if the
developer doesn't have easy access to the test case/test script/test tool

Names and/or descriptions of file/data/messages/etc. used in test

File excerpts/error messages/log file excerpts/screen shots/test tool logs that would be
helpful in finding the cause of the problem

Severity estimate (a 5-level range such as 1-5 or ‘critical’-to-low' is common)
Was the bug reproducible?

Tester name

Test date

Bug reporting date

Name of developer/group/organization the problem is assigned to
Description of problem cause

Description of fix

Code section/file/component/class/method that was fixed

Date of fix

Application version that contains the fix

Tester responsible for retest

Retest date

Retest results

Regression testing requirements

Tester responsible for regression tests

Regression testing results

A reporting or tracking process should enable notification of appropriate personnel at various
stages. For instance, testers need to know when retesting is needed, developers need to know

NASA-GB-8719.13 187



when bugs are found and how to get the needed information, and reporting/summary capabilities
are needed for managers.

9.4.1.5 What if thereisn't enough time for thorough testing?

Use risk analysis to determine where testing should be focused. Since it's rarely possible to test
every possible aspect of an application, every possible combination of events, every dependency,
or everything that could go wrong, risk analysis is appropriate to most software development
projects. This requires judgment skills, common sense, and experience. (If warranted, formal
methods are also available.)

Considerations can include:
* Which functionality is most important to the project's intended purpose?
* Which functionality is most visible to the user?
* Which functionality has the largest safety impact?
* Which functionality has the largest financial impact on users?
* Which aspects of the application are most important to the customer?
* Which aspects of the application can be tested early in the development cycle?
»* Which parts of the code are most complex, and thus most subject to errors?
* Which parts of the application were developed in rush or panic mode?
* Which aspects of similar/related previous projects caused problems?
* Which aspects of similar/related previous projects had large maintenance expenses?
»* Which parts of the requirements and design are unclear or poorly thought out?
= What do the developers think are the highest-risk aspects of the application?
* What kinds of problems would cause the worst publicity?
* What kinds of problems would cause the most customer service complaints?
* What kinds of tests could easily cover multiple functionalities?
*  Which tests will have the best high-risk-coverage to time-required ratio?

942 Test Environment

structured test procedure and the results are monitored, or in a demonstration environment where
the software is exercised without interference.

Controlled testing executes the software on a rea or a simulated computer using special
techniques to influence behavior. This is the usua mode of testing, where a test procedure
(script) is developed and followed, and the results are noted. Automatic testing is also included
in this category. All of the integration and system tests that will be discussed in the following
sections are controlled tests.

NASA-GB-8719.13 188



When using a simulator, rather than the real system, the fidelity of the simulators should be
carefully assessed. How close is the simulator to the “real thing”? How accurate is the
simulator? Has the simulator itself been verified to operate correctly?

Demonstration testing executes the software on a computer and in an environment identical to
the operational computer and environment. Demonstrations may be used in the acceptance test,
to show the user how the system works. Autonomous systems, where the internal operation is
completely under the control of the software, would aso be demonstrated, especially for the
acceptance test.

Safety testing must be performed on the final system, both hardware and software. These tests
verify that all the hazard controls or mitigations work properly. In addition, software safety
testing may exercise the system under extreme or unexpected conditions, to show that other
elements of the software cannot interfere with the software hazard controls or mitigations.

Configuration Management should act as the sole distributor of media and documentation for al
system tests and for delivery to [sub]system integration and testing. Pulling the latest program off
the developer’s machineis not agood idea. One aspect of system testing is repeatability, which can
only be assured if the software under test comes from a known, and fixed, source.

9.4.3 Integration Testing

Integration is the process of piecing together the “puzzle’, where each piece is a software unit.
The end result is a complete system, and the final integration test is essentially the first system
functional test.

The order of integration of the units should be decided at the end of the architectural design,
when the units are identified. Various schemes can be used, such as creating a backbone
(minimal functionality) and adding to it, or doing the most difficult components first. Keep in
mind the hardware schedule when deciding the order of integration. Late hardware may hold up
software integration, if the software that needs it is integrated early in the cycle.

Stubs and drivers are used to “simulate” the rest of the system, outside of the integrated section.
Stu