
APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

NOT MEASUREMENT

SENSITIVE

 NASA TECHNICAL HANDBOOK

NASA-HDBK-4009A
w/CHANGE 1:

ADMINISTRATIVE/
EDITORIAL CHANGE

2018-05-11 Office of the NASA Chief Engineer
 Approved: 2018-03-14

Superseding NASA-HDBK-4009

(Baseline)

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)

ARCHITECTURE STANDARD
RATIONALE

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

2 of 148

DOCUMENT HISTORY LOG

Status Document
Revision

Change
Number

Approval Date Description

Baseline 2014-06-05 Initial Release
Revision A 2018-03-14 Significant changes were made to this

NASA Technical Handbook. It is
recommended that it be reviewed in its
entirety before implementation.

Key changes were: Changed configuration
file requirements to recommendations and
possible project requirements. Moved
example of possible configuration file from
the NASA Technical Standard to an
appendix in this Handbook. Removed all
precondition and postcondition to a known
state from the Standard and moved them to
the Handbook as suggestions. Added many
new sections to explain how to use the
CCSDS format to read and write data and
how to add asynchronous read and write
capability, as well as to answer the
questions asked by users. Deleted 5
requirements outright, made 7 into project
suggestions, added 27 requirements to
standardize STRS Devices, separated 2
types of queueing, augment time
adjustment, etc. Moved the examples for
each requirement from the Standard to the
Handbook.

Change 1 2018-05-11 Administrative/Editorial Changes—Table
66, 4th paragraph, changed
OEClockAppName and OEClock Kind;
changed 6.17,1st paragraph; 6.23, deleted
1st paragraph; added 6.24 and renumbered
remaining sections; deleted 6.28; added
Note in 7.9; changed Notes in 7.10 and
7.17; changed Example in 7.29, 7.30, 7.32
(for C), 7.33, 7.40, 7.50, 7.53, 7.69, 7.85,
7.115, 7.117, 7.131, 7.132, 7.133;
changed See Also to Verification Method
in 7.54, 7.55, 7.56, 7.57, 7.82, and 7.100;
deleted See Also in 7.48, 7.51, 7.61, 7.62,
7.63, 7.64, 7.65, 7.68, 7.69, 7.71, 7.72,

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

3 of 148

Status Document
Revision

Change
Number

Approval Date Description

Change 1 2018-05-11 Continued
 7.74, 7.75, 7.76, 7.77, 7.80, 7.81, 7.88,

7.115, 7.116, 7.126, 7.127, 7.129, 7.130,
and 7.134; deleted Example in 7.54, 7.55,
7.56, 7.57, 7.77, and 7.82; changed See
Also in 7.83, 7.84, 7.87, and 7.118;
changed Traced-from in 7.108; added
Verification Method in 7.134; deleted See
Also, added Verification Method, and
changed Example in 7.134 and 7.135;
changed PUBSUB list, REGISTER list,
RPN, and VALUE list in A.2.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

4 of 148

FOREWORD

This NASA Technical Handbook is published by the National Aeronautics and Space
Administration (NASA) as a guidance document to provide engineering information; lessons
learned; possible options to address technical issues; classification of similar items, materials, or
processes; interpretative direction and techniques; and any other type of guidance information
that may help the Government or its contractors in the design, construction, selection,
management, support, or operation of systems, products, processes, or services.

This NASA Technical Handbook is approved for use by NASA Headquarters and NASA
Centers and Facilities. It may also apply to the Jet Propulsion Laboratory (a Federally Funded
Research and Development Center (FFRDC)), other contractors, recipients of grants and
cooperative agreements, and parties to other agreements only to the extent specified or
referenced in applicable contracts, grants, or agreements.

This NASA Technical Handbook establishes the key rationale, explanatory material, and
additional information to support NASA-STD-4009A, Space Telecommunications Radio System
(STRS) Architecture Standard. This architecture is a standard for reconfigurable communication
transceiver developments among NASA missions.

NASA-STD-4009A strives to provide commonality among NASA radio developments to take
full advantage of emerging software-defined radio (SDR) technologies from mission to mission.
This architecture serves as an overall framework for the design, development, operation, and
upgrade of these software-based radios.

Requests for information should be submitted via “Feedback” at https://standards.nasa.gov.
Requests for changes to this NASA Technical Handbook should be submitted via MSFC Form
4657, Change Request for a NASA Engineering Standard.

_____Original signed by_________ _________03/14/2018_________
Ralph R. Roe, Jr. Approval Date
NASA Chief Engineer

https://standards.nasa.gov/

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

5 of 148

SECTION

 TABLE OF CONTENTS

PAGE

DOCUMENT HISTORY LOG ... 2
FOREWORD .. 4
TABLE OF CONTENTS ... 5
LIST OF APPENDICES ... 10
LIST OF FIGURES ... 11
LIST OF TABLES ... 11

1. SCOPE .. 12
1.1 Purpose ... 12
1.2 Applicability .. 12

2. APPLICABLE DOCUMENTS ... 12
2.1 General ... 12
2.2 Government Documents .. 13
2.3 Non-Government Documents .. 13
2.4 Order of Precedence ... 14

3. ACRONYMS, ABBREVIATIONS, AND DEFINITIONS 14
3.1 Acronyms and Abbreviations .. 14
3.2 Definitions ... 16

4. HIGH-LEVEL RATIONALE .. 16
4.1 Operational Requirements ... 17
4.2 Operating Environment (OE) Requirements ... 17
4.3 Documentation Requirements .. 18
4.4 Source Code Requirements .. 18
4.5 Configuration File or Script File Recommendation .. 19
4.6 Roles and Responsibilities ... 23

5. HOW TO USE STRS APIs ... 25
5.1 How to Associate an FPGA with an STRS Application 26
5.2 How to Load an FPGA .. 26
5.3 How to Set Attributes .. 27
5.4 How to Get Attributes .. 27
5.5 How to Push Packets .. 27
5.6 How to Pull Packets ... 27
5.7 How to Process Errors ... 27
5.8 How to Make Multiple Instances of an Application .. 28
5.9 How to Map Memory Locations .. 28
5.10 When to Use STRS_Log and STRS_Write ... 29

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

6 of 148

SECTION

 TABLE OF CONTENTS (Continued)

PAGE

5.11 Difference Between Run Test and Ground Test .. 29
5.12 When to Use Start/Stop, Load/Unload, and Open/Close 30
5.13 How to Read and Write Data ... 31
5.14 How to Add Asynchronous Publisher/Subscriber Functionality 32

6. QUESTIONS AND ANSWERS .. 32
6.1 Fault State and Use of the ERROR, WARNING, and FATAL Queues 32
6.2 Pub/Sub Messaging and Queues Need Clarification .. 33
6.3 What is an STRS Device? ... 35
6.4 How to Configure and Control SDR Hardware .. 37
6.5 STRS Infrastructure Methods Do Not Belong to Any Class 38
6.6 Explain Clocks and Timers ... 39
6.7 FPGA Partial Reconfiguration .. 40
6.8 Compliance Testing .. 40
6.9 Configuration Files Examples ... 41
6.10 C Language Naming Duplication.. 43
6.11 Sequence Diagrams Depicting STRS API Calls ... 45
6.12 Why are APP_Instance and APP_Initialize Separate? ... 48
6.13 Why Start with SCA? .. 49
6.14 Security for STRS ... 50
6.15 What is Configurable Hardware Design? ... 51
6.16 Why is there STRS_InstantiateAPP and no STRS_Instance method? 51
6.17 Uniqueness of Handle Names and IDs.. 52
6.18 Are there any exception-safety rules? ... 52
6.19 What does it mean that an STRS Device or STRS Service may be part of the

OE? ..

 52

6.20 How does the application know how to put the data (address, command, data)
into the buffer in the specialized hardware? ...

 53

6.21 Can STRS applications run in multiple address spaces? 53
6.22 Does an STRS application require a main entry point? .. 54
6.23 How is STRS_TimeSynch used to adjust time? ... 55
6.24 How is Clock Rate Adjustment Used? .. 55
6.25 What is OE-Specified String for the Application to be Instantiated? 56
6.26 STRS Radio Startup Process, Platform Diagnostics, and Built-in Test? 58
6.27 Cognitive, Navigation, and Other Services .. 59
6.28 C and C++ Compatibility? ... 59

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

7 of 148

SECTION

 TABLE OF CONTENTS (Continued)

PAGE

7. STRS REQUIREMENTS, RATIONALE, AND VERIFICATION
METHOD ..

 60

7.1 STRS-1 Power Up ... 61
7.2 STRS-2 Provide Platform Diagnostics ... 61
7.3 STRS-3 Use Platform Diagnostics (Deleted) .. 62
7.4 STRS-4 Document Resources ... 62
7.5 STRS-5 Document Capability... 62
7.6 STRS-6 Document Radio Frequency (RF) Behavior.. 63
7.7 STRS-7 Document Module Interfaces .. 63
7.8 STRS-8 Document Module Control ... 64
7.9 STRS-9 Document Power ... 64
7.10 STRS-10 STRS Application Uses OE .. 65
7.11 STRS-11 OE Uses HAL ... 65
7.12 STRS-12 STRS Application Repository ... 66
7.13 STRS-13 OE Controls Signal-Processing Module (SPM) 67
7.14 STRS-14 Provide Platform-Specific Wrapper .. 68
7.15 STRS-15 Document Platform-Specific Wrapper .. 68
7.16 STRS-16 Use C/C++ Waveform (WF) Interface .. 69
7.17 STRS-17 OE Uses STRS Application Control API .. 69
7.18 STRS-18 Use C/C++ Compile-Time .. 70
7.19 STRS-19 Use C/C++Run-Time ... 70
7.20 STRS-20 Include STRS_ApplicationControl.h ... 70
7.21 STRS-21 Provide STRS_ApplicationControl.h .. 71
7.22 STRS-22 STRS_ApplicationControl Base Class .. 71
7.23 STRS-23 Include STRS_Sink.h ... 72
7.24 STRS-24 Provide STRS_Sink.h .. 72
7.25 STRS-25 STRS_Sink Base Class .. 72
7.26 STRS-26 Include STRS_Source.h ... 73
7.27 STRS-27 Provide STRS_Source.h .. 73
7.28 STRS-28 STRS_Source Base Class .. 74
7.29 STRS-29 APP_Configure .. 74
7.30 STRS-30 APP_GroundTest ... 75
7.31 STRS-31 APP_Initialize .. 76
7.32 STRS-32 APP_Instance ... 77
7.33 STRS-33 APP_Query .. 77
7.34 STRS-34 APP_Read .. 78
7.35 STRS-35 App_ReleaseObject .. 79
7.36 STRS-36 APP_RunTest ... 79
7.37 STRS-37 APP_Start ... 80

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

8 of 148

SECTION

 TABLE OF CONTENTS (Continued)

PAGE

7.38 STRS-38 APP_Stop ... 81
7.39 STRS-39 APP_Write ... 81
7.40 STRS-40 STRS_Configure .. 82
7.41 STRS-41 STRS_GroundTest ... 83
7.42 STRS-42 STRS_Initialize .. 84
7.43 STRS-43 STRS_Query .. 84
7.44 STRS-44 STRS_ReleaseObject ... 85
7.45 STRS-45 STRS_RunTest .. 86
7.46 STRS-46 STRS_Start .. 87
7.47 STRS-47 STRS_Stop ... 87
7.48 STRS-48 STRS_AbortApp .. 88
7.49 STRS-49 STRS_GetErrorQueue ... 89
7.50 STRS-50 STRS_HandleRequest .. 89
7.51 STRS-51 STRS_InstantiateApp .. 90
7.52 STRS-52 STRS_IsOK ... 91
7.53 STRS-53 STRS_Log .. 92
7.54 STRS-54 STRS_Log Error .. 92
7.55 STRS-55 STRS_Log Fatal ... 93
7.56 STRS-56 STRS_Log Warning ... 93
7.57 STRS-57 STRS_Log Telemetry .. 93
7.58 STRS-58 STRS_Write ... 94
7.59 STRS-59 STRS_Read .. 94
7.60 STRS-60 Device Control (Deleted) ... 95
7.61 STRS-61 STRS_DeviceClose.. 95
7.62 STRS-62 STRS_DeviceFlush .. 96
7.63 STRS-63 STRS_DeviceLoad .. 96
7.64 STRS-64 STRS_DeviceOpen .. 97
7.65 STRS-65 STRS_DeviceReset .. 97
7.66 STRS-66 STRS_DeviceStart (Deleted) ... 98
7.67 STRS-67 STRS_DeviceStop (Deleted) ... 98
7.68 STRS-68 STRS_DeviceUnload ... 98
7.69 STRS-69 STRS_SetISR ... 99
7.70 STRS-70 STRS_FileClose ... 99
7.71 STRS-71 STRS_FileGetFreeSpace ... 100
7.72 STRS-72 STRS_FileGetSize ... 101
7.73 STRS-73 STRS_FileGetStreamPointer ... 101
7.74 STRS-74 STRS_FileOpen ... 102
7.75 STRS-75 STRS_FileRemove .. 103
7.76 STRS-76 STRS_FileRename ... 103

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

9 of 148

SECTION

 TABLE OF CONTENTS (Continued)

PAGE

7.77 STRS-77 Use Messaging API .. 104
7.78 STRS-78 STRS_QueueCreate (Deleted) ... 104
7.79 STRS-79 STRS_QueueDelete (Deleted) ... 104
7.80 STRS-80 STRS_Register ... 105
7.81 STRS-81 STRS_Unregister ... 105
7.82 STRS-82 Use Time Control API ... 106
7.83 STRS-83 STRS_GetNanoseconds ... 106
7.84 STRS-84 STRS_GetSeconds ... 107
7.85 STRS-85 STRS_GetTime .. 107
7.86 STRS-86 STRS_GetTimeWarp ... 108
7.87 STRS-87 STRS_SetTime .. 109
7.88 STRS-88 STRS_TimeSynch .. 109
7.89 STRS-89 Provide STRS.h .. 110
7.90 STRS-90 Provide POSIX®.. 110
7.91 STRS-91 Use POSIX® .. 111
7.92 STRS-92 Document HAL .. 112
7.93 STRS-93 OE Uses HAL (Deleted) .. 113
7.94 STRS-94 External Commands ... 113
7.95 STRS-95 Use STRS APIs .. 114
7.96 STRS-96 Use STRS_Query ... 114
7.97 STRS-97 Use STRS_Log (Deleted) .. 115
7.98 STRS-98 Document Platform for XML (Project Option) 115
7.99 STRS-99 Document WF for XML (Deleted) .. 115
7.100 STRS-100 Provide XML File (Project Option) ... 116
7.101 STRS-101 XML Content (Project Option) .. 116
7.102 STRS-102 Provide XML Schema (Project Option) .. 117
7.103 STRS-103 Provide XML Transformation Tool (Project Option) 118
7.104 STRS-104 Provide XML Transformed (Project Option) 118
7.105 STRS-105 OE Provides API in C .. 119
7.106 STRS-106 Use STRS.h .. 119
7.107 STRS-107 Document External Commands ... 119
7.108 STRS-108 Document Thermal and Power Limits ... 120
7.109 STRS-109 Provide General-Purpose Processing Module 120
7.110 STRS-110 Provide STRS_APIs.h .. 121
7.111 STRS-111 Include STRS_DeviceControl.h .. 121
7.112 STRS-112 Provide STRS_DeviceControl.h .. 121
7.113 STRS-113 STRS_DeviceControl Base Class .. 122
7.114 STRS-114 APP_Destroy .. 122
7.115 STRS-115 APP_GetHandleID ... 123

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

10 of 148

SECTION

 TABLE OF CONTENTS (Continued)

PAGE

7.116 STRS-116 APP_GetHandleName ... 124
7.117 STRS-117 STRS_GetHandleName ... 124
7.118 STRS-118 STRS_ValidateHandleID ... 125
7.119 STRS-119 STRS_ValidateSize .. 126
7.120 STRS-120 DEV_Close .. 126
7.121 STRS-121 DEV_Flush .. 127
7.122 STRS-122 DEV_Load ... 128
7.123 STRS-123 DEV_Open ... 129
7.124 STRS-124 DEV_Reset .. 129
7.125 STRS-125 DEV_Unload .. 130
7.126 STRS-126 STRS_MessageQueueCreate ... 131
7.127 STRS-127 STRS_MessageQueueDelete ... 131
7.128 STRS-128 STRS_PubSubCreate ... 132
7.129 STRS-129 STRS_PubSubDelete ... 132
7.130 STRS-130 Document STRS Clock/Timer ... 133
7.131 STRS-131 STRS_GetTimeAdjust ... 134
7.132 STRS-132 STRS_SetTimeAdjust .. 134
7.133 STRS-133 STRS_Sleep ... 136
7.134 STRS-134 STRS Platform Queryable Parameters... 136
7.135 STRS-135 STRS Application Queryable Parameters .. 137

LIST OF APPENDICES

APPENDIX PAGE

A Example Configuration Files ... 139
A.1 STRS Platform Configuration File Hardware Example 139
A.2 STRS Platform Configuration File Software Example .. 141
A.3 STRS Application Configuration File Example .. 144
B References .. 148

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

11 of 148

FIGURE

 LIST OF FIGURES

PAGE
1 STRS Application Recommended State Diagram 23
2 Roles and Products .. 25
3 Memory Map ... 29
4 Sample Publisher-Subscriber Sequence Diagram 34
5 STRS Application/Device Structure ... 37
6 Example of Predeployed Configuration File for Appendix A 41
7 Example of Predeployed Configuration File for Application WF1 for

Appendix A ...

 42

8 Obtain Array of Pointers to Methods .. 44
9 Simplified Sequence Diagram for STRS_InstantiateApp 46
10 Simplified Sequence Diagram for STRS_AbortApp 47
11 Simplified Sequence Diagram for STRS_Configure 48
12 Multiple Connected Radios ... 54
13 XML Transformation and Validation ... 57
14 Example of Hardware Portion of STRS Platform Configuration File .. 139
15 Example of Software Portion of STRS Platform Configuration File 141
16 Example of STRS Waveform Configuration File 144
17 Example of STRS Device Configuration File 146

TABLE

 LIST OF TABLES

PAGE

1 Substitutions for Figure 11 .. 48
2 STRS Architecture Standard, Table 77, Replacements for Unsafe

Functions ..

 112

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

12 of 148

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)
ARCHITECTURE STANDARD RATIONALE

1. SCOPE

1.1 Purpose

The purpose of this NASA Technical Handbook is to present the rationale which underlays the
requirements contained in NASA-STD-4009A, Space Telecommunications Radio System
(STRS) Architecture Standard, the companion document to this NASA Technical Handbook.
Supporting examples and further descriptions for clarification of portions of NASA-STD-4009A
are also provided. Answers prompted by questions from the Space Communications and
Navigation (SCaN) Testbed partners, who created the first space implementation of STRS, are
also included. As the NASA Technical Standard evolves, minor corrections and updates to
obsolete information will be added to the NASA Technical Handbook. The NASA Technical
Handbook is aimed at helping readers and implementers of NASA-STD-4009A understand the
NASA Technical Standard.

NASA-STD-4009A provides an STRS overview, background, and detailed descriptions that
might be useful to the reader not familiar with the STRS architecture.

1.2 Applicability

This NASA Technical Handbook is applicable to providing the rationale as well as additional
information to NASA-STD-4009A, which is a standard for reconfigurable communication
transceiver developments among NASA missions.

This NASA Technical Handbook is approved for use by NASA Headquarters and NASA Centers
and Facilities. It may also apply to the Jet Propulsion Laboratory (a Federally Funded Research and
Development Center (FFRDC)), other contractors, recipients of grants and cooperative agreements,
and parties to other agreements only to the extent specified or referenced in their applicable
contracts, grants, or agreements.

This NASA Technical Handbook, or portions thereof, may be referenced in contract, program,
and other Agency documents for guidance. When it contains procedural or process requirements,
they may be cited in contract, program, and other Agency documents.

2. APPLICABLE DOCUMENTS

2.1 General

The documents listed in this section are applicable to the guidance in this NASA Technical
Handbook.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

13 of 148

2.1.1 The latest issuances of cited documents shall apply unless specific versions are
designated.

2.1.2 Non-use of specifically designated versions shall be approved by the delegated Technical
Authority.

Applicable documents may be accessed at https://standards.nasa.gov or obtained directly from
the Standards Developing Body or other document distributors. When not available from these
sources, information for obtaining the document is provided.

2.2 Government Documents

 NASA

NPR 7150.2 NASA Software Engineering Requirements

NASA-STD-4009A Space Telecommunications Radio System (STRS)
Architecture Standard

NASA/TM-2007-215042

Space Telecommunications Radio System (STRS)
Architecture Goals/Objectives and Level 1 Requirements

NASA/TP-2008-214813 Space Telecommunications Radio System Software
Architecture Concepts and Analysis

NASA/TM-2009-215478

Case Study: Using the OMG SWRADIO Profile and SDR
Forum Input for NASA’s Space Telecommunications Radio
System

NASA/TM-2011-216948

Symbol Tables and Branch Tables: Linking Applications
Together

NASA/TM-2011-217266 Space Telecommunications Radio System (STRS)
Compliance Testing

2.3 Non-Government Documents

 Consultative Committee for Space Data Systems (CCSDS)

Red Book Specification 876.0

Spacecraft Onboard Interface Services--XML Specification
for Electronic Data Sheets for Onboard Devices

Red Book Specification 876.1 Specification for Dictionary of Terms for Electronic Data
Sheets for Onboard Components

https://standards.nasa.gov/
https://ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%252fObjectives+Level+Requirements+Document&qs=Ntx%253Dmode%2520matchallpartial%2520%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DSpace%2520Telecommunications%25
http://ntrs.nasa.gov/search.jsp?R=20080024190&hterms=STRS+214813&qs=Ntx%3Dmode%20matchallpartial%26Ntk%3DAll%26N%3D0%26Ntt%3DSTRS%20214813
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090008668.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090008668.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110004321.pdf
http://www.ntrs.nasa.gov/search.jsp?R=20120000912&hterms=Compliance+Tools&qs=N%3D0%26Ntk%3DAll%26Ntt%3DCompliance%20Tools%26Ntx%3Dmode%20matchallpartial
https://public.ccsds.org/Lists/CCSDS%208760R2/overview.aspx
https://public.ccsds.org/Lists/CCSDS%208761R2/overview.aspx

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

14 of 148

 International Organization for Standardization (ISO)/International
 Electrotechnical Commission (IEC)

ISO/IEC 9899 Information technology - Programming languages - C

ISO/IEC 14882 Information technology - Programming languages - C++

See Appendix B for reference documents.

2.4 Order of Precedence

This NASA Technical Handbook provides guidance for the rationale which underlays the
requirements contained in NASA-STD-4009A but does not supersede or waive established
Agency requirements/guidance found in other documentation.

3. ACRONYMS, ABBREVIATIONS, AND DEFINITIONS

3.1 Acronyms and Abbreviations

API application program interface
BIT built-in test
BSP board support package
CCSDS Consultative Committee for Space Data Systems
cFS Core Flight System
CORBA Common Object Request Broker Architecture
COTS commercial off the shelf
DLL dynamic link library
DSP digital signal processor
EDIF electronic design interchange format
EDS electronic data sheet
FFRDC Federally Funded Research and Development Center
FPGA field programmable gate array
GPM general-purpose processing module
GPP general purpose processor
GRC Glenn Research Center
GUI graphical user interface
HAL hardware abstraction layer
HDBK handbook
HDL hardware description language
HID hardware interface description
I/O input/output
ICD interface control document

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

15 of 148

ID identification, identifier
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
IP Intellectual property
ISO International Organization for Standardization
JTRS Joint Tactical Radio System
k kilo
N/A not applicable
NASA National Aeronautics and Space Administration
NPR NASA Procedural Requirements
NRE non-recurring engineering
OE operating environment
OMG Object Management Group
OO object oriented
OS operating system
OTA over the air
PIM platform-independent model
POSIX® Portable Operating System Interface
PSE51 minimal real-time system profile 51, defined in IEEE

1003.13
PSM platform-specific model
RF radio frequency
RPC remote procedure call
RPN Reverse Polish Notation
RTEMS Real-Time Executive for Multiprocessor Systems
RTOS real-time operating system
SCA Software Communications Architecture
SCaN Space Communications and Navigation
SDR software-defined radio
SPM signal-processing module
STD Standard
STRS Space Telecommunications Radio System
SWaP size, weight, and power
SWRADIO software radio
UML Unified Modeling Language
UTC Coordinated Universal Time
V&V verification and validation
VDD version description document
VHDL VHSIC hardware description language
VHSIC very high speed integrated circuits

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

16 of 148

W3C World Wide Web Consortium (main international
standards organization for the World Wide Web
(abbreviated WWW or W3).

WF Waveform
XML Extensible Markup Language
XSD XML 1.0 Schema Definition
XSL Extensible Stylesheet Language
XSLT Extensible Stylesheet Language Transformation

3.2 Definitions

Key terms and definitions are described in section 3.2 of NASA-STD-4009A.

4. HIGH-LEVEL RATIONALE

The rationales for the STRS requirements in NASA-STD-4009A were derived from the Level 1
requirements in NASA/TM-2007-215042, STRS Architecture Goals/Objectives and Level 1
Requirements (summarized below), the restrictions of the space environment, and the use cases
in NASA/TP-2008-214813, STRS Software Architecture Concepts and Analysis. The Object
Management Group (OMG) Software Radio (SWRADIO) profile was considered in
NASA/TM-2009-215478, Case Study: Using the OMG SWRADIO Profile and SDR Forum
Input for NASA’s Space Telecommunications Radio System, and the platform-independent
model (PIM) was used as the starting point for the application software requirements.

STRS Goals and Objectives

4.1 Usable across most NASA mission types (scalability and flexibility).
4.2 Decrease development time and cost.
4.3 Increase reliability of software-defined radios (SDRs).
4.4 Accommodate advances in technology with minimal rework (extensibility).
4.5 Adaptable to evolving requirements (adaptability).
4.6 Enable over-the-air interoperability with existing assets (interoperability).
4.7 Leverage existing or developing standards, resources, and experience (state-of-

the-art and state-of-practices).
4.8 Maintain vendor independence.
4.9 Enable waveform application portability.

STRS Level 1 Requirements

5.1 Layered Architecture.
5.2 Open Architecture.
5.3 Flexibility in Form Factor.
5.4 Remote Reconfiguration.
5.5 Remote Reprogrammability.

http://www.ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%2fObjectives+Level+Requirements+Document&qs=Ntx%3Dmode%20matchallpartial%20%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%20Telecommunications%25
http://ntrs.nasa.gov/search.jsp?R=20080024190&hterms=STRS+214813&qs=Ntx%3Dmode%20matchallpartial%26Ntk%3DAll%26N%3D0%26Ntt%3DSTRS%20214813
http://ntrs.nasa.gov/search.jsp?R=20090008668&hterms=NASA%2fTM+2009-215478&qs=Ntx%3Dmode%20matchallpartial%20%26Ntk%3DAll%26N%3D0%26Ntt%3DNASA%2FTM%E2%80%942009-215478

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

17 of 148

5.6 External Hardware Control.
5.7 Standard Spacecraft Interfaces.
5.8 Existing Waveform Support.
5.9 Multiple Waveform Support.
5.10 Simultaneous Operation of Multiple Waveforms.
5.11 Multi-Service Support.
5.12 Suitable for Any Radio Frequency Bands.
5.13 Multiple Frequency Bands
5.14 Multi-Channel Capability.
5.15 Commanded Built-In-Test and Status Reporting.
5.16 Operational Diagnostics.
5.17 Automated System Recovery/Initialization.
5.18 Navigation Support.
5.19 Network Support.
5.20 Security Compatibility.
5.21 Secure Transmission.
5.22 Processor Sharing.
5.23 Autonomous Link Optimization.

4.1 Operational Requirements

Many Level 1 requirements describe what the architecture has to allow in the way of operations.
However, any mission determines which of these are to be implemented in its specific radios to
support the mission’s needs. In NASA-STD-4009A, requirements were written in a layered way
so as to describe many architectural requirements in terms of applications, devices, services,
other artifacts, and how they are used to perform the necessary functions.

The Level 1 requirements include responding to commands sent from an external source for
remote reconfiguration, remote reprogrammability, processor sharing, and commanded Built-In-
Test (BIT) and status reporting. These Level 1 requirements become part of the rationale for
those requirements in NASA-STD-4009A pertaining to the startup and configuration of the radio
as well as commanding the radio and obtaining information back about the configuration and
command success.

4.2 Operating Environment (OE) Requirements

The STRS OE, as used in NASA-STD-4009A, is the software environment in which the STRS
applications are executed. Because an STRS radio is really a computer, it has an operating
system (OS) usually created separately from the STRS infrastructure. Using an OS promotes the
STRS goals and objectives for flexibility, decreasing development time and cost, and increasing
the reliability of SDRs, by leveraging existing standards, resources, and experience. A real-time
operating system (RTOS) is likely to be used to meet timing deadlines and to support other
operations, even though most of the real-time capability currently resides in field programmable
gate arrays (FPGAs). Furthermore, an OS will need real-time capability if the general purpose
processors (GPPs) are faster and assume more of the telecommunication functions or if the

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

18 of 148

mission’s telemetry requirements are stringent enough to warrant using an RTOS to be able to
achieve processing constraints.

The Portable Operating System Interface (POSIX®) is a standard that is used by many OSs.
Therefore, POSIX® was chosen to implement certain functions missing from the list of STRS
Application-provided methods to minimize duplication of methods between STRS and POSIX®.

4.3 Documentation Requirements

NASA-STD-4009A requires specific information to be delivered with an STRS-compliant
platform and application. This information is requested to support the goals and objectives for
extensibility, adaptability, portability, reusability, and vendor independence. The specific
mission procuring the platform and/or application will require additional documentation to
integrate and operate the platform and/or application with the rest of the system for the mission.

The hardware abstraction layer (HAL) documentation is required by STRS to allow, for
example, the independence of the providers of the infrastructure and the FPGA. The basic goals
and objectives include accommodating advances in technology with minimal rework
(extensibility) and maintaining vendor independence. The STRS infrastructure has access to the
HAL, and the HAL is specific to a platform. Since STRS is designed for the applications to be as
portable as possible, STRS hides the HAL from the STRS application using a bridge pattern so
that an STRS application can use a standardized application program interface (API) to interact
with any specialized hardware.

4.4 Source Code Requirements

Because of size, weight, and power (SWaP) restrictions for space, many of the requirements in
the Department of Defense’s Software Communications Architecture (SCA) version 2.2 were
eliminated for STRS. These include eliminating the requirement for Common Object Request
Broker Architecture (CORBA) and the onboard parsing of the Extensible Markup Language
(XML). Although object-oriented Unified Modeling Language (UML) diagrams were used for
parts of the description to clarify relationships, they did not become part of the requirements. As
described in the Case Study, STRS was able to use almost the same PIM as the OMG’s
SWRADIO to come up with a very different implementation.

Because the STRS architecture is needed to support a C language interface to minimize SWaP, a
pure object-oriented approach was unsatisfactory. To encapsulate functionality in a consistent
manner, APIs were defined and the corresponding #include files were required to constrain the
method signatures appropriately. A subset of the infrastructure APIs was required to call the
appropriate application API. Because of the C language interface, the methods were
differentiated so that the STRS infrastructure APIs had a different naming convention and two
additional arguments:

a. The fromWF argument in many of the STRS infrastructure APIs is the handle
identification (ID) used to indicate who the caller or source is.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

19 of 148

b. The toWF argument in many of the STRS infrastructures APIs is the handle ID used

to indicate who the responder or destination is. The STRS infrastructure uses the toWF to
determine which application, device, file, or queue is to be used to perform any further
processing. Then the infrastructure-provided method usually calls the corresponding
Application-provided method.

A handle ID is used to control access to applications, devices, and so forth. The fromWF and
toWF may be used by the infrastructure to validate whether the method is allowed to be called
and to keep track of the history of the method call for error processing. They are used by the
infrastructure when creating log messages to indicate the source of an error.

It is up to the infrastructure provider whether the handle ID is an index into a table, or an address
of a structure, or a hash value used to look up the information that the infrastructure uses to
access the application, device, file, or queue. The only restriction imposed by STRS is that a
negative value indicates an error. It is the responsibility of the infrastructure to keep any
additional information needed to intelligently populate the error logs. Each application is
informed of its own handle ID and handle name using APP_Instance. The application uses its
own handle ID as the fromWF argument to most STRS infrastructure-provided methods. There
should be a handle ID for the infrastructure (or portions thereof) to indicate when the
infrastructure is the source for error messages.

After considering the functionality required by the use cases and OMG SWRADIO profile, there
needed to be APIs to standardize additional portions of the software. Therefore, APIs were
created for devices, message queues, files, and timing. Some others were left to POSIX® to
implement.

4.5 Configuration File or Script File Recommendation

Configuration files or script files are recommended as a self-documenting way for the STRS
infrastructure to start STRS applications into a known state to support the Level 1 requirements
for remote partial configuration, reconfigurability, adaptability, automated system recovery and
initialization, and multiple waveform support. The basic requirement derives from the need for
each component to start in a known state. Requirement STRS-1 produces a known state for the
platform. Using application configuration files or script files produces a known state for the
applications. The infrastructure configuration files are suggested to allow for evolution of the
hardware and software in a standard way.

Using an application configuration file addresses the variability regarding what resources may be
needed by the application, what variables need to be defined, and what state changes need to be
made. There is not necessarily a one-to-one correspondence between an application and a
loadable file. A loadable file can contain parts of multiple applications; likewise, an application
can span multiple loadable images. In a common case, a single application has both a GPP part
and an FPGA part. Another case occurs for the OS-like Real-Time Executive for Multiprocessor
Systems (RTEMS), a free open-source RTOS designed for embedded systems, which does not
support dynamic loading. In that case, there is no need to include separate information on the

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

20 of 148

GPP part of an application, since the build process does not make a loadable image for the
application alone, separate from the infrastructure.

The application configuration files allow for the same application to be configured for different
situations. For example, the environment may vary over the life of the radio and parameters may
need to be adjusted accordingly. Another example might be allowing the original frequencies
defined in a configuration file to be updated to avoid interference. It is less risky to send a short
data file to the radio than to send a full software load. A current example for one of the SCaN
Testbed SDRs is that the software and/or configurable hardware design has to remain stable at a
certain point in the development process so that code review and test can be completed.
However, there are parameters that are environmentally sensitive and can only be determined by
testing under environmental conditions that simulate the conditions of space. These parameters
are determined and entered into the application configuration file. A new application
configuration file is then added to the SDR, but the software and configurable hardware design
used for the code review and test remain unchanged.

When the waveform application is started, the state, resources, and the configurable parameters
can be specified in a configuration file or script so that any reinitialization is predictable. For
example, if the radio needs to cycle power to correct some glitch, it should be able to do so and
restart the application without intervention. The project manager may require the inclusion of
“initial or default values for all distinct operationally configurable parameters.” The
“operationally configurable parameters” were those that could be configured using the
STRS_Configure/APP_Configure commands instead of using subordinate parameters that do not
have to be configured separately or using merely queryable parameters. For example, if a data
item can be initialized in multiple ways such as having parameters for both frequency and
wavelength, only one would need to be configured. Also, a parameter could be queryable but not
configurable (e.g., temperature, location, and power consumption).

When the project manager specifies a requirement for a configuration file, XML is recommended
as a good starting point. The reasons for using XML for the predeployed application
configuration files are as follows:

a. Using XML allows the data to have a standardized format that is easily created, read,
and used by multiple entities.

b. XML is easy to learn, does not require much overhead, and is a World Wide Web
Consortium (W3C) free and open standard.

c. Using XML saves time and money since tools already exist for displaying, editing,
validating, parsing, and other functions.

d. Using XML allows the data to be self-documenting.

e. An exact format for the predeployed configuration files is not specified because the
infrastructure for each vendor may need different information to start an application. The data in
the application configuration files may not always be just name/value pairs.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

21 of 148

f. Using XML allows for hierarchical as well as sequential data. Using hierarchical data
allows for greater complexity. Using XML does not hinder the data from being used sequentially
or in a specific order.

g. XML is easily transformed to more compact forms such that only the relevant subset
appears in the deployed configuration file. The minimum data could be identification, any
resources loaded, any parameters configured, and ending state information.

h. Using XML allows the STRS integrators to be able to verify that the data they enter
meet some specified criteria so that the creation of the deployed configuration file will work
properly.

i. STRS began as an approach to adapt SCA for NASA space applications. A waveform
application was implemented using SCA and from that, it was apparent that having CORBA and
an XML parser in the radio added quite a lot to the complexity, size, and weight. STRS
eliminated the need for CORBA, dynamic features, and an XML parser in the OE. So, the best
resolution was having XML to start with and a processed file to deploy on the radio.

j. The SCA’s properties files in XML could be used for STRS with minimal changes.
An Extensible Stylesheet Language Transformation (XSLT) could be written to transform an
SCA properties file into any deployed format.

k. Using XML allows validation of input values. Part of the compliance testing is to
verify that the configuration file follows the format specified in the schema. Using an XML
schema saves NASA from having to keep a different validation tool for each vendor.

l. Using XML allows data to be labeled with tags and attribute names so that the data
are more easily validated and changed. The minimum was specified for the format of the
application configuration files so that each vendor could use the format appropriate to that
vendor’s implementation. For example, here are some alternatives for a “wait” command in
XML:

(1) <command>wait 100</command>
(2) <wait>100</wait>
(3) <wait delay=”100”/>
(4) <wait delay=”100” units=”microseconds”/>
(5) <wait> <delay>100</delay> <units>microseconds</units> </wait>

Validation is difficult for alternative (1) using a schema. When the data “100” is
separately identified, as in alternatives (2)-(5), it is easier to validate using a schema.
When “100” is labeled as a delay, it is easier for multiple entities to identify and
modify. Alternative (3) is not really better than (2) because the word delay does not
add to the definition of the number significantly but adding the units does. When the
“100” is labeled as a delay in microseconds, as in alternatives (4)-(5), it is even easier
for multiple entities to identify and modify. Both (4) and (5) contain the same
explanatory information and may be clearly checked by a schema. Which one may be

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

22 of 148

considered optimal depends on the ability to transform the data into a deployed
format.

XML 1.0 is recommended because the http://www.w3.org/ standards state that even though
XML 1.1 is the current version, “You are encouraged to create or generate XML 1.0 documents
if you do not need the new features in XML 1.1.” Furthermore, an error was obtained when using
XMLSpy, a commercial-off-the-shelf (COTS) software product for testing with XML 1.1.

To avoid the drawback of requiring an XML parser to be part of the radio, the STRS allows the
configuration files to be preprocessed into a simpler form. Although XSLT is suggested in
NASA-STD-4009A as a simple mechanism for this transformation, it is not required.
Alternatively, the preprocessing could be handled by a program or script. Although a manual
process using a text editor is not impossible, an automated process is preferred.

The following state diagram, figure 1, STRS Application Recommended State Diagram, shows
that an STRS application can have various states during execution. The files for the STRS
application are to be accessible before execution can begin.

• STRS_InstantiateApp causes the deployed configuration file to be parsed and
APP_Instance or the constructor to be called such that the STRS application starts in
the INSTANTIATED state, but it may be transitioned to another state if specified in
the STRS application configuration file.

• STRS_Initialize calls APP_Initialize on the appropriate STRS application.

• APP_Initialize transitions the STRS application to the STOPPED state upon
successful completion.

• STRS_Start calls APP_Start on the appropriate STRS application.

• APP_Start transitions the STRS application from the STOPPED state to the

RUNNING state upon successful completion.

• STRS_Stop calls APP_Stop on the appropriate STRS application.

• APP_Stop transitions the STRS application from the RUNNING state to the
STOPPED state upon successful completion.

• When either APP_RunTest or APP_GroundTest is called, the application may be

transitioned from the STOPPED state to a TESTING state, if necessary.

• STRS_ReleaseObject calls APP_ReleaseObject on the appropriate STRS application.

http://www.w3.org/

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

23 of 148

• The FAULT state may be set by the STRS application or detected by the fault
monitoring and recovery functions, but any recovery is managed by the STRS
infrastructure or by an external system.

The STRS application internal states shown in figure 1 are suggested. The STRS application
developer may define and use any additional internal states that the STRS application developer
sees fit. The infrastructure may use any additional states that are deemed necessary.

Figure 1—STRS Application Recommended State Diagram

4.6 Roles and Responsibilities

For STRS, roles are specified as abstractions for the responsible organizations. The roles and
corresponding organizations are expected to change at different stages of the radio’s life cycle.
For example, a developer or provider of some component may act as an STRS integrator for that
component and other components at a subsequent stage of production. Then, that STRS
integrator may act as a provider for the next stage. NASA’s goals are to promote vendor
independence, scalability, flexibility, and extensibility while specifying the smallest number of
clearly defined roles possible.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

24 of 148

The basic roles that NASA-STD-4009A defines are the STRS platform provider, who delivers a
platform upon which STRS applications can be executed, an STRS application developer who
provides the desired functionality in the form of an STRS application, and an STRS integrator
who is responsible for integrating the parts to work together. The STRS platform provider could
subcontract for hardware and software, but the responsibility for coordination, integration, and
delivery of the infrastructure and related artifacts would reside in one STRS platform provider
organization.

The STRS platform provider would usually act as STRS application developer and STRS
integrator for at least a sample application. The roles and associated products are depicted in
figure 2, Roles and Products.

The roles could have been broken down differently, allowing for various combinations of
providers and integrators that could be very complex. Some suggested roles were as follows:

a. Application developer or provider.
b. Application integrator (OE + applications).
c. Configurable hardware design provider.
d. HAL/board support package (BSP)/drivers provider.
e. Hardware integrator.
f. Hardware parts supplier.
g. Infrastructure provider.
h. Kernel integrator (OS + POSIX® + HAL).
i. OE integrator (OS + POSIX® + HAL + infrastructure).
j. OE provider (OS + POSIX® + HAL + infrastructure).
k. Operator.
l. OS provider.
m. Platform integrator.
n. Platform provider.
o. POSIX® provider.
p. Radio integrator (OE + applications).
q. Radio operator (concerned with the mechanics of commanding the radio).
r. Spacecraft operator (concerned with the functionality of the radio in the larger sense

of including ground operations, experimenters, i.e., consumers of the data flowing through the
radio).

s. System integrator (the entity that puts the radio into a system).

Some of these roles are duplicates or overlap one another. There were multiple interpretations for
some of the roles, causing confusion. Therefore, the roles were simplified. Although a few
operator roles were suggested, the operator roles have no STRS requirements, so these roles were
not included. The operator roles are required for specific missions or projects rather than for the
STRS architecture. There are no STRS requirements for specific external commands and how the
commands and data get to the STRS radio. There are no STRS requirements for a specific
process for an operator to turn the radio on and off, send configuration commands, consume and
source data, deal with configuration management of software uploads, and other functions. There
are no STRS requirements for the radio link parameters and for the actions of the experimenters

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

25 of 148

and consumers of the data flowing through the radio. These types of requirements are mission-
specific and have to be included in the requirements for the particular mission or project, which
are in addition to NASA-STD-4009A requirements.

Document preparer roles and reviewer roles are not included, because STRS has no requirements
concerning the process by which the documents are generated. There will be mission or project
requirements for additional roles (including stakeholders) not mentioned here, for which STRS
has no requirements.

Figure 2—Roles and Products

5. HOW TO USE STRS APIs

This section contains recommendations and general information about how some operations
would usually be performed using the STRS APIs.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

26 of 148

5.1 How to Associate an FPGA with an STRS Application

For an FPGA, there should be a corresponding STRS Device (GPP code) to control the FPGA
and transfer data. The handle name of the STRS Device for each FPGA may be named
differently, especially on different platforms. To make it easy for the STRS application to access
the appropriate FPGA with maximum portability, the handle name of the STRS Device that
corresponds to the appropriate FPGA should be a configurable attribute for the STRS
application. The STRS application would use the attribute supplying the handle name to obtain
the handle ID using STRS_HandleRequest. The application would use the resulting handle ID of
the STRS Device to invoke the STRS Infrastructure-Provided Application Control API methods
(NASA-STD-4009A, section 7.3.2) and STRS Infrastructure-Provided Device Control API
methods (NASA-STD-4009A, section 7.3.6) to interact with the FPGA. A likely implementation
would have any methods in the STRS Infrastructure-Provided Device Control API invoke the
corresponding method in an STRS Device-Provided Device Control API. A sample of an STRS
Device-provided Device Control API is shown in Figure 5, STRS Application/Device Structure,
as the Device API.

For example, there might be FPGA1 and FPGA2 available. If WF1 uses FPGA2, a configuration
file for WF1 could contain a name/value pair to associate the name useFPGA with FPGA2. Let
the function getValue obtain the value corresponding to the given name. Then, the STRS
application could access the correct FPGA, as follows:

STRS_HandleID fromID = APP_GetHandleID();
char* fpgaName = getValue(“useFPGA”);
STRS_HandleID fpgaID = STRS_HandleRequest(fromID, fpgaName);
STRS_Result rtn = STRS_ValidateHandleID(fpgaID);
If (! STRS_IsOK(rtn)) {

STRS_Message msg = “Handle ID error for useFPGA.”;
STRS_HandleID errQ = STRS_GetErrorQueue(rtn);
STRS_Log (fromID, errQ, msg, (STRS_Buffer_Size) sizeof(msg));

}

5.2 How to Load an FPGA

An FPGA may be loaded directly by the infrastructure when it parses the configuration file, if
supported, or may be loaded by an STRS_DeviceLoad call from the application GPP code. If the
latter method is used, the name of the bitstream file should also be a configurable attribute set
with the APP_Configure method. The STRS_HandleRequest method should be called to obtain
the handle ID for the FPGA Device, and then the STRS_DeviceLoad method should be called
for the FPGA to load the bitstream file. These STRS infrastructure calls may be performed in the
APP_Configure directly or in the APP_Start method, as appropriate.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

27 of 148

5.3 How to Set Attributes

An FPGA may be configured directly by the infrastructure when it parses the configuration file
or by an STRS_Configure call to the STRS Device for the FPGA call from the application GPP
code. If the latter method is used, the handle name of the FPGA Device should also be a
configurable attribute set with the APP_Configure method. The STRS_HandleRequest method
should be called to obtain the handle ID for the FPGA Device, and then the STRS_Configure
method should be called for the FPGA Device to configure the FPGA. These STRS
infrastructure calls may be performed in the APP_Configure directly or in the APP_Start
method, as appropriate.

5.4 How to Get Attributes

Not all specialized hardware can be interrogated for its configuration; however, the infrastructure
or the application may maintain any configuration data needed. The application has to implement
APP_Query and, if appropriate, it should call the STRS_HandleRequest to obtain the handle ID
for the FPGA followed by an STRS_Query call to the STRS FPGA Device to obtain the
configuration data from the FPGA.

5.5 How to Push Packets

To push packets from an application, to a device, queue, file, or another application,
STRS_Write is used. For generating packets in the same application used to send the packets,
APP_Write may be used directly. If an application acts as a sink of packets pushed, it has to
implement APP_Write, #include "STRS_Sink.h"; and if C++, the class has to implement
STRS_Sink.

5.6 How to Pull Packets

To pull packets from a device, queue, file, or another application, STRS_Read is used. To pull
packets from another module in the same application, APP_Read may be used directly. If an
application acts as a source of packets pulled, it has to implement APP_Read, #include
"STRS_Source.h", and, if C++, the class has to implement STRS_Source.

5.7 How to Process Errors

When a call to an STRS method is made, a variable of type STRS_Result is usually returned. To
ensure consistent testing for errors, where an error is usually a negative value, STRS_IsOK tests
that variable of type STRS_Result for errors, and returns a true or false boolean variable. The
value returned from STRS_IsOK is true when there is no error and false when there is an error so
that appropriate action may be taken.

When an error is detected in the operation of the application, STRS_Log should be invoked
using an error queue handle ID (STRS_FATAL_QUEUE, STRS_ERROR_QUEUE, or
STRS_WARNING_QUEUE), and a descriptive message. The error queue handle ID can be

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

28 of 148

determined using STRS_GetErrorQueue with the error return value as an argument. The error
queues are monitored and passed to the infrastructure for further action.

The STRS methods use the error returns rather than using variable errno to indicate an error.
STRS policy on errno is that it is undefined outside of the application methods. You cannot rely
on it to indicate the particular error because it is not reset before system calls and may be reset to
a different error later, before it is tested. It reduces portability by allowing different values on
different operating systems with different compilers.

5.8 How to Make Multiple Instances of an Application

To create multiple instances of an application, be sure that the application is reentrant and that all
pertinent data are configurable. Two configuration or script files may have to be created, if any
of the initial data is different. A different handle name is specified for each instance. When using
C language applications, there may be method name duplication, which is discussed further in
section 6.10, C Language Naming Duplication.

5.9 How to Map Memory Locations

STRS Devices are allowed to use memory mapped locations in which storing/retrieving an item
in shared memory automatically pushes/pulls the item to/from the specialized hardware. STRS
Devices do not have to be portable, so non-standard methods may be encapsulated within an
STRS Device. The STRS applications should not use the shared memory locations directly to
communicate with the specialized hardware because that is not portable and violates the spirit of
STRS. The addresses for the specialized hardware should not be defined in the application or its
configuration file. Hard-coding of memory locations in an STRS application or STRS Device is
strongly discouraged because hard-coding would limit the independence of the software and
configurable hardware design and may cause problems with verification and validation if any
FPGA code is changed that would affect that location.

There is no requirement that an STRS Device use configuration or script files containing location
information, but it is strongly encouraged to be configured rather than hard-coded. Configuration
data are usually specified in a configuration file where the OE parses the configuration file to call
STRS_Configure and that calls APP_Configure in the STRS Device to accept the configuration
data. However, there is nothing in the standard that restricts the OE from calling other method(s)
such as DEV_SetMemoryMap(map) to specify more complicated configuration data. Similarly, a
script file may be executed to call STRS_Configure and related commands.

The shared memory locations should be specified in the configuration or script files for the
appropriate STRS Device. In the example of a configuration file shown in Appendix A for
MEMORYMAP and MAPVALUE, there is a base name, associated relative location, offset,
size, and access. These are illustrated in figure 3, Memory Map. The location for an individual
item is specified relative to the base name in addressable storage units. The location may also
have a bit offset and bit length. Then, when the configurable item is modified, the mapped

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

29 of 148

location is used. In the example of an STRS Device shown in Figure 5, the OE can use the
DEV_SetMemoryMap(map) method to configure the mapping in the STRS Device.

Figure 3—Memory Map

5.10 When to Use STRS_Log and STRS_Write

The two STRS infrastructure methods, STRS_Log and STRS_Write, have similar functionality
except that STRS_Log adds a time stamp and possibly other identifying information. These
methods should never be mixed for a given target. An STRS application developer should only
write to the error queues using STRS_Log because the errors need to be identified further
(STRS-54, STRS-55, STRS-56) and never with STRS_Write. Similarly, an STRS application
developer should only write to the telemetry queues using STRS_Log because the telemetry data
need to be identified further (STRS-57) and never using STRS_Write. Furthermore, the error
queues are monitored for faults. An STRS application developer should only use STRS_Write to
write buffered data to another application, service, device, file, or queue that does not require
additional information added.

5.11 Difference Between Run Test and Ground Test

A run test is invoked using STRS_RunTest and implemented by APP_RunTest. A ground test is
invoked using STRS_GroundTest and implemented by APP_GroundTest. A run test is invoked
before or after deployment to determine whether the component is performing correctly. A
ground test is generally invoked before deployment to perform unit testing and calibration. The
ground tests help to automate and evaluate those tests. The term ground test was originally used
to indicate testing for a satellite system, which is performed on the ground before launch.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

30 of 148

Ground test may be invalid after deployment and indicates that such tests are normally
completed before deployment and are not repeated thereafter. If allowed by the project and the
ground tests will not be repeated after deployment, then the ground test code may be removed
prior to deployment. The run tests and ground tests were separated because NASA generally
requires significant testing prior to deployment; for example, vibration testing, environmental
testing, radiation testing, etc.

5.12 When to Use Start/Stop, Load/Unload, and Open/Close

The commands STRS_Start, STRS_DeviceLoad, STRS_DeviceOpen are specified in NASA-
STD-4009A along with the reverse commands, STRS_Stop, STRS_DeviceUnload, and
STRS_DeviceClose. The following describes the interaction of these commands under various
common circumstances.

Initialize (STRS_Initialize) is used while the application is in the STOPPED mode to set the
application to a known initial condition. The application may be configured before and/or after
initialize. Start (STRS_Start) is used to begin normal processing and change the state to
RUNNING. If any part of the application is in specialized hardware, that portion needs to be
loaded before starting. To load (STRS_Load) an STRS Device, the Device has to be opened
(STRS_Open) first. It is suggested that any part executing in specialized hardware not begin
execution upon being loaded but rather during the start process. Similarly, it is suggested that
stopping execution (STRS_Stop) does not require any specialized hardware to be unloaded.
Therefore, greater control is given to the application software for processing commands to start
and stop waveform application operation in order to take advantage of windows of opportunity
for execution as well as to promote consistency in control of the radio. Only certain allowed
items may be configured after starting.

It is suggested that the STRS OE use configuration file(s) to start-up an application to a known
initial state. STRS encourages that changeable data be specified in configuration files, rather than
coding the data as constants within the application or device, so that greater portability and ease
of modification is achieved. The STRS OE may process a configuration file to instantiate, open
and load the device, initialize, configure, and start the application, or use any subset of these as
determined by the project/mission and STRS platform provider.

As an example, the following use case is written for a waveform application using specialized
hardware to send signals over the air to another radio assuming that the specialized hardware
device has already been instantiated and initialized by the OE:

1. Radio receives a command that a new waveform application is needed. This may be
multiple commands received or one command that invokes a series of operations. In
either case, those operations follow.

2. OE checks for availability of the application and memory to instantiate it.
3. OE instantiates application (STRS_InstantiateApp).
4. OE initializes application (STRS_Initialize).
5. OE opens specialized hardware device (STRS_DeviceOpen).

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

31 of 148

6. OE loads specialized hardware device (STRS_DeviceLoad).
7. OE configures application (STRS_Configure).
8. OE starts application (STRS_Start).

The use case for the reverse process is as follows:

1. The radio receives a signal to stop and remove the application. This may be multiple
commands received or one command that invokes a series of operations. In either case,
those operations follow.

2. OE stops the application (STRS_Stop).
3. OE unloads the specialized hardware device (STRS_DeviceUnload).
4. OE closes the specialized hardware device (STRS_DeviceClose).
5. OE releases resources for application (STRS_ReleaseResources).

If there is no specialized hardware device, the steps pertaining to such a device may be
eliminated. If the application merely performs calculation, start may mean perform the
calculation and, before each calculation, the data is reconfigured. Alternately, start may mean
ready to perform the calculation and start invokes a thread that loops waiting for new data so that
each time new data is obtained, the computation is performed. Similarly, for a waveform
application, start may mean to tell the specialized hardware device to begin processing signals or
alternately, start may invoke a thread to perform the communication functions. A separate thread
is used so that other commands may be processed independently.

5.13 How to Read and Write Data

An application may read data using STRS_Read and write data using STRS_Write. A
description of content, format, and usage of buffers is provided as part of the user
documentation. As Consultative Committee for Space Data Systems (CCSDS) Electronic Data
Sheets mature, these should be considered as precise machine-readable descriptions to facilitate
reading and writing data. Currently, CCSDS Electronic Data Sheets are Red Book specifications
876.0 and 876.1.

It is suggested that CCSDS be used to document the format of buffers. CCSDS book 876.0
specifies "Electronic Data Sheets" (EDS), which is an XML schema for describing data
exchange between system components. It provides a means to specify the exact format of the
data, binary or otherwise, the types of interfaces provided by a component, as well as any
handshaking or protocol-level requirements of an interface. The objective is to specify these
details in a machine-readable language, and with sufficient detail such that it eliminates the need
for a separate interface control document (ICD). The system components described can be
physical hardware devices, where the device manufacturer would author the EDS, or software
components where EDS can serve as a common interface description between the sender and
receiver.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

32 of 148

The STRS architecture does not dictate a specific data format for all APIs, leaving this decision
up to application/waveform developers. By standardizing the description of the data format using
EDS, flexibility is retained while still providing a compatibility point. Because the electronic
data sheets are implemented in a machine-readable format, parts of the data exchange between
components can be machine assisted, thereby easing the efforts required to port applications
between different systems. Using the EDS, any other independently developed system or
component that also implements the CCSDS electronic data sheet technology can exchange data
with the component.

The core Flight System (cFS) is a platform independent reusable software framework and set of
reusable software applications that is reused on NASA flight projects and/or embedded software
systems at a significant cost savings. The cFS contains an implementation of the CCSDS
electronic data sheets. The cFS-based STRS OE utilizes this technology to describe the sink and
source interfaces as well as the various configurable properties of STRS applications, which aids
portability to other cFS installations or other independently developed systems implementing
EDS.

5.14 How to Add Asynchronous Publisher/Subscriber Functionality

A queue can be used to disassociate a publisher directly from a subscriber. The Pub/Sub
implementation is synchronous. To get the asynchronous publisher/subscriber effect, the
publisher writes to a queue and, in a different thread, a copy service reads from the queue and
writes the data to a Pub/Sub to which the subscriber has registered. The copy service is to be
configured knowing a queue source, a Pub/Sub sink, and the maximum number of bytes.
Functionally, the copy service merely obtains the source and sink handle IDs and uses them to
read from the source and write to the sink.

A copy service may be useful to copy other sources to other sinks. It may need additional options
to do so, especially concerning initialization, finalization, and timing considerations. These will
have to be handled on a case-by-case basis.

6. QUESTIONS AND ANSWERS

The following questions have been asked by implementers of STRS-compliant platforms and
applications and are included to provide additional insight for readers who might have similar
questions.

6.1 Fault State and Use of the ERROR, WARNING, and FATAL Queues

NASA-STD-4009A does not specify how the fault state is set or detected. The fault state may be
determined in a number of ways as specified by the mission or project. When STRS_Log sends a
message to the error queue or fatal queue, it is assumed that there is an error or fatal error in that
component and that the fault state is set accordingly. The fault state could also be set when a
Health Manager or Watchdog Timer detects a problem (neither of which is required). The fault
state could also be detected when the telemetry returns improper values. The fault state as shown

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

33 of 148

in the state diagram (figure 1) implies that the radio detects and possibly recovers; however, it
could be designed so that the fault state is kept by the flight computer or equivalent.

The use of the ERROR, WARNING, and FATAL queues are expected to be defined more
closely by the mission or project. The three relevant types of queues are as follows:

a. The STRS_FATAL_QUEUE is the queue used when an STRS_FATAL error is
encountered. STRS_FATAL_QUEUE denotes the queue for a unrecoverable error in an attempt
to capture information about the situation in a logging trail used to reconstruct the original cause
of the error. Furthermore, sending a message to the STRS_FATAL_QUEUE is one way of
initiating an orderly shutdown and reboot of the radio to a known state. The processing for a fatal
error could imply turning off the heartbeat; that is, rebooting the radio and, if that does not work,
reloading the software and/or configurable hardware design. It could imply that additional
diagnostic tests need to be run. It is up to the mission to define whether there are alternative ways
of rebooting under different circumstances such as after trying three times. It may make a
difference if the problem is overheating or if a bit has been changed in the radio so that it does
not work properly.

b. STRS_ERROR_QUEUE denotes the queue for a recoverable error. The most likely
reason is an invalid set of configuration parameters. The recovery would be to get a valid set of
configuration parameters.

c. STRS_WARNING_QUEUE denotes the queue for a recoverable error that has little

or no effect on the operation of the radio. The most likely reasons are trying to run a test in a
state for which the test is not allowed, trying to configure or query a parameter when the value is
not available in that state, or trying to run APP_Start when the application is already started.

6.2 Pub/Sub Messaging and Queues Need Clarification

In NASA-STD-4009A, a Pub/Sub is distinguished from a message queue. In a Pub/Sub,
messages written to the message passing facility by one application are delivered to all
subscribers of that publisher. The STRS does not require implementing Pub/Sub using the
observer/publish-subscribe design pattern where the class inherits a notify method. The STRS is
designed to work in C without inheritance, but the idea is that the publisher does not know the
identity of the subscriber such that one or more applications or devices can funnel data to one or
more different applications, devices, files, or queues. Figure 4, Sample Publisher-Subscriber
Sequence Diagram, is just one possibility for a sequence diagram showing the creation and
possible use of a messaging queue using one form of the publisher-subscriber paradigm.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

34 of 148

Figure 4—Sample Publisher-Subscriber Sequence Diagram

Detecting circularity and duplication is difficult with just the sequence diagram shown without
adding additional methods. Circularity is where the message published eventually ends up back
at the original publisher and is sent again in an infinite loop. Duplication is where the message
published ends up at the same destination twice.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

35 of 148

There is a problem of notification when it is a message queue. STRS_Write will put the message
on the queue, but there is no standard way of determining when there is something waiting on the
queue; that is, when does STRS_Read obtain it from the queue and when does the message get
deleted from the queue? Also, can the queue fill up so that further messages are rejected? The
resolution to the message-queuing behavior is not included in the current version of NASA-STD-
4009A but has to be covered by the specific design for the mission or project.

6.3 What is an STRS Device?

An STRS Device is software that responds to both STRS Infrastructure-provided Application
Control methods and STRS Infrastructure Device Control methods. An STRS Device is used to
separate an abstraction in the form of its interface from its underlying implementation. An STRS
Device is a bridge between a waveform application and the specialized hardware, used to
insulate the waveform application developer from knowing how the data gets to its final
destination. This encourages encapsulation of non-portable functionality. STRS Devices do not
have to be portable. However, it will be advantageous to follow the STRS Device-Provided
Device Control API wherever possible to maximize consistency and portability. The
functionality of the STRS Device will need to be ported to each successive radio while allowing
an application to access the STRS Device methods in a consistent way that makes the STRS
applications more portable and more understandable.

If a waveform application intends to transfer a data value from/to the specialized hardware, the
waveform application would contain the data value and the corresponding STRS Device would
be used to transfer the data value from/to the specific location in the specialized hardware. The
STRS Device could use memory mapping or POSIX® or HAL, whichever is the documented
way to get/set data in the specialized hardware while keeping the waveform application portable.

An STRS application is expected to use an STRS Device method to transfer data to and from the
physical device. It was expected that the STRS Device configure/query methods could be used to
get or set values, but there was a complaint that there were problems with performance, porting
from legacy applications, and scheduling. Any exceptions to the standard are handled
individually.

a. An STRS Device can act as a sink by implementing APP_Write in the STRS Device.
An STRS_Write/APP_Write is used to send data to a buffer in the specialized hardware. As an
alternative, the STRS Device's APP_Configure could be used.

b. An STRS Device can act as a source by implementing APP_Read in the STRS

Device. An STRS_Read/APP_Read is used to retrieve data from a buffer in the specialized
hardware. As an alternative, the STRS Device's APP_Query could be used.

c. An STRS_Configure/APP_Configure is used to send the value of a name/value pair
to the corresponding location in the specialized hardware.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

36 of 148

d. An STRS_Query/APP_Query is used to retrieve the value of a name/value pair from
the corresponding location in the specialized hardware.

When an FPGA is implemented as an STRS Device, the FPGA may be loaded, configured,
started, stopped, unloaded, and so forth, using the corresponding STRS Infrastructure Device
Control API. There is no requirement that an STRS Device actually exists as separate software or
hardware item. There is no requirement that the Device API is implemented as shown in figure 5.
They are required when portability and reusability are desired as measured by their inclusion into
the STRS Application Repository.

Many SDRs use memory mapped locations in which storing/retrieving an item in memory
automatically pushes/pulls the item to/from the specialized hardware (see section 5.9). Other
SDRs use special APIs that comprise the HAL to send/retrieve the item to/from a specific
address in the specialized hardware. Still others use POSIX®. Having the STRS Device as a
portable interface for data transfer allows the HAL methods, POSIX® methods, or memory
mapping to be used as appropriate and easily changed. The STRS application can use the
appropriate STRS Device methods when the STRS application just knows the handle name of
the STRS Device, which gives more flexibility in configuring a data source or sink. For example,
an application might be used to transmit data over the air obtained from a data source that might
be configured as an application, device, queue, or file. Similarly, an application might be used to
receive data over the air and send it to a data sink that might be configured as an application,
device, queue, or file. Thus, an STRS Device may be used either to distribute functionality over
multiple waveform applications or to abstract hardware functionality, further giving greater
flexibility. This is analogous to redirection or pipes in UNIX®.

Since STRS Devices are only partially standardized by the STRS Device-provided Device
Control API, extra methods may be implemented in an STRS Device to be used by the OE to
establish the proper use of the HAL. A DEV_SetMemoryMap method is suggested in figure 5 to
specify how a named value is associated with the appropriate location in the specialized
hardware. This may be a non-portable construction but it does not violate the NASA Technical
Standard. The idea is to have the STRS application code as portable as possible with the STRS
Devices as lean as possible.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

37 of 148

Figure 5—STRS Application/Device Structure

6.4 How to Configure and Control SDR Hardware

The configuration and control of the SDR hardware depends on where the intelligence exists;
that is, which software component knows how to configure and control SDR hardware? A
combination of software components (waveform application, STRS infrastructure, STRS Device,
and HAL) knows how to configure and control SDR hardware.

a. The application knows about data values, the STRS Device knows about mappings in
the GPP, and the HAL knows about how to take values and transfer them to the hardware.

b. The STRS application should be the target component for the parameters it controls

and could pass to an STRS Device those parameters that need to be passed to the HAL.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

38 of 148

c. STRS Application.

(1) The STRS application would control what data are configured.

(2) The STRS application has limited intelligence on how and where to enable the
application to be portable.

(3) The STRS application knows the handle ID of the STRS Device to use.

(4) For example, an STRS application processes FREQUENCY, converts from

floating point to integer in a format that is recognized by the STRS Device, and
calls the appropriate method to configure the STRS Device.

d. STRS Device.

(1) The STRS Device controls how data get to the FPGA or other hardware.

(2) The STRS Device knows how to send data to the proper register in the FPGA
using the HAL.

(3) The HAL may be external functions or inline functions that know the mappings

from data addresses to registers in the FPGA.

e. STRS Infrastructure.

(1) The STRS infrastructure reads the configuration files or receives an external
command and calls the STRS_Configure method for the appropriate target
component.

(2) The STRS_Configure in the infrastructure calls the corresponding
APP_Configure within the target component.

6.5 STRS Infrastructure Methods Do Not Belong to Any Class

The STRS infrastructure-provided methods beginning with “STRS_” do not belong to any class,
since they have to be the same when called from C language implementations. If one is coding in
C++, these methods should be defined using extern "C" {...}.

In NASA-STD-4009A, the STRS infrastructure provides the STRS infrastructure-provided
Application Control API that supports application operation using the STRS
Application-provided Application Control API in section 7.3.1. The STRS Infrastructure-
provided Application Control API methods (section 7.3.2) that begin with “STRS_” correspond
to the STRS Application-provided Application Control API methods (section 7.3.1) that begin
with “APP_” and are used to access those methods. The STRS infrastructure implements these

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

39 of 148

methods for use by any STRS application or by any part of the infrastructure that is desired to be
implemented in a portable way.

Since the C language is optional for STRS applications (see STRS-16, 18, 19), the STRS
Application-provided application control methods beginning with “APP_” may belong to a class.

6.6 Explain Clocks and Timers

The clocks/timers are used for determining when something happens, how long something takes,
and coordinating internal and external events, including timestamps for messages. As computer
speeds increase, more real-time functions for communication may be performed in the GPP.
Some functions currently in the FPGA(s) may be transitioned to the GPP when the GPPs are fast
enough and capable enough to handle the additional signal processing functionality. These GPP
functions would need access to high speed clocks/timers.

NASA-STD-4009A is designed to allow a clock/timer to be an extension of an STRS Device so
that the functionality can be embedded in specialized hardware, if necessary. Multiple timers are
only defined when they are required by the mission. An offset is usually specified to ensure that
the clock is monotonically increasing from a previous power reset or is synchronized with
another clock/timer.

Normally, each clock/timer has a base time, usually measured from when it is turned on. An
offset may be used to keep the time monotonically increasing with each power cycle. An offset
may also be used to coordinate with external events. The timing of external events, such as
another satellite coming over the horizon or the availability of experimenters, may be used to
power parts of the radio off and on so that the radio optimizes its power consumption and
availability.

It is recommended that one clock/timer match the required timestamp for STRS_Log so that an
application, service, the OE, or even STRS_Log itself could obtain that time in a consistent way.
It was suggested that the time for the timestamp be retrieved via STRS_GetTime using the
handle ID corresponding to handle name "STRS_DEFAULT_CLOCK_NAME" and kind given
by property "STRS_DEFAULT_CLOCK_KIND". The use of this handle ID for STRS_SetTime
may be restricted as necessary.

As specified by the mission, there should be at least one clock/timer with an epoch fixed to some
Earth time zone, e.g., Coordinated Universal Time (UTC), so that the epoch could be adjusted to
seconds from 1/1/1970 0:0:0, known adjustments for leap days and leap seconds applied, and the
standard POSIX® time functions used. For example:

a. From seconds to calendar time: Obtain the number of seconds from the TimeWarp
object, apply any offset needed, and use gmtime_r to convert a given time since epoch (a time_t
value) into calendar time, expressed in UTC in the struct tm format.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

40 of 148

b. From calendar time to seconds: Fill a struct tm with calendar time, convert to
UNIX® time using mktime, apply any offset, and create a TimeWarp object.

6.7 FPGA Partial Reconfiguration

Partial reconfiguration is the process of configuring selected areas of an FPGA after its initial
configuration. Xilinx indicates that a bitstream file can contain all the configuration commands
and data necessary for partial reconfiguration. Therefore, STRS_DeviceLoad will work, and no
new methods need to be defined. Whether the partial reconfiguration is fully transparent to the
application(s) running on the FPGA or requires stopping and restarting or reconfiguring any
other application(s) depends on the specifics of the partial reconfiguration.

6.8 Compliance Testing

STRS compliance of a vendor- or partner-provided SDR is assessed by source code inspection,
document inspection, configuration file inspection, adding an application containing a reference
to each STRS infrastructure method and testing that application. The name of that application is
the STRS Command and Compliance, also known as WFCCN. WFCCN may be compiled with
an STRS infrastructure to determine whether or not there are any missing constants, typedefs, or
structs. These techniques are described in the STRS Compliance Testing document, which
should be reviewed because of their complexity.

Since many of the STRS requirements are source code requirements, a standard test suite cannot
test them fully. Since STRS is designed to allow multiple vendors to work together, certain
source code artifacts have to be made available so that a subsequent STRS application developer
or STRS integrator can use the methods, constants, typedefs, and structs required. The following
is an example of a problem that WFCCN cannot be used to find: One vendor used noncompliant
method signatures with int instead of STRS_Buffer_Size, but on that platform, both integer items
compiled as the same type. Using a type that happens to correspond to the vendor’s
implementation of an STRS type is not necessarily portable to the next platform.

The STRS compliance could be evaluated at and by each vendor or partner and the results shared
and discussed in one or more workshops at various points in the project life cycle. This
alternative is to be decided by the mission or project. A full release and delivery of all STRS OE
source code is not required in order to perform STRS compliance testing. Each vendor or partner
should inspect his or her own software and documents before delivery. However, NASA found
its own review to be invaluable to ensure greater compliance and promote understanding of
differences among submitters.

Once the STRS radio artifacts are tested for STRS compliance, any noncompliances will be
reported to the supplier and the mission or project, along with any suggestions. It is the
responsibility of the mission or project to decide whether to grant deviations and waivers for any
noncompliances that are not resolved.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

41 of 148

6.9 Configuration Files Examples

To help the reader and implementer of the STRS architecture understand the development and
use of the configuration files described in Appendix A, Example Configuration Files, an example
of a configuration file based on that format was developed. This example of a configuration file,
for a sample application WF1, is shown in this NASA Technical Handbook in figure 6, Example
of Predeployed Configuration File for Appendix A.

Figure 6—Example of Predeployed Configuration File for Appendix A

Here is the explanation, line by line:

(1) XML declaration.
(2) Extensible Stylesheet Language (XSL) file declaration.
(3) Comment.
(4) Open tag STRS and corresponding XML schema declaration.
(5) Open tag CONFIGURATION.
(6) Open tag W_HANDLE.
(7) Tag HANDLENAME containing WF1 as the handle name.
(8) Tag WAVEFORM containing the OE-specific name used to instantiate WF1 as a path to

additional items to process.
(9) Close tag W_HANDLE.
(10) Close tag CONFIGURATION.
(11) Close tag STRS.

The OE-specific name is a file name containing the additional items to process, which are
specified with their own XML configuration file and transformation process. This example of an
application configuration file, for a sample application WF1, is shown in this NASA Technical
Handbook in figure 7, Example of Predeployed Configuration File for Application WF1 for
Appendix A.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

42 of 148

Figure 7—Example of Predeployed Configuration File for Application WF1 for Appendix A

Here is the explanation, line by line:

(1) XML declaration.
(2) Extensible Stylesheet Language (XSL) file declaration.
(3) Comment.
(4) Open tag WAVEFORM and corresponding XML schema declaration.
(5) Tag WFNAME containing WF1as the class name.
(6) Tag WFACCESS with WF1 having no READ/WRITE access; that is, neither APP_Read

nor APP_Write are implemented.
(7) Tag WFSTATE with final state as INSTANTIATED.
(8) Comment.
(9) Open tag LOADFILE.
(10) Tag LOADFILENAME containing the path to load WF1.out.
(11) Tag LOADTARGET containing SELF to indicate that it is loaded on the current GPP.
(12) Open tag LOADMEMORY.
(13) Tag MEMORYSIZE indicating that the size is 134k bytes.
(14) Tag MEMORYUNITS indicating that the size is measured in bytes.
(15) Close tag LOADMEMORY.
(16) Close tag LOADFILE.
(17) Open tag LOADFILE.
(18) Tag LOADFILENAME containing the path to WF1.bit.
(19) Tag LOADTARGET containing FPGA to indicate that it is loaded on the FPGA.
(20) Open tag LOADMEMORY.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

43 of 148

(21) Tag MEMORYSIZE indicating that the size is 2670K gates.
(22) Tag MEMORYUNITS indicating that the size is measured in gates.
(23) Close tag LOADMEMORY.
(24) Close tag LOADFILE.
(25) Open tag ATTRIBUTE.
(26) Tag NAME containing A.
(27) Tag VALUE containing 5 as the value for A.
(28) Close tag ATTRIBUTE.
(29) Open tag ATTRIBUTE.
(30) Tag NAME with B.
(31) Tag VALUE containing 27 as the value for B.
(32) Close tag ATTRIBUTE.
(33) Open tag ATTRIBUTE.
(34) Tag NAME with C.
(35) Tag VALUE containing “Non-numeric” as the value for C.
(36) Close tag ATTRIBUTE.
(37) Close tag WAVEFORM.

The example in Appendix A splits the formatting into three parts to group the information
logically. The following explanations further clarify the necessity and intent of Appendix A:

a. There is no necessity or requirement for splitting the platform configuration files into
hardware and software parts as shown in Appendix A.1 and A.2. Splitting up the description this
way was just a logical way to organize the description.

b. The format of the platform configuration file should allow some applications,
devices, and services to be instantiated at boot-up or restart. Therefore, to use
STRS_InstantiateApp to instantiate applications in all cases, the platform configuration file
would specify the arguments. For this example, the OE-specific name argument referenced is the
application configuration file name whose predeployed format is shown in Appendix A.3. The
application configuration file may be independent of the platform configuration file.

6.10 C Language Naming Duplication

There will most likely be more than one application in an STRS radio. In the C language, there is
no namespace support as in C++ or other object-oriented (OO) languages that scope the member
functions to the class. Thus, there will be multiple implementations of the same STRS
Application-provided API method names, starting with “APP_”, one in each implementation of
an application.

One technique to allow multiple “instances” of C language applications could use APP_Instance
to return a pointer to a table of pointers to the methods. Then, the OE could use these method
locations to call the methods. This technique and variations are described in NASA/TM-2011-
216948, Symbol Tables and Branch Tables: Linking Applications Together. The techniques
specify the creation of a branch table or indirect address table for each application. To suppress

http://ntrs.nasa.gov/search.jsp?N=0&Ntk=All&Ntt=symbol%20tables%20and%20branch%20tables&Ntx=mode%20matchallpartial
http://ntrs.nasa.gov/search.jsp?N=0&Ntk=All&Ntt=symbol%20tables%20and%20branch%20tables&Ntx=mode%20matchallpartial

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

44 of 148

the common method names, compile and link each application separately. When the table is
registered with the OE, the OE could use the table to call the appropriate method.

Another technique to allow multiple “instances” of C language applications with the same
method names depends on loading new applications one at a time, sequentially, and capturing the
new method locations instead of the old at the appropriate point in the process. The method
locations are saved in a structure associated with the STRS application and the appropriate
method is called as needed. The flow chart shown in figure 8, Obtain Array of Pointers to
Methods, gives some highlights. Note that, besides the method illustrated in figure 8, there are
other ways of creating an array of pointers to the C language methods. This array of pointers may
be used to invoke those methods later.

Figure 8—Obtain Array of Pointers to Methods

The technique demonstrated in figure 8 might not be possible on a platform that needs
everything to be compiled and linked together ahead of time. Another technique would be to use
message queuing to communicate between independent applications, but this technique might be
awkward to use in practice. Another technique is to prepend the method name with a C-language
class name equivalent.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

45 of 148

6.11 Sequence Diagrams Depicting STRS API Calls

The following sequence diagrams depict the relationship between the STRS infrastructure-
provided Application Control API beginning with “STRS_” and the corresponding STRS
Application-provided Application Control API beginning with “APP_.” The methods described
for figure 1 are those that cause a change in state. In this NASA Technical Handbook, the
methods depicted in figure 9, Simplified Sequence Diagram for STRS_InstantiateApp, figure 10,
Simplified Sequence Diagram for STRS_AbortApp, and figure 11, Simplified Sequence
Diagram for STRS_Configure, contain both those that cause a change in state as well as those
that do not. In this NASA Technical Handbook, since an STRS Device inherits all the methods
from an STRS application, as shown in figure 5, the methods in figures 9, 10, and 11 for STRS
applications could apply to STRS Devices as well. In figures 9, 10, and 11, “Command Source”
is used for the object, internal to the radio, either an STRS application or part of the OE, which
calls the STRS infrastructure methods.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

46 of 148

Figure 9—Simplified Sequence Diagram for STRS_InstantiateApp

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

47 of 148

Figure 10—Simplified Sequence Diagram for STRS_AbortApp

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

48 of 148

Figure 11—Simplified Sequence Diagram for STRS_Configure

A sequence diagram for each row in table 1, Substitutions for Figure 11, can be made from the
diagram in figure 11, by substituting the “COMMAND SOURCE TO OE” method in place of
STRS_Configure and the corresponding “OE TO STRS APPLICATION” method in place of
APP_Configure.

Table 1—Substitutions for Figure 11
COMMAND SOURCE TO OE OE TO STRS APPLICATION

STRS_GroundTest APP_GroundTest
STRS_Initialize APP _Initialize

STRS_Query APP _Query
STRS_Read APP _Read

STRS_ReleaseObject APP _ReleaseObject
STRS_RunTest APP _RunTest

STRS_Start APP _Start
STRS_Stop APP _Stop
STRS_Write APP _Write

6.12 Why are APP_Instance and APP_Initialize Separate?

The APP_Instance and APP_Initialize methods are often used together successively but should
not be combined because they have different functionality. The separation of APP_Instance and
APP_Initialize supports encapsulation. It allows configuration to occur before APP_Initialize. In
figure 9, STRS_InstantiateApp calls APP_Instance and then it may call APP_Configure and
APP_Initialize, as specified by the configuration file. STRS_InitializeApp may do everything in
one call or additional calls may be needed thereby giving the greatest flexibility. Also, note that

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

49 of 148

APP_Instance is a convenience function containing a constructor and saving any application
identifying information.

6.13 Why Start with SCA?

The Wireless Innovation Forum (formerly SDR Forum) and SWRADIO by the OMG put so
much effort into SCA that it was decided to investigate these architectures. The result of that
investigation was that the CORBA requirements and XML parser requirements took up a lot of
memory and machine cycles but were not really necessary for NASA. One study showed that
eliminating CORBA and an XML parser reduced the memory footprint by an order of
magnitude. So, to save on SWaP for NASA’s space platforms, it was decided to create a similar
STRS architecture without those disadvantages. After looking at use cases for NASA radios,
very similar functionality to the SCA and SWRADIO was decided to be necessary. Similar
method names to the application method names in SCA and SWRADIO were chosen for STRS.
The reasoning was that it would be easy to take advantage of the many man-years of effort that
had gone into defining those architectures, the Wireless Innovation Forum could comment on the
STRS architecture due to the similarities, and that SDR design tools might be easier to
use/generate for STRS applications.

A key recommendation from the Forum’s space working group was to align with the OMG
SWRADIO specification where possible. To that end, mappings from the OMG SWRADIO PIM
to the STRS platform-specific model (PSM) were discussed. There were only minor differences
in the Space PIM that could map into STRS from OMG’s SWRADIO PIM that mapped into
SCA. A quote from the Forum’s study:

The SDR Forum recommended that the STRS align with the SDR Forum, the
OMG, and the IEEE SCC41 for purposes of distributing the burden and cost of
non-recurring engineering (NRE) across NASA and all consortia members
contributing to the STRS, and to further broaden and enhance the quality of the
implementation and deployment of STRS-based standards.

NASA’s configuration files could be much simpler, because NASA’s radios were less distributed
with no dynamic aspects needed to be specified in the configuration files. Furthermore, it was
decided that by preprocessing any XML configuration files, a much simpler parser could be used
on much simpler data.

In considerations for NASA-STD-4009A, it was determined that NASA’s radios could be even
simpler and that some further complexities could be eliminated. Such changes eliminated the
possibility of harmonization with SCA but were more flexible regarding use with Core Flight
Software (cFS) and other frameworks.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

50 of 148

6.14 Security for STRS

Security aspects need to be considered for any STRS radio. There are currently no STRS
requirements for security, and it is assumed to be up to the project/mission to define any security
requirements. It was determined that NASA radios typically do not require DO-178, Software
Considerations in Airborne Systems and Equipment Certification; and red/black
separation. Security is needed to:

a. Verify/validate external commands such that:

(1) They come from the appropriate source (e.g., using data in a CCSDS wrapper).

(2) They have not been compromised (e.g., using encryption, signing, parity bit,

checksum, cyclic redundancy check).

(3) They are in the appropriate format for commands.

This is usually defined by the command and control for the mission and not by STRS.
The security functions should be encapsulated, separate from the external command and
control interpreter, so that the functionality may be changed if necessary without
affecting the STRS application implementation. This functionality may be invoked by the
STRS OE implementation or as a service for over-the-air command and control.

b. Verify/validate internal commands; i.e., do not allow the radio to try to do anything

risky or make itself inoperable.

(1) Do not allow radio to call methods for which the handle ID is inappropriate.

(2) Restricting the radio as to what it can do is left as a possible project/mission

requirement. For example, one might restrict one waveform from aborting any
other waveform. In this case, it is suggested that a table be configured containing
allowed or disallowed commands and the associated source(s) handle names and
target(s) handle names for which the command applies such that the table could
be used to validate a command.

(3) Specifying a key to allow the radio to override the restrictions of item “b(2)” is

also left as a possible project/mission requirement. In which case, security keys
and an authentication method is required.

Security requirements are defined by the project/mission and not by STRS. The security
functions of item “b(2)” and item “b(3)” should be encapsulated so that the functionality
may be changed if necessary, without affecting the STRS application implementation.
This functionality may then be invoked by the STRS infrastructure implementation.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

51 of 148

6.15 What is Configurable Hardware Design?

The term “configurable hardware design” is used throughout the STRS documentation to signify
the items required to capture the digital logic of the hardware that can be configured remotely,
such as an FPGA. Configurable hardware design includes the items created to document the
design of the hardware, including the source code (e.g., very high speed integrated circuits
(VHSIC) hardware description language (VHDL), Verilog®) and the loadable files (e.g., FPGA
image).

The term “configurable hardware design” replaces the commonly used term “firmware” in earlier
versions of STRS documentation. Many definitions for firmware, including the latest IEEE
definition which was written in 1990, state that firmware resides in read-only memory and
cannot be modified. The changing definition of “firmware” would likely lead to confusion, and a
new term was selected for the STRS documentation. Additional terms such as “complex
electronics,” “configurable logic device,” “programmable logic device,” and “software” were
considered, but each term was rejected due to potential confusion or implied limitations if the
term was used.

The SDR community is unique in that it uses GPPs and configurable hardware design in a single
application. The term “software” in some contexts of the STRS (and other SDR-related)
documentation may include configurable hardware design. For example, whenever the term
software defined radio is used, both GPP and configurable hardware design are included. The
STRS architecture does not dictate processes or organizational structure for use in developing the
software or configurable hardware design. The project developing the SDR or application has to
dictate the required process.

6.16 Why is there STRS_InstantiateAPP and no STRS_Instance method?

The application instantiation process should not only instantiate the application but ensure that
the application starts in a known state. The application may be comprised of multiple items that
are loaded as part of the application instantiation process. The application instantiation process
should also ensure that data is configured consistently. This potentially multi-step process was
most easily customized by putting the variable instantiation data in a configuration or script file.
The configuration file is parsed and processed by the OE in STRS_InstantiateApp before calling
any methods in the application. Figure 10 illustrates that STRS_InstantiateApp could call
multiple application-provided methods as needed to begin execution in a consistent well-defined
manner. APP_Instance is the only method that is required to be called, but APP_Configure is
highly encouraged so that data does not have to be hard-coded in the application but may be
changed according to predetermined conditions and known upon application start-up in a
consistent manner. This is not a simple one-to-one relationship between STRS_InstantiateApp
and the other methods it invokes; whereas, it is a simple one-to-one relationship for most of the
other STRS application-provided application control methods and the corresponding STRS
infrastructure-provided application control methods.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

52 of 148

To ensure that a user could not instantiate an application in an unknown state, STRS_Instance
that invoked APP_Instance was not allowed. STRS_Instance calling APP_Instance was
disallowed to discourage a user from instantiating an application in an unknown state. The
method name STRS_Instance was not reused for the multi-step process in order to highlight the
difference between simple instantiation of an application and instantiation of an application using
a configuration file.

6.17 Uniqueness of Handle Names and IDs

A handle name is a C language character string that specifies the name of a specific instance of
an STRS resource that may be an application, service, device, file, or queue. It is used in external
commands and messages. It is usually the same at each start-up of the radio platform unless
specifically changed. A handle ID is a numerical value determined by the infrastructure that
could contain an index, hash, address, or other data that help the OE locate the information
necessary to access the resource. It is used in internal method invocations and is restricted so that
STRS_ValidateHandleID can determine whether there is an error and STRS_GetErrorQueue can
indicate which error queue to use. It is often different at each start-up of the radio platform even
if the handle name remains the same.

6.18 Are there any exception-safety rules?

The methods in the STRS APIs are not allowed to throw exceptions. Suppose a pre-existing
library contains functions that can throw exceptions and suppose a method in the STRS APIs
calls the library function. Then the method in the STRS APIs must catch all exceptions that the
library function can throw. The return result from the method in the STRS APIs will indicate
whether there has been an error or not.

6.19 What does it mean that an STRS Device or STRS Service may be part of the OE?

An STRS Device or STRS Service is an optional part of the OE depending on the
project/mission requirements. The intention was that STRS Devices and STRS Services
encapsulate non-portable functionality or functionality that applies over multiple waveform
applications. Also, a further intention was that the STRS Devices have additional capabilities
beyond that allowed to an STRS application as if the STRS Device were part of the OE. It should
be required by the project that the platform provider create a sample application that uses a
sample STRS Device to exercise both the hardware and software for testing and that serves as a
model for what can be done by the application developer. The STRS Device would be included
with the corresponding sample STRS application. An STRS Device would be specified as part of
the OE, for example, if the device is not really programmable but can be adjusted or turned
on/off by the HAL.

To access the specialized hardware containing application functionality, the STRS Device must
correspond to an STRS application such that the application developer must be able to modify
the sample and compile it with the user's STRS application. The application developer needs to

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

53 of 148

wrap the HAL invocation(s) into STRS Devices and handle the message format to/from the
application and specialized hardware.

6.20 How does the application know how to put the data (address, command, data) into
the buffer in the specialized hardware?

Use the STRS_Configure method to change settings that are configuration related and do not
change at every message. The contents and format of the buffer can be defined for your
application.

An STRS Device is a bridge between the waveform application and the HAL. So, an application
could be a sink for some data created elsewhere by implementing APP_Write. That application
could call STRS_Write to send the data from the application to the STRS Device that also acts as
a sink by implementing APP_Write in the STRS Device. Then the STRS Device could use the
HAL to send the data to the specialized hardware.

It has been suggested that EDS be used to configure STRS Devices. The CCSDS has a Draft
Recommended Standard for Spacecraft Onboard Interface Services—XML specification for
Electronic Data Sheets for Onboard Devices, CCSDS 876.0. Allowing the use of CCSDS EDS
has merit and does not conflict with the STRS requirements since the data sheet configuration
file would be in XML as required and may be transformed to a deployed format if needed. Since
the CCSDS EDS allows extensions, any specific requirements in this area are better left to the
Project.

6.21 Can STRS applications run in multiple address spaces?

Yes; however, multiple address spaces for multiple STRS applications would require some
means of enabling the OE to call the STRS application-provided methods and vice versa. Things
can get as complicated as necessary depending on the desired distribution of the software across
the address spaces and the availability of the appropriate middleware or equivalent. Using
STRS_API as a representative infrastructure-provided interface called from some command
source and APP_API as a corresponding application-provided interface implemented within
some application, some examples could be depicted as:

1. STRS_API1 -> APP_API1
2. STRS_API1 -> APP_API1 -> STRS_API_Ethernet-> STRS_API2 -> APP_API2
3. STRS_API1 -> APP_API(tx) ~~~ APP_API(rx) -> STRS_API2 -> APP_API2
4. STRS_API1 -> distribution point -> ... -> collection point -> APP_API2
5. STRS_API1 -> distribution point -> ... -> collection point -> APP_API1 -> STRS_API2 ->

distribution point -> ... -> collection point -> APP_API2

These are not exhaustive.

For 1 above, where the call is direct, dynamic linking may be used; but both must be in the same
address space. The "this" pointer or equivalent is used as needed for the STRS API methods to

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

54 of 148

call the corresponding APP API methods. For 2 or 3 above, the call is direct to some application
object that controls the access to another application in another address space (or even another
radio) via Ethernet, remote procedure call (RPC), over-the-air (OTA) signal, Bluetooth, etc. For
situations where this will not work, including multiple address spaces as depicted in 4 above, any
middleware may be inserted in between, such as CORBA. In 5 above, an additional level of
complication was added, just to show one of the many combinations. Some of these ideas were
used when a graphical user interface (GUI) was added that was situated on a different computer
using a different operating system.

The following figure 12, Multiple Connected Radios, can be used to illustrate 2 or 3 above when
the networking is encapsulated in applications for sending and receiving using Ethernet or other
means of message passing across the address spaces. For the figure below, WF1 is the command
source for STRS_API1 and WFtx is the sink for the corresponding command. After passing
through the connection, the same command is repeated where now the dependent command
source for STRS_API2 is WFrx and WF2 is the sink. One cannot get greater separation than when
the applications reside in what appear to be different radios. The following figure can be used to
illustrate 4 above when the connection from WFtx to WFrx is replaced by middleware marshalling
and unmarshalling the data.

Figure 12—Multiple Connected Radios

6.22 Does an STRS application require a main entry point?

No; the STRS Architecture Standard does not require that a main program be defined for an
STRS application. An STRS application may require a main entry point if specified by the
platform provider.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

55 of 148

The idea was to leave as much leeway as possible while having much of the initialization and
control code being portable. The word "application" was used in its broadest sense so that it can
include a main program or not, depending on the STRS infrastructure-required interfaces. The
infrastructure-provider is obligated to describe the interface mechanism so that additional
applications may be written or ported. The infrastructure must contain a main entry point or the
equivalent so it can be started.

The integrator must have all applications, shared libraries as well as main at compile and link
time for proper linking on the target. The dynamic linking/loading capabilities of some operating
systems may be useful to add additional applications at a later time as needed.

6.23 How is STRS_TimeSynch used to adjust time?

Pseudocode for STRS_TimeSynch might be:

STRS_TimeSynch(me,refDev,kind’,tgtDev,kind,stepMax) {
STRS_GetTime(me,refDev,refbase, kind’, refkind); // Get reference time
STRS_GetTime(me,tgtDev,tgtbase, kind, tgtkind); // Get target time
tgtold = tgtkind; // Old time
Δold = tgtold - tgtbase; // Old delta
tgtkind = refkind’; // Synchronization/new time
Δtgt = tgtkind - tgtbase; // Compute/new delta
chg = tgtkind - tgtold; // compute change.
If (stepMax == 0) // Test if jump.
{ // No stepMax => jump.

rtn = 0; // OK as jump. Return zero.
} else if (chg < - stepMax) // Test change against step size.
{ // Change is negative and bigger than step size.

rtn = (-chg – stepMax) / stepMax; // Return amount left to do.
Δtgt = Δold - stepMax; // Increase negatively by a step size.

} else if (chg < stepMax) // Test change against step size.
{ // Change is smaller than step size.

rtn = 0; // OK, as jump. Return zero.
} else { // Change is positive and larger than step size.

rtn = (chg – stepMax) / stepMax; // Return amount left to do.
Δtgt = Δold + stepMax; // Increase by a step size.

}
STRS_SetTime(me,tgtDev, kind, Δtgt);
return rtn;

}

6.24 How is Clock Rate Adjustment Used?

A clock may drift due to age or environmental factors or relativistic changes. STRS provides for
a clock rate adjustment using STRS_SetTimeAdjust. A user would need to set up loops to check
the clock periodically for drift. One way is to use STRS_TimeSynch with a maximum time step
that returns the number of maximum time steps left to do. If this seldom returns zero, a time
adjustment is in order. The size of the adjustment is clock-dependent. Iterate until the clocks
generally stay in synch.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

56 of 148

6.25 What is OE-Specified String for the Application to be Instantiated?

The STRS_InstantiateApp method contains an argument described as: The string used to identify
the application for instantiation that may impose additional operations to be performed as
documented by the platform provider. The project manager and platform provider will decide
whether this parameter is to be a class name, or a file name. Usually, the latter is selected to be a
software configuration file or script file to give the greatest flexibility for the STRS infrastructure
to specify default or initial attributes of software items pertaining to the platform or applications,
services, and devices contained on an STRS radio. Application-specific information for
configuration and customization of installed applications may be provided, as well as
information for the STRS infrastructure to use to instantiate applications on the radio GPP. Such
files provide STRS application developers with flexibility in choosing parameters and values
deemed pertinent to the implementation. In a specific case actually encountered, the parameters
within the application changed based on ambient conditions such that a set of calibration tests
were performed and the results stored in a configuration file. Using a configuration file allowed
the code to remain unchanged.

For a configuration file, the use of XML version 1.0 is recommended to define the STRS
platform and application configuration data because XML has the ability to identify
configuration information in a standard, human-legible, precise, flexible, and adaptable method.
XML is a markup language for documents containing structured information that contains both
content and some indication of what role that content plays. XML defines tags containing or
delimiting content and showing the relationships between them (see http://www.w3.org/XML/).
Because of the extra overhead required to transmit and process XML-formatted data, it is
anticipated that the XML configuration file would be preparsed, additional error checking on the
file will be performed, and the XML file transformed into a simpler, more compact form prior to
transmission. This process will reformat the configuration file into an appropriately optimized
configuration file, which will subsequently be loaded into the radio.

An XML Schema Definition (XSD) file contains an XML schema describing the structure and
constraining the content of XML documents (See http://www.w3.org/XML/Schema). An XML
schema can provide error checking of allowable values, dependencies, and range limits of
configuration parameters.

An XML interface tool could be used to create and modify platform and application configuration
files. When used with an XML schema, these tools standardize the XML data entry, enforcing error
checking and interdependency checks to ensure that the entered data are correct and within the
hardware and software limits.

The XML should be preprocessed to a platform-specific format to optimize space on the STRS
radio while keeping the equivalent content. Figure 13, XML Transformation and Validation,
illustrates the relationships between an XML file and its corresponding schema, as well as
representing the preprocessing of the XML file in a simplified form using Extensible Stylesheet
Language (XSL). XSL is a family of recommendations for defining XML document
transformation into text for presentation. (See http://www.w3.org/Style/XSL/.)

http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://www.w3.org/Style/XSL/

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

57 of 148

Figure 13—XML Transformation and Validation

The application configuration files would be developed by the STRS application developer and
STRS integrators using information obtained from both the STRS platform provider and the
STRS application developers. The STRS integrators use the application configuration files to
install the applications on the platform. These roles may overlap at times.

The STRS platform provider documents the method to describe and use the hardware and
software environment for the STRS infrastructure. Developing platform configuration file(s) is
the likely method to be used by an STRS platform provider to identify the existence of the
different hardware modules and their associated configuration files to allow the OE to instantiate
drivers and test applications. An STRS platform configuration file may be used when starting the
STRS infrastructure to configure various properties of the STRS platform. Configuring these
properties at run-time allows greater flexibility than configuring them at compile-time. To
increase the runtime flexibility of the STRS platform, the STRS infrastructure is likely to use
deployed platform configuration files to determine the existence and attributes of the files,
devices, queues, waveforms, and services contained on the STRS radio. Attributes of files,
devices, and queues could include access (read/write, both, or append), type (text or binary), and
other properties. The name of the starting configuration file(s) may be provided to the STRS
infrastructure upon initialization. The predeployed platform configuration files should contain
platform configuration information such as the following:

a. Hardware module names and types.
b. Memory types, sizes, and access.
c. Memory mapping.
d. Unique names and attributes of files, devices, queues, services, and applications

known to the OE at boot-up.

Schema

XML XSL

XSLT

S-Expressions

Schema is used to validate
XML. XML follows Schema.

XSL is used to
transform XML.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

58 of 148

A predeployed STRS application configuration file could be created by the STRS integrator
using platform information, the XML schema supplied by the STRS platform provider, and
application information provided by the STRS application developer. The deployed application
configuration file would be used by the infrastructure (see the STRS_InstantiateApp method)
when starting the STRS application to configure various properties of the STRS application.
Configuring these properties at run time allows greater flexibility than configuring them at
compile time. For example, one might configure the STRS handle names of files, devices,
queues, waveforms, and services needed by the STRS application so that these can be easily
changed. Since a service is actually an application that has been incorporated into the STRS
infrastructure, the format of the application configuration file should be a subset of the format of
the platform configuration file as specified by the schema. If any STRS application resources
need to be loaded separately into memory or into a device, such as an FPGA, before the STRS
application can function properly, these should be specified in the configuration file for that
STRS application.

The predeployed STRS application configuration file may identify the following application
attributes and default values:

(1) Identification.
A. Class name.

(2) State after processing the configuration file (if applicable) or script to execute to
get there. This is as documented by the platform provider.

(3) Any resources to be loaded separately (if applicable).
A. Filename of loadable image.
B. Target on which to put loadable image file.
C. Target memory in bytes, number of gates, or logic elements.

 (4) Initial or default values for all distinct operationally configurable parameters.

The most common transformation of STRS configuration files uses name/value pairs divided by
a separator for the deployed format.

6.26 STRS Radio Startup Process, Platform Diagnostics, and Built-in Test?

The platform boot process generally has many parts, depending on the project requirements for
safety and confidence. Built-in testing is often performed even before the STRS OE is initialized.
Once the STRS OE is started, it is expected that further platform diagnostics be reported to the
STRS OE using the STRS APIs as required by STRS-2. The STRS radio is expected to have a
known power up condition where it is ready to receive commands, send telemetry, and transmit
and receive communications according to the project requirements. Upgrades to the boot process
could allow changes to the OS, OE, and/or applications to be made in a secure fashion.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

59 of 148

6.27 Cognitive, Navigation, and Other Services

The STRS architecture allows STRS radios to provide cognitive, radiometric tracking,
navigation, and other services that are integrated with communication services. Cognitive
services obtain metrics to monitor the radios’ operation, learns how to optimize the performance
of the radio, and modifies the operation of the radio accordingly. Radiometric tracking is the
process of measuring the characteristics of radio signals that have been transmitted (potentially
over several legs) in order to extract information relating to the signal’s change in frequency
and/or time of transit. A radio has the fundamental component needed for tracking—a radio
signal. The SDR simplifies the navigation architecture because it minimizes mass, power, and
volume requirements while maximizing flexibility. An SDR provides the flexibility to respond to
different mission phase requirements and to dynamic application requirements where signal
structures may change. This is the fundamental reason for considering the implementation of an
SDR with tracking and navigation functionality.

6.28 C and C++ Compatibility?

Various editors and compilers usually use the file extension (after the last period) to make a
decision about the type of file and how to use it so that it is helpful to have different code and
header file extensions for C and C++. Furthermore, when C code is used in a C++ method,
‘extern “C”’ may be used to indicate that that the interface is to be that for C rather than
C++. For example, to declare a C language method in C++:

extern "C" {
// Function to report statistics (C language)
void MyServiceReportStatistics(MyServiceType myType);

} // End of extern C

There is a way of using a #ifdef to check whether the code is in C code or C++ code, if
necessary, when the same header file is used for both C and C++. For example:

#ifdef __cplusplus
extern "C" {
#endif

 …
#ifdef __cplusplus
}
#endif

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

60 of 148

7. STRS REQUIREMENTS, RATIONALE, AND VERIFICATION
METHOD

The following sections address each requirement in turn, displaying the rationale, the related
higher-level requirements, verification method, and other pertinent information, which augment
the general rationale given earlier in this document.

In each section, the title line contains the requirement number and the title of the requirement.
That is followed by the text of the requirement. The rationale describes why the requirement is
needed. The category contains one or more of the summary capabilities from NASA/TM-2007-
215042. The categories are chosen from the following list: adaptability, availability,
extensibility, flexibility, interoperability, portability, (implying reusability too), scalability,
reliability, and reconfigurability. The traced-from specifies the section numbers in NASA/TM-
2007-215042 that apply to this requirement. The use case specifies the names of the use case
sections in NASA/TP-2008-214813 that apply to this requirement. The related to specifies the
part of the STRS radio that has to satisfy the requirement where platform indicates that the
hardware and related documentation are tested, OE indicates that the OS and infrastructure and
related documentation are tested, and application indicates that the application and related
documentation are tested. The notes contain additional explanations for the requirement.

Verification methods are used to show that the requirement has been met. The verification method
is chosen from the following list: Analysis, inspection, observation, similarity, or test. Tests are
not used because tests are expected to be mission requirements rather than STRS requirements.

a. Analysis is the process of utilizing analytical techniques to verify that requirements
have been satisfied. This method may be used when qualification by test is not possible, when a
test would introduce significant risk into the software, or when analysis is an appropriate, cost-
effective qualification method.

b. Inspection is a qualification method consisting of investigation without the use of

special tests. Inspection is usually a visual examination, but it may be computer-aided. Using a
script or WFCCN refers to the STRS compliance tools as described in the NASA/TM-2011-
217266, STRS Compliance Testing document. A compliance certification testing facility is
available at Glenn Research Center (GRC) to perform compliance testing and will test all STRS
applications submitted to the STRS Application Repository. The users may use their own tools
as an independent check of an OE or of an application prior to submitting the application to the
STRS Application Repository.

(1) Using a script or WFCCN is a type of inspection that is computer-aided.
(2) Using a compliance tool implies a script or WFCCN.
(3) Using a program, such as XMLSpy, validates the XML schema and the

predeployed configuration file against its schema.

http://ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%2fObjectives+Level+Requirements&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%252
http://ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%2fObjectives+Level+Requirements&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%252
http://ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%2fObjectives+Level+Requirements&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%252
http://ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%2fObjectives+Level+Requirements&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%252
http://ntrs.nasa.gov/search.jsp?R=20080024190&hterms=Space+Telecommunications+Radio+System+Software+Architecture+Concepts+Analysis&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%2520System%2520Soft
http://www.ntrs.nasa.gov/search.jsp?R=20120000912&hterms=Compliance+Tools&qs=N%3D0%26Ntk%3DAll%26Ntt%3DCompliance%20Tools%26Ntx%3Dmode%20matchallpartial
http://www.ntrs.nasa.gov/search.jsp?R=20120000912&hterms=Compliance+Tools&qs=N%3D0%26Ntk%3DAll%26Ntt%3DCompliance%20Tools%26Ntx%3Dmode%20matchallpartial

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

61 of 148

c. Observation is a method of qualification that is limited to readily observable
functional operation to determine compliance with requirements. This method of qualification
does not require the use of special equipment or sophisticated instrumentation.

d. Similarity is the process of using analysis and/or “delta testing” to prove the design

adequacy of an item by reference to the prior qualification of an identifiable item that has been
qualified for a similar application.

e. Test is a qualification method that employs technical means including, but not limited

to, the evaluation of functional characteristics by the use of special equipment or
instrumentation, simulation techniques, and the application of established principles and
procedures to determine compliance with requirements. The analysis of data derived from a test
is an integral part of the method.

Note: The variables STRS_APP_INSTANTIATED, STRS_APP_STOPPED, and
STRS_APP_RUNNING, shown in the examples, are variables for states, which would have to be
defined locally.

7.1 STRS-1 Power Up

Requirement An STRS platform shall have a known state after completion of the power-up

process.
Rationale To increase the reliability of the STRS platform after reboot or power cycle,

the radio has to be able to return to full operation autonomously without the
need for external equipment or procedures.

Category Availability, Reliability
Traced-from 4.3, 5.17
Use Case Power On
Applicable to OE developer: usually platform provider
Notes A known state is one that is predictable from documentation or from

configuration file(s) or scripts or some combination thereof.
Verification Method Observation of radio operation.

7.2 STRS-2 Provide Platform Diagnostics

Requirement A module’s diagnostic information shall be available via the STRS APIs.
Rationale To increase the reliability and availability of the STRS platform, there has to

be a means of providing data to identify configuration information as well as
status and fault identification. Data for both BITs and recognition of
operational degradation and malfunction have to be available.

Category Reliability, Availability
Traced-from 4.3, 5.15, 5.16

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

62 of 148

Use Case Fault Management, Built-In Test
Applicable to OE developer: usually platform provider
Notes None
Verification Method Observation of radio operation.

7.3 STRS-3 Use Platform Diagnostics (Deleted)

Rationale This requirement was deleted because STRS-2 wording was made more

robust, STRS-3 became redundant. STRS-3 previously stated: Self-
diagnostic and fault-detection data shall be created for each module so that it
is accessible to the STRS OE.

7.4 STRS-4 Document Resources

Requirement The STRS platform provider shall describe, in the HID document, the

behavior and capability of each major functional device or resource available
for use by waveforms, services, or other applications (e.g., FPGA, GPP, DSP,
or memory), noting any operational limitations.

Rationale Waveform developers need to know the features and limitations of the
platform for their applications. Once the radio has been procured, NASA has
the knowledge to procure or produce new or additional modules using HID
information. Also, future module replacement or additions will be possible
without designing a new platform.

Category Adaptability
Traced-from 4.7, 4.8, 5.2, 5.3
Use Case None
Applicable to Platform provider
Notes None
Verification Method Inspection of HID document.

7.5 STRS-5 Document Capability

Requirement The STRS platform provider shall describe, in the HID document, the

reconfigurability behavior and capability of each reconfigurable component.
Rationale Waveform developers need to know the features and limitations of the

platform for their applications. Once the radio has been procured, NASA has
the knowledge to procure or produce new or additional modules using HID
information. Also, future module replacement or additions will be possible
without designing a new platform.

Category Adaptability
Traced-from 4.7, 4.8, 5.2, 5.3
Use Case None

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

63 of 148

Applicable to Platform provider
Notes None
Verification Method Inspection of HID document.

7.6 STRS-6 Document Radio Frequency (RF) Behavior

Requirement The STRS platform provider shall describe, in the HID document, the

behavior and performance of the RF modular component(s).
Rationale Waveform developers need to know the features and limitations of the

platform for their applications. Once the radio has been procured, NASA has
the knowledge to procure or produce new or additional modules using HID
information. Also, future module replacement or additions will be possible
without designing a new platform.

Category Interoperability, Adaptability
Traced-from 4.6, 4.7, 4.8, 5.2, 5.3
Use Case None

Applicable to Platform provider
Notes None
Verification Method Inspection of HID document.

7.7 STRS-7 Document Module Interfaces

Requirement The STRS platform provider shall describe, in the HID document, the

interfaces that are provided to and from each modular component of the
STRS platform.

Rationale Waveform developers need to know the features and limitations of the
platform for their applications. Once the radio has been procured, NASA has
the knowledge to procure or produce new or additional modules using HID
information. Also, future module replacement or additions will be possible
without designing a new platform.

Category Interoperability, Adaptability
Traced-from 4.2, 4.7, 4.8, 5.2, 5.3
Use Case None
Applicable to Platform provider
Notes None
Verification Method Inspection of HID document.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

64 of 148

7.8 STRS-8 Document Module Control

Requirement The STRS platform provider shall describe, in the HID document, the

control, telemetry, and data mechanisms of each modular component (i.e.,
how to program or control each modular component of the platform, and how
to use or access each device or software component, noting any proprietary
and nonstandard aspects).

Rationale Waveform developers need to know the features and limitations of the
platform for their applications. Once the radio has been procured, NASA has
the knowledge to procure or produce new or additional modules using HID
information. Also, future module replacement or additions will be possible
without designing a new platform.

Category Interoperability, Adaptability
Traced-from 4.7, 4.8, 5.2, 5.3
Use Case None
Applicable to Platform provider
Notes None
Verification Method Inspection of HID document.

7.9 STRS-9 Document Power

Requirement The STRS platform provider shall describe, in the HID document, the

behavior and performance of any power supply or power converter modular
component(s).

Rationale Waveform developers need to know the features and limitations of the
platform for their applications. Once the radio has been procured, NASA has
the knowledge to procure or produce new or additional modules using HID
information. Also, future module replacement or additions will be possible
without designing a new platform.

Category Reliability, Adaptability
Traced-from 4.7, 4.8, 5.2, 5.3
Use Case None
Applicable to Platform provider
Notes See also STRS-108.
Verification Method Inspection of HID document.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

65 of 148

7.10 STRS-10 STRS Application Uses OE

Requirement An STRS application shall use the STRS infrastructure-provided APIs and

POSIX® API for access to platform resources.
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. Rather than creating
many more APIs in STRS, the currently available POSIX® standard was
selected. Thus, POSIX® subsets were chosen to implement certain OS
services missing from the list of STRS Application-provided methods. The
POSIX® subsets are widely available, implemented by multiple OSs, and
scalable. Layering of the architecture separates and encapsulates functionality
so that the parts are less influenced by changes to the other. This separation
of functionality promotes portability.

Category Portability
Traced-from 4.2, 4.7, 5.1
Use Case None
Applicable to Application developer
Notes None
Verification Method Inspection using STRS compliance tool.

7.11 STRS-11 OE Uses HAL

Requirement The STRS infrastructure shall use the STRS platform HAL APIs to

communicate with application components on the platform specialized
hardware via the physical interface defined by the STRS platform provider.

Rationale The HAL API is to be published so that specialized hardware made by one
company may be integrated with the STRS infrastructure made by a different
company.
The HAL API documentation is to include a description of each method or
function used, including its calling sequence, return values, an explanation of
its functionality, any preconditions before using the method or function, and
the status after using the method or function.
The HAL API documentation is to also contain information about the
underlying hardware such as address and data interfaces, interrupt input and
output, power connections, and other control and data lines necessary to
operate in the STRS platform environment.

Category Adaptability, Extensibility
Traced-from 4.4, 4.5, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes See also STRS-92.
Verification Method Inspection of HAL document.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

66 of 148

7.12 STRS-12 STRS Application Repository

Requirement The following application or OE development artifacts shall be submitted to

the NASA STRS Application Repository:

(1) Application (or OE) or system component software and configurable

hardware design simulation model(s) and/or documentation). (Design
Description Document)

(2) Documentation of external interfaces for STRS application, devices,
or configurable hardware design (e.g., signal names, descriptions,
polarity, format, data type, and timing constraints). (HID)

(3) Documentation of STRS application or OE behavior, initialization,
and adaptability (e.g., configurable and queryable data items).
(Design Description Document, User’s Guide)

(4) Application or OE function sources (e.g., C, C++, header files,
VHSIC VHDL, and Verilog®). (Artifacts)

(5) Application or OE libraries, if applicable (e.g., electronic design
interchange format (EDIF) and Dynamic Link Library (DLL)).
(Artifacts)

(6) Documentation of application (or OE) development environment
and/or tool suite as follows: (Design Description Document)

A. Include the development environment and/or tool suite name,
purpose, developer, version, and configuration specifics
(e.g., ISE Design Suite System, Xilinx, 14.4, EDK and SDK;
MATLAB® Simulink®, Model base design support
automatic code generation, MathWorks, R2016a).

B. Include a description of the hardware on which the
development environment and/or tool suite is executed, its
OS, OS developer, OS version, and OS configuration
specifics (e.g., Microsoft® Windows 7, Service pack 2;
Linux® Ubuntu, (Xenial Xerus) 16.04).

C. Include a description of the output of the development
environment and/or tool suite, its STRS infrastructure/OE
description, developer, version, and unique implementation
items (e.g., type of file, .mdl, .slx; GRC's STRS Reference
Implementation; Intellectual Property (IP) generated from
Xilinx).

D. Include a description of licensing agreements for
development environment and/or tool suite.

(7) Test plans, procedures, and results documentation. (Verification and
Validation (V&V) Plan, V&V Procedure, and V&V Results)

(8) Identification of software development standards used. (Version
Description Document (VDD)/Metadata)

(9) Version of this NASA Technical Standard used. (VDD/Metadata)
(10) Information, along with supporting documentation, required to

make the appropriate decisions regarding ownership, distribution
rights, and release (technology transfer) of the application or OE
and associated artifacts. (Transfer Rights/Agreements)

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

67 of 148

(11) Version Description Document, if available, or other document
containing the version numbers of each separable artifact in the
release, defined down to the lowest level components. (VDD)

(12) Documentation of the platform component hardware used by the
application or OE, its function, and the interconnections. If the
component executes an operating system, document the OS, OS
developer, OS version, and OS configuration. (HID)

(13) Documentation when an OE is submitted to the STRS Application
Repository, providing guidelines to aid a waveform/application
developer and integrator in the task of developing an STRS
compliant waveform/application. (OE-Specific Developer’s Guide)

Rationale To understand how to use the radio, information must be provided about its
design and implementation. To have confidence that the design and
implementation meet the NASA Procedural Requirements (NPR) 7150.2,
NASA Software Engineering Requirements, additional information about
standards, reviews, and tests must be provided.

Category Portability
Traced-from 4.2, 4.9, 5.2
Use Case None
Applicable to Application or OE developer
Notes See also STRS-92.
Verification Method Inspection of deliverable items and documentation.

7.13 STRS-13 OE Controls Signal-Processing Module (SPM)

Requirement If the STRS application has a component resident outside the GPM (e.g., in

configurable hardware design), then the component shall be controllable from
the STRS OE.

Rationale The layering of the architecture introduces the need for the GPP to be able to
control, configure, and monitor many aspects of the SPM. For portability,
waveform applications use STRS APIs, which access the HAL or POSIX®
API within the STRS OE as needed.

Category Portability, Reconfigurability, Adaptability
Traced-from 4.5, 4.9, 5.1, 5.4, 5.22
Use Case None
Applicable to Application developer
Notes None
Verification Method Observation of operation of radio.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

68 of 148

7.14 STRS-14 Provide Platform-Specific Wrapper

Requirement The STRS SPM developer shall provide a platform-specific wrapper for each

user-programmable FPGA, which performs the following functions:
(1) Provides an interface for command and data from the GPM to the

waveform application.
(2) Provides the platform-specific pinout for the STRS application

developer. This may be a complete abstraction of the actual FPGA
pinouts with only waveform application signal names provided.

Rationale To aid in the portability of waveform applications within an FPGA, a
platform-specific wrapper provides an additional layer separating the
interface between the GPP and SPM/FPGA from the signal processing
functionality within the FPGA.

Category Portability, Extensibility
Traced-from 4.2, 4.4, 4.9, 5.1, 5.8
Use Case None
Applicable to Platform provider
Notes None
Verification Method Inspection of document and code.

7.15 STRS-15 Document Platform-Specific Wrapper

Requirement The STRS SPM developer shall provide documentation on the configurable

hardware design interfaces of the platform-specific wrapper for each user-
programmable FPGA, which describes the following:

(1) Signal names and descriptions.
(2) Signal polarity, format, and data type.
(3) Signal direction.
(4) Signal-timing constraints.
(5) Clock generation and synchronization methods.
(6) Signal-registering methods.
(7) Identification of development tool set used.
(8) Any included noninterface functionality.

Rationale When functions, interfaces, components, and/or design rules are defined and
published, the architecture is open. Open architecture facilitates
interoperability among commercial and government developers and
minimizes the operational impact of upgrading hardware and software
components.

Category Portability, Adaptability
Traced-from 4.2, 4.4, 4.7, 4.8, 4.9, 5.1, 5.2

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

69 of 148

Use Case None
Applicable to Platform provider
Notes None
Verification Method Inspection of document.

7.16 STRS-16 Use C/C++ Waveform (WF) Interface

Requirement The STRS Application-provided Application Control API shall be

implemented using ISO/IEC C or C++.
Rationale Because portability is a basic goal but middleware is not required, a totally

language-independent solution was not available. The lowest common
denominator turns out to be a C or C++ language interface. Using a standard
ISO/IEC 9899 C or ISO/IEC 14882 C++ aids portability. The year is not
included in the requirement, so that obsolete compilers are not mandated.

Category Portability, Scalability
Traced-from 4.1, 4.2, 4.7, 4.9, 5.1
Use Case None
Applicable to Application developer
Notes None
Verification Method Inspection of code.

7.17 STRS-17 OE Uses STRS Application Control API

Requirement The STRS infrastructure shall use the STRS Application-provided

Application Control API to control STRS applications.
Rationale Layering of the architecture separates and encapsulates functionality so that

the parts are less influenced by changes to the other. This separation of
functionality promotes portability.

Category Portability
Traced-from 4.1, 4.2, 4.7, 4.9, 5.1
Use Case None
Applicable to OE developer: usually platform provider
Notes The STRS Application-provided Application Control

API refers to the API defined in STRS-29 through
STRS-39, STRS-114 through STRS-116, and the
corresponding tables 5 through 18. The method names in
the STRS Application-provided Application Control API
begin with “APP_”.

Verification Method Inspection using OE script and using compliance tool.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

70 of 148

7.18 STRS-18 Use C/C++ Compile-Time

Requirement The STRS OE shall support ISO/IEC C or C++, or both, language interfaces

for the STRS Application-provided Application Control API at compile-time.
Rationale Because portability is a basic goal but middleware is not required, a totally

language-independent solution was not available. The lowest common
denominator turns out to be a C or C++, or both, language interface. Using a
standard ISO/IEC 9899 C or ISO/IEC 14882 C++ aids portability. The year is
not included in the requirement, so that obsolete compilers are not mandated.

Category Portability
Traced-from 4.1, 4.2, 4.7, 4.9, 5.1
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection

7.19 STRS-19 Use C/C++ Run-Time

Requirement The STRS OE shall support ISO/IEC C or C++, or both, language interfaces

for the STRS Application-provided Application Control API at run-time.
Rationale Because portability is a basic goal but middleware is not required, a totally

language-independent solution was not available. The lowest common
denominator turns out to be a C or C++, or both, language interface. Using a
standard ISO/IEC 9899 C or ISO/IEC 14882 C++ aids portability. The year is
not included in the requirement, so that obsolete compilers are not mandated.

Category Portability
Traced-from 4.1, 4.2, 4.7, 4.9, 5.1
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection using STRS compliance tool.

7.20 STRS-20 Include STRS_ApplicationControl.h

Requirement Each STRS application shall contain:

 #include "STRS_ApplicationControl.h".
Rationale For portability, standard names are defined for various constants, data types,

and method prototypes in the API.
Category Portability
Traced-from 4.9, 5.1, 5.2

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

71 of 148

Use Case None
Applicable to Application developer
Notes None
Verification Method Inspection using STRS compliance tool.

7.21 STRS-21 Provide STRS_ApplicationControl.h

Requirement The STRS platform provider shall provide an “STRS_ApplicationControl.h”

that contains the method prototypes for each STRS application and, for C++,
the class definition for the base class STRS_ApplicationControl.

Rationale For portability, standard names are defined for various constants, data types,
and method prototypes in the API.

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection

7.22 STRS-22 STRS_ApplicationControl Base Class

Requirement If the STRS Application-provided Application Control API is implemented in

C++, the STRS application class shall be derived from the
STRS_ApplicationControl base class.

Rationale For portability, standard names are defined for various constants, data types, and
method prototypes in the API.

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes None
Verification Method Inspection

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

72 of 148

Example In C++, a MyWaveform.h file should contain a class definition of the form:
class MyWaveform: public STRS_ApplicationControl

{…};

7.23 STRS-23 Include STRS_Sink.h

Requirement If the STRS application provides the APP_Write method, the STRS

application shall contain:
 #include "STRS_Sink.h".

Rationale For portability, standard names are defined for various constants, data types,
and method prototypes in the API.

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes None
Verification Method Inspection using STRS compliance tool.

7.24 STRS-24 Provide STRS_Sink.h

Requirement The STRS platform provider shall provide an “STRS_Sink.h” that contains

the method prototypes for APP_Write and, for C++, the class definition for
the base class STRS_Sink.

Rationale For portability, standard names are defined for various constants, data types,
and method prototypes in the API.

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection

7.25 STRS-25 STRS_Sink Base Class

Requirement If the STRS Application-provided Application Control API is implemented in

C++ and the STRS application provides the APP_Write method, the STRS
application class shall be derived from the STRS_Sink base class.

Rationale For portability, standard names are defined for various constants, data types,
and method prototypes in the API.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

73 of 148

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes None
Verification Method Inspection
Example In C++, a MyWaveform.h file should contain a class definition of the form:

class MyWaveform: public STRS_ApplicationControl,

 public STRS_Sink

{…};

7.26 STRS-26 Include STRS_Source.h

Requirement If the STRS application provides the APP_Read method, the STRS

application shall contain:
 #include "STRS_Source.h".

Rationale For portability, standard names are defined for various constants, data types,
and method prototypes in the API.

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes None
Verification Method Inspection using STRS compliance tool.

7.27 STRS-27 Provide STRS_Source.h

Requirement The STRS platform provider shall provide an “STRS_Source.h” that contains

the method prototypes for APP_Read and, for C++, the class definition for
the base class STRS_Source.

Rationale For portability, standard names are defined for various constants, data types,
and method prototypes in the API.

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

74 of 148

7.28 STRS-28 STRS_Source Base Class

Requirement If the STRS Application-provided Application Control API is implemented in C++

and the STRS application provides the APP_Read method, the STRS application
class shall be derived from the STRS_Source base class.

Rationale For portability, standard names are defined for various constants, data types, and
method prototypes in the API.

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes None
Verification Method Inspection
Example In C++, the MyWaveform.h file should contain a class definition of the form

class MyWaveform: public STRS_ApplicationControl,

 public STRS_Source

{…};

If both APP_Read and APP_Write are provided in the same waveform, the C++
class will be derived from all three base classes named in requirements (STRS-22,
STRS-25, and STRS-28). For example, the MyWaveform.h file should contain a
class definition of the form

class MyWaveform: public STRS_ApplicationControl,

 public STRS_Sink,

 public STRS_Source

{…};

7.29 STRS-29 APP_Configure

Requirement Each STRS application shall contain a callable APP_Configure method as described

in table 5, APP_Configure().
Rationale For an open architecture to support portability, the architecture has to be standardized

across platforms and implementations. In particular, waveform applications and
services have to implement and use standard interfaces across all platforms. In
addition, APP_Configure was patterned after the configure method in the PropertySet
interface in JTRS/SCA and OMG/SWRADIO.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3
Use Case Set Waveform Parameter
Applicable to Application developer

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

75 of 148

Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_Configure
Example STRS_Result APP_Configure(STRS_Property_Name name,

STRS_Property_Value *value,
STRS_Buffer_Size nb) {

STRS_Result rtn = STRS_OK;
if (strcmp("A", name)==0 && nb <= maxLa){

strncpy(a, value, nb);
} else
 if (strcmp("B",name)==0 && nb <= maxLb){

if (myState == STRS_APP_RUNNING) {
rtn = STRS_WARNING;

} else {
strncpy(b, value, nb);
rtn = strlen(b);

}
 } else {

rtn = STRS_WARNING;
 }

return rtn;
}

7.30 STRS-30 APP_GroundTest

Requirement Each STRS application shall contain a callable APP_GroundTest method as

described in table 9, APP_GroundTest().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces across
all platforms. In addition, APP_GroundTest was patterned after the runTest
method in the TestableObject interface in JTRS/SCA and OMG/SWRADIO. It
performs system and unit testing usually done before deployment.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3, 5.15
Use Case Built-In Test
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_GroundTest

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

76 of 148

Example STRS_Result APP_GroundTest(STRS_TestID testID) {
STRS_HandleID fromWF = APP_GetHandleID();
if (testID == 0) {

 …
 return STRS_OK;

} else {
 STRS_Buffer_Size nb = strlen(
 "Invalid APP_GroundTest argument.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "Invalid APP_GroundTest argument.", nb);
 return STRS_ERROR;

}
}

7.31 STRS-31 APP_Initialize

Requirement Each STRS application shall contain a callable APP_Initialize method as

described in table 10, APP_Initialize().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. In addition, APP_Initialize was patterned after the
initialize method in the LifeCycle interface in JTRS/SCA and
OMG/SWRADIO.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3
Use Case Waveform Instantiation
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_Initialize
Example STRS_Result APP_Initialize() {

 STRS_HandleID fromWF = APP_GetHandleID();
 if (myState == STRS_APP_RUNNING) {
 STRS_Buffer_Size nb = strlen(

 "Can't Init when STRS_APP_RUNNING.");
 STRS_Log(fromWF,STRS_WARNING_QUEUE,

 "Can't Init when STRS_APP_RUNNING.", nb);
 return STRS_WARNING;
} else {

…
myState = STRS_APP_STOPPED;

}
return STRS_OK;

}

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

77 of 148

7.32 STRS-32 APP_Instance

Requirement Each STRS application shall contain a callable APP_Instance method as

described in table 11, APP_Instance().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3
Use Case Waveform Instantiation
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also N/A
Example for C++ STRS_Instance *ThisSTRSApplication::APP_Instance(

 STRS_HandleID handleID, char *name) {
 return new ThisSTRSApplication(handleID,name);
}

Example for C char handleName[nMax];
STRS_Instance *APP_Instance(
 STRS_HandleID handleID, char *name) {
 myQ = handleID;
 strncpy(handleName, name, nMax);
 myState = STRS_APP_INSTANTIATED;
 OE_DEFINED_MACRO_TO_SET_INST();
 return inst;
}

7.33 STRS-33 APP_Query

Requirement Each STRS application shall contain a callable APP_Query method as

described in table 12, APP_Query().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. In addition, APP_Query was patterned after the query
method in the PropertySet interface in JTRS/SCA and OMG/SWRADIO.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3
Use Case Get Waveform Parameter
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

78 of 148

Verification Method Inspection using STRS compliance tool.
See Also STRS_Query
Example STRS_Result APP_Query(STRS_Property_Name name,

STRS_Property_Value *value,
STRS_Buffer_Size nb) {

if (strcmp("A",name)==0)
{

/* Variable “a” is declared as a
 * character string, and typically
 * contains a value set by APP_Configure.
 */

 if (a == NULL || strlen(a) >= nb) {
 rtn = STRS_ERROR;
 } else {
 strncpy(value, a, nb);

rtn = strlen(value);
 }

}
return rtn;

}

7.34 STRS-34 APP_Read

Requirement If the STRS application provides data to the infrastructure, then the STRS

application shall contain a callable APP_Read method as described in table
13, APP_Read().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3
Use Case Transmit a Packet
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_Read
Example STRS_Result APP_Read(STRS_Message buffer,

 STRS_Buffer_Size nb) {
 if (nb <= 4) return STRS_ERROR;
 strcpy (buffer,"ABCD");
 return strlen(buffer);
}

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

79 of 148

7.35 STRS-35 APP_ReleaseObject

Requirement Each STRS application shall contain a callable APP_ReleaseObject method

as described in table 14, APP_ReleaseObject().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. In addition, APP_ReleaseObject was patterned after the
releaseObject method in the LifeCycle interface in JTRS/SCA and
OMG/SWRADIO.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3
Use Case Waveform Deallocation
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_ReleaseObject
Example STRS_Result APP_ReleaseObject() {

 STRS_HandleID fromWF = APP_GetHandleID();
 if (myState == STRS_APP_RUNNING) {
 STRS_Buffer_Size nb = strlen(
 "Can't free resources when RUNNING.");
 STRS_Log(fromWF,STRS_WARNING_QUEUE,
 "Can't free resources when RUNNING.",
 nb);
 return STRS_WARNING;
 } else {
 …
 }
 return STRS_OK;
}

7.36 STRS-36 APP_RunTest

Requirement Each STRS application shall contain a callable APP_RunTest method as

described in table 15, APP_RunTest().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. In addition, APP_RunTest was patterned after the
runTest method in the TestableObject interface in JTRS/SCA and
OMG/SWRADIO. It performs system and unit testing usually done after
deployment.

Category Portability, Extensibility

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

80 of 148

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3, 5.15
Use Case Built-In Test
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_RunTest
Example STRS_Result APP_RunTest(STRS testID) {

 if (testID == 1) {
 …
 } else {
 STRS_HandleID fromWF = APP_GetHandleID();
 STRS_Buffer_Size nb = strlen(
 "Invalid APP_RunTest argument testID.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "Invalid APP_RunTest argument testID.",

 nb);
return STRS_ERROR;

 }
 return STRS_OK;
}

7.37 STRS-37 APP_Start

Requirement Each STRS application shall contain a callable APP_Start method as

described in table 16, APP_Start().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. In addition, APP_Start was patterned after the start
method in the Resource interface in JTRS/SCA and ControllableComponent
interface in OMG/SWRADIO.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3
Use Case Waveform Start
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_Start

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

81 of 148

Example STRS_Result APP_Start() {
if (myState == STRS_APP_STOPPED) {

…
myState = STRS_APP_RUNNING;
…

} else {
return STRS_ERROR;

}
return STRS_OK;

}

7.38 STRS-38 APP_Stop

Requirement Each STRS application shall contain a callable APP_Stop method as

described in table 17, APP_Stop().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. In addition, APP_Stop was patterned after the stop
method in the Resource interface in JTRS/SCA and ControllableComponent
interface in OMG/SWRADIO.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3
Use Case Waveform Stop
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_Stop
Example STRS_Result APP_Stop() {

 if (myState == STRS_APP_RUNNING) {
 ...
 myState = STRS_APP_STOPPED;
 ...
 } else {
 return STRS_ERROR;
 }
 return STRS_OK;
}

7.39 STRS-39 APP_Write

Requirement If the STRS application receives data from the infrastructure, then the STRS

application shall contain a callable APP_Write method as described in table
18, APP_Write().

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

82 of 148

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3
Use Case Receive a Packet
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_Write
Example STRS_Result APP_Write(STRS_Message buffer,

 STRS_Buffer_Size nb) {
 /* Data in buffer is character data. */
 if (strlen(buffer) != nb -1)
 return STRS_ERROR;
 int nco = fprintf(stdout,”%s\n”,buffer);
 return (STRS_Result) nco;
}

7.40 STRS-40 STRS_Configure

Requirement The STRS infrastructure shall contain a callable STRS_Configure method as

described in table 19, STRS_Configure().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. The signature of the infrastructure method is different
from the signature of the corresponding application method because there has
to be a C language interface to the infrastructure method and it has to contain
additional information that allows the infrastructure to determine whether the
target component is C or C++ and call the corresponding application method
appropriately.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2
Use Case Set Waveform Parameter
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_Configure

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

83 of 148

Example /* Set A=5, B=27. */
STRS_Result rtn;
STRS_HandleID fromWF = APP_GetHandleID();
Do while (true) {
 rtn = STRS_Configure(fromWF,toWF, "A", "5", 1);
 if (! STRS_IsOK(rtn)) break;
 rtn = STRS_Configure(fromWF,toWF, "B","27", 2);
 if (! STRS_IsOK(rtn)) break;
 break;
}
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Configure fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Configure fails.", nb);
}

7.41 STRS-41 STRS_GroundTest

Requirement The STRS infrastructure shall contain a callable STRS_GroundTest method

as described in table 20, STRS_GroundTest().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. The signature of the infrastructure method is different
from the signature of the corresponding application method because there has
to be a C language interface to the infrastructure method and it has to contain
additional information that allows the infrastructure to determine whether the
target component is C or C++ and call the corresponding application method
appropriately. It performs system and unit testing usually done before
deployment.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.15
Use Case Built-In Test
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_GroundTest

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

84 of 148

Example STRS_HandleID fromWF = APP_GetHandleID();
STRS_Result rtn =
 STRS_GroundTest(fromWF,toWF,testID);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "GroundTest fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "GroundTest fails.", nb);
}

7.42 STRS-42 STRS_Initialize

Requirement The STRS infrastructure shall contain a callable STRS_Initialize method as

described in table 21, STRS_Initialize().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. The signature of the infrastructure method is different
from the signature of the corresponding application method because there has
to be a C language interface to the infrastructure method and it has to contain
additional information that allows the infrastructure to determine whether the
target component is C or C++ and call the corresponding application method
appropriately.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2
Use Case Waveform Instantiation
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_Initialize
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn = STRS_Initialize(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Initialize fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Initialize fails.", nb);
}

7.43 STRS-43 STRS_Query

Requirement The STRS infrastructure shall contain a callable STRS_Query method as

described in table 22, STRS_Query().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

85 of 148

applications and services have to implement and use standard interfaces
across all platforms. The signature of the infrastructure method is different
from the signature of the corresponding application method because there has
to be a C language interface to the infrastructure method and it has to contain
additional information that allows the infrastructure to determine whether the
target component is C or C++ and call the corresponding application method
appropriately.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2
Use Case Get Waveform Parameter
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_Query
Example STRS_Result rtn;

STRS_HandleID fromWF = APP_GetHandleID();
Do while (true) {

rtn = STRS_Query(fromWF,toWF,”A”, a, maxLa);
if (! STRS_IsOK(rtn)) break;

rtn = STRS_Query(fromWF,toWF,”B”, b, maxLb);
if (! STRS_IsOK(rtn)) break;
break;

}
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Query fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Query fails.", nb);
}
cout << “A = “ << a << std::endl;
cout << “B = “ << b << std::endl;

7.44 STRS-44 STRS_ReleaseObject

Requirement The STRS infrastructure shall contain a callable STRS_ReleaseObject

method as described in table 23, STRS_ReleaseObject().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. The signature of the infrastructure method is different
from the signature of the corresponding application method because there has
to be a C language interface to the infrastructure method and it has to contain
additional information that allows the infrastructure to determine whether the
target component is C or C++ and call the corresponding application method
appropriately.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

86 of 148

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2
Use Case Get Waveform Parameter
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_ReleaseObject
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn =
 STRS_ReleaseObject(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_ReleaseObject fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_ReleaseObject fails.", nb);
}

7.45 STRS-45 STRS_RunTest

Requirement The STRS infrastructure shall contain a callable STRS_RunTest method as

described in table 24, STRS_RunTest().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. The signature of the infrastructure method is different
from the signature of the corresponding application method because there has
to be a C language interface to the infrastructure method and it has to contain
additional information that allows the infrastructure to determine whether the
target component is C or C++ and call the corresponding application method
appropriately. It performs system and unit testing usually done after
deployment.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.15
Use Case Built-In Test
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_RunTest

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

87 of 148

Example STRS_HandleID fromWF = APP_GetHandleID();
STRS_Result rtn =
 STRS_RunTest(fromWF,toWF,1);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_RunTest fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_RunTest fails.”, nb);
}

7.46 STRS-46 STRS_Start

Requirement The STRS infrastructure shall contain a callable STRS_Start method as

described in table 25, STRS_Start().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms. The signature of the infrastructure method is different
from the signature of the corresponding application method because there has
to be a C language interface to the infrastructure method and it has to contain
additional information that allows the infrastructure to determine whether the
target component is C or C++ and call the corresponding application method
appropriately.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2
Use Case Waveform Start
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_Start
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn = STRS_Start(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Start fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Start fails.", nb);
}

7.47 STRS-47 STRS_Stop

Requirement The STRS infrastructure shall contain a callable STRS_Stop method as

described in table 26, STRS_Stop().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

88 of 148

applications and services have to implement and use standard interfaces
across all platforms. The signature of the infrastructure method is different
from the signature of the corresponding application method because there has
to be a C language interface to the infrastructure method and it has to contain
additional information that allows the infrastructure to determine whether the
target component is C or C++ and call the corresponding application method
appropriately.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2
Use Case Waveform Start
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_Stop
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn = STRS_Stop(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Stop fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Stop fails.", nb);
}

7.48 STRS-48 STRS_AbortApp

Requirement The STRS infrastructure shall contain a callable STRS_AbortApp method as

described in table 27, STRS_AbortApp().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to implement and use standard interfaces
across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2
Use Case Waveform Abort
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

89 of 148

Example STRS_HandleID fromWF = APP_GetHandleID();
STRS_Result rtn = STRS_AbortApp(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "AbortApp fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "AbortApp fails.", nb);
}

7.49 STRS-49 STRS_GetErrorQueue

Requirement The STRS infrastructure shall contain a callable STRS_GetErrorQueue

method as described in table 28, STRS_GetErrorQueue().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_IsOK
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn = STRS_AbortApp(fromWF,toWF);

if (! STRS_IsOK(rtn)){

 STRS_Buffer_Size nb = strlen(

 "AbortApp fails.");

 STRS_Log(fromWF, STRS_GetErrorQueue(rtn),

 "AbortApp fails.", nb);

}

7.50 STRS-50 STRS_HandleRequest

Requirement The STRS infrastructure shall contain a callable STRS_HandleRequest

method as described in table 30, STRS_HandleRequest().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

90 of 148

Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_ValidateHandleID, STRS_GetHandleName
Example STRS_HandleID fromWF = APP_GetHandleID();

char toResourceName[] = "WF1";
STRS_HandleID toID = STRS_HandleRequest(fromWF,
 toResourceName);
STRS_Result rtn = STRS_ValidateHandleID(toID);
if (! STRS_IsOK(rtn)) {
 STRS_HandleID errQ = STRS_GetErrorQueue(rtn);

STRS_Buffer_Size nb = strlen(
"Did not find handle ID.");

STRS_Log(fromWF,errQ,
"Did not find handle ID.", nb);

} else {
std::cout << "Found Handle for "

<< toResourceName << ": "
 << toID << std::endl;

}
7.51 STRS-51 STRS_InstantiateApp

Requirement The STRS infrastructure shall contain a callable STRS_InstantiateApp

method as described in table 31, STRS_InstantiateApp().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case Waveform Instantiation
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

91 of 148

Example char toWF[STRS_MAX_PATH_LENGTH];
char handleName[STRS_MAX_HANDLE_NAME_LENGTH];
STRS_HandleID fromWF = APP_GetHandleID();
// OE-specific string defines a configuration file.
strcpy(toWF,"/path/STRS_WFxxx.cfg");
strcpy(handleName,”WFxxx”);
STRS_HandleID wfID =
 STRS_InstantiateApp(fromWF,handleName,toWF);
STRS_Result rtn = STRS_ValidateHandleID(wfID);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "InstantiateApp fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "InstantiateApp fails.", nb);
}

7.52 STRS-52 STRS_IsOK

Requirement The STRS infrastructure shall contain a callable STRS_IsOK method as

described in table 32, STRS_IsOK().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_GetErrorQueue
Example char toWF[MAX_PATH_LENGTH];

char handleName[STRS_MAX_HANDLE_NAME_LENGTH];
STRS_HandleID fromWF = APP_GetHandleID();
strcpy(toWF,"/path/STRS_WFxxx.cfg");
strcpy(handleName,”WFxxx”);
STRS_HandleID wfID =
 STRS_InstantiateApp(fromWF,handleName,toWF);
STRS_Result rtn = STRS_ValidateHandleID(wfID);
if (! STRS_IsOK(rtn) {
 STRS_Buffer_Size nb = strlen(
 "InstantiateApp fails.");
 STRS_Log(fromWF, STRS_GetErrorQueue(wfID),
 "InstantiateApp fails.", nb);
}

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

92 of 148

7.53 STRS-53 STRS_Log

Requirement The STRS infrastructure shall contain a callable STRS_Log method as

described in table 33, STRS_Log().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case Fault Management
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also See STRS_RunTest or APP_RunTest for further examples.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Buffer_Size nb =
 strlen("file does not exist.");
STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "file does not exist.", nb);
// This could produce a line something like:
// 19700101000000;WF1,ERROR,file does not exist.

7.54 STRS-54 STRS_Log Error

Requirement When an STRS application has a nonfatal error, the STRS application shall

use the callable STRS_Log method as described in table 33, STRS_Log(),
with a target handle ID of constant STRS_ERROR_QUEUE.

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case Fault Management
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

93 of 148

7.55 STRS-55 STRS_Log Fatal

Requirement When an STRS application has a fatal error, the STRS application shall use

the callable STRS_Log method as described in table 33, STRS_Log(), with a
target handle ID of constant STRS_FATAL_QUEUE.

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection

7.56 STRS-56 STRS_Log Warning

Requirement When an STRS application has a warning condition, the STRS application

shall use the callable STRS_Log method as described in table 33,
STRS_Log(), with a target handle ID of constant
STRS_WARNING_QUEUE.

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case Fault Management
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection

7.57 STRS-57 STRS_Log Telemetry

Requirement When an STRS application needs to send telemetry, the STRS application

shall use the callable STRS_Log method as described in table 33,
STRS_Log(), with a target handle ID of constant
STRS_TELEMETRY_QUEUE.

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

94 of 148

Use Case None
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection

7.58 STRS-58 STRS_Write

Requirement The STRS infrastructure shall contain a callable STRS_Write method as

described in table 36, STRS_Write().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case Receive a Packet
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_Write
Example STRS_HandleID fromWF = APP_GetHandleID();

char buffer[32];
strcpy(buffer,"ABCDE");
STRS_Buffer_Size nb = strlen(buffer);
STRS_Result rtn =
 STRS_Write(fromWF,toID,buffer,nb);

7.59 STRS-59 STRS_Read

Requirement The STRS infrastructure shall contain a callable STRS_Read method as

described in table 37, STRS_Read().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability, Extensibility
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case Transmit a Packet
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_Read

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

95 of 148

Example STRS_HandleID fromWF = APP_GetHandleID();
char buffer[32];
STRS_Buffer_Size nb = 32;
STRS_Result rtn =
 STRS_Read(fromWF,pullID,buffer,nb);

7.60 STRS-60 Device Control (Deleted)

Rationale This requirement was deleted because when STRS-10 wording was made

more robust, STRS-60 became superfluous. STRS-60 previously stated: The
STRS applications shall use the methods in the STRS infrastructure Device
Control API, STRS infrastructure-provided Application Control API,
Infrastructure Data Source API (if appropriate), and Infrastructure Data Sink
API (if appropriate) to control the STRS Devices.

7.61 STRS-61 STRS_DeviceClose

Requirement The STRS infrastructure shall contain a callable STRS_DeviceClose method

as described in table 38, STRS_DeviceClose().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn =
 STRS_DeviceClose(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceClose fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceClose fails.", nb);
}

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

96 of 148

7.62 STRS-62 STRS_DeviceFlush

Requirement The STRS infrastructure shall contain a callable STRS_DeviceFlush method

as described in table 39, STRS_DeviceFlush().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn =
 STRS_DeviceFlush(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceFlush fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceFlush fails.", nb);
}

7.63 STRS-63 STRS_DeviceLoad

Requirement The STRS infrastructure shall contain a callable STRS_DeviceLoad method

as described in table 40, STRS_DeviceLoad().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

97 of 148

Example STRS_HandleID fromWF = APP_GetHandleID();
STRS_Result rtn =
 STRS_DeviceLoad(fromWF,toDev,
 "/path/WF1.FPGA.bit");
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceLoad fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceLoad fails.", nb);
}

7.64 STRS-64 STRS_DeviceOpen

Requirement The STRS infrastructure shall contain a callable STRS_DeviceOpen method

as described in table 41, STRS_DeviceOpen().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn =
 STRS_DeviceOpen(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceOpen fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceOpen fails.", nb);
}

7.65 STRS-65 STRS_DeviceReset

Requirement The STRS infrastructure shall contain a callable STRS_DeviceReset method

as described in table 42, STRS_DeviceReset().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

98 of 148

Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn =
 STRS_DeviceReset(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceReset fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceReset fails.", nb);
}

7.66 STRS-66 STRS_DeviceStart (Deleted)

Rationale This requirement was deleted because it is redundant; STRS_Start is used

instead. STRS-66 previously stated: The STRS infrastructure shall contain a
callable STRS_DeviceStart method.

7.67 STRS-67 STRS_DeviceStop (Deleted)

Rationale This requirement was deleted because it is redundant; STRS_Stop is used

instead. STRS-67 previously stated: The STRS infrastructure shall contain a
callable STRS_DeviceStop method.

7.68 STRS-68 STRS_DeviceUnload

Requirement The STRS infrastructure shall contain a callable STRS_DeviceUnload

method as described in table 43, STRS_DeviceUnload().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case Waveform Deallocation
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.

Verification Method Inspection using STRS compliance tool.

Example STRS_HandleID fromWF = APP_GetHandleID();
STRS_Result rtn =
 STRS_DeviceUnload(fromWF,toDev);

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

99 of 148

if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceUnload fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceUnload fails.", nb);
}

7.69 STRS-69 STRS_SetISR

Requirement The STRS infrastructure shall contain a callable STRS_SetISR method as

described in table 44, STRS_SetISR().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A. The callback function

whose address is passed to the STRS_SetISR method may be different for
different OE's. The OE-specific documentation tells whether there are any
arguments and if so, what they are. The most likely argument would be an
instance variable obtained from the handle ID with which the function may obtain
and/or set instance data.

Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID myQ = APP_GetHandleID();

qnew=myQ;
fp = (STRS_ISR_Function) Test_ISR_Method;
fprintf(stdout,
 "Pointer to function Test_ISR_Method: %p\n", fp);
rtn = STRS_SetISR(myQ,qnew,(STRS_ISR_Function) fp);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(

 “STRS_SetISR fails for Test_ISR_Method.”);
 STRS_Log(myQ, STRS_ERROR_QUEUE,

 “STRS_SetISR fails for Test_ISR_Method.”,nb);
}

7.70 STRS-70 STRS_FileClose

Requirement The STRS infrastructure shall contain a callable STRS_FileClose method as

described in table 51, STRS_FileClose().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

100 of 148

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_FileOpen
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn = STRS_FileClose(fromWF,toFile);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "FileClose fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileClose fails.", nb);
}

7.71 STRS-71 STRS_FileGetFreeSpace

Requirement The STRS infrastructure shall contain a callable STRS_FileGetFreeSpace

method as described in table 52, STRS_FileGetFreeSpace().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

101 of 148

Example STRS_HandleID fromWF = APP_GetHandleID();
STRS_File_Size size =
 STRS_FileGetFreeSpace(fromWF,NULL);
if (size < 0) {
 STRS_Buffer_Size nb = strlen(
 "FileGetFreeSpace fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileGetFreeSpace fails.", nb);
}

7.72 STRS-72 STRS_FileGetSize

Requirement The STRS infrastructure shall contain a callable STRS_FileGetSize method

as described in table 53, STRS_FileGetSize().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_File_Size size =
 STRS_FileGetSize(fromWF,"/path/WF1.FPGA.bit");
if (size < 0) {
 STRS_Buffer_Size nb = strlen(
 "FileGetSize fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileGetSize fails.", nb);
}

7.73 STRS-73 STRS_FileGetStreamPointer

Requirement The STRS infrastructure shall contain a callable STRS_FileGetStreamPointer

method as described in table 54, STRS_FileGetStreamPointer().

Rationale STRS-73 solves the potential problem of I/O methods missing from NASA-
STD-4009A. Since not all SDRs will have a file system, this method should
be used sparingly with comments describing its purpose.

Category Extensibility
Traced-from 4.4, 4.5
Use Case None

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

102 of 148

Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_FileOpen
Example STRS_HandleID fromWF = APP_GetHandleID();

FILE *fsp =
 STRS_FileGetStreamPointer(fromWF,toFile);
if (fsp == NULL) {
 STRS_Buffer_Size nb = strlen(
 "FileGetStreamPointer fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileGetStreamPointer fails.", nb);
} else {
 rewind(fsp);
}

7.74 STRS-74 STRS_FileOpen

Requirement The STRS infrastructure shall contain a callable STRS_FileOpen method as

described in table 55, STRS_FileOpen().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_HandleID frd =
 STRS_FileOpen(fromWF,filename,

STRS_ACCESS_READ,
STRS_TYPE_TEXT);

STRS_Result rtn = STRS_ValidateHandleID(frd);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "FileOpen fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileOpen fails.", nb);
}

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

103 of 148

7.75 STRS-75 STRS_FileRemove

Requirement The STRS infrastructure shall contain a callable STRS_FileRemove method

as described in table 56, STRS_FileRemove().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case Waveform Remove
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn =
 STRS_FileRemove(fromWF,oldName);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "FileRemove fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileRemove fails.", nb);
}

7.76 STRS-76 STRS_FileRename

Requirement The STRS infrastructure shall contain a callable STRS_FileRename method

as described in table 57, STRS_FileRename().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

104 of 148

Example STRS_HandleID fromWF = APP_GetHandleID();
STRS_Result rtn =
 STRS_FileRename(fromWF,oldName,newName);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "FileRename fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileRename fails.", nb);
}

7.77 STRS-77 Use Messaging API

Requirement The STRS applications shall use the STRS Infrastructure Messaging, STRS

Infrastructure Data Source, and STRS Infrastructure Data Sink methods to
establish queues to send messages between components.

Rationale In an SDR executing multiple threads or processes, messages have to be
processed using message passing methods so that they do not interfere with
each other. One example might be a receive application queuing its data for a
subsequent transmit application. Another example might be the queuing of
error messages from STRS_Log.

Category Portability, Adaptability
Traced-from 4.5, 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes The STRS Infrastructure Messaging methods refer to the API defined in

STRS-77, STRS-80, STRS-81 and STRS-126 through STRS-129 as well as
corresponding tables 58 through 63.

Verification Method Inspection using STRS compliance tool.

7.78 STRS-78 STRS_QueueCreate (Deleted)

Rationale This requirement was replaced by two: STRS-128, STRS_PubSubCreate and

STRS-126, STRS_MessageQueueCreate, with similar functionality but
having different calling sequences to avoid confusion.

7.79 STRS-79 STRS_QueueDelete (Deleted)

Rationale This requirement was replaced by two: STRS-129, STRS_PubSubDelete and

STRS-119, STRS_MessageQueueDelete, with similar functionality but
having different calling sequences to avoid confusion.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

105 of 148

7.80 STRS-80 STRS_Register

Requirement The STRS infrastructure shall contain a callable STRS_Register method as

described in table 62, STRS_Register().
Rationale The publish-subscribe design pattern provided a way for the publisher of a

message to send the message to all subscribers without knowing the details.
For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn = STRS_Register(fromWF,psX,qFC);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "Can't register subscriber.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can’t register subscriber.", nb);
}

7.81 STRS-81 STRS_Unregister

Requirement The STRS infrastructure shall contain a callable STRS_Unregister method as

described in table 63, STRS_Unregister().
Rationale The publish-subscribe design pattern provides a way for the publisher of a

message to send the message to all subscribers without knowing the details.
For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

106 of 148

Example STRS_HandleID fromWF = APP_GetHandleID();
// After unregistering, upon STRS_Write to psX,
// the message does not get sent to qFC.
STRS_Result rtn = STRS_Unregister(fromWF,psX,qFC);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "Can't unregister subscriber.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can’t unregister subscriber.", nb);
}

7.82 STRS-82 Use Time Control API

Requirement Any portion of the STRS Applications on the GPP needing time control shall

use the STRS Infrastructure Time Control methods to access the hardware
and software timers.

Rationale For portability of waveform applications, a standard API for using timers in
the GPP was necessary. The timers are expected to be used for relatively low
accuracy timing such as time stamps, timed events, and time constraints. As
the speed of new GPPs increases over time, the timers are expected to be
used for signal processing.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes The STRS Infrastructure Time Control methods refer to the API defined in

STRS-82 through STRS-88, STRS-130 through STRS-133 and
corresponding tables 64 through 73 in NASA-STD-4009A.

Verification Method Inspection

7.83 STRS-83 STRS_GetNanoseconds

Requirement The STRS infrastructure shall contain a callable STRS_GetNanoseconds

method as described in table 65, STRS_GetNanoseconds().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

107 of 148

Verification Method Inspection using STRS compliance tool.
See Also STRS_GetTime, STRS_GetTimeWarp, STRS_GetSeconds
Example STRS_TimeWarp base, timx;

STRS_Nanoseconds nsec;
STRS_Result rtn;
STRS_HandleID fromWF = APP_GetHandleID();
STRS_Clock_Kind kx = 1;
rtn =
 STRS_GetTime(fromWF,toDev,*base,kx,*timx);
nsec = STRS_GetNanoseconds(base);

7.84 STRS-84 STRS_GetSeconds

Requirement

The STRS infrastructure shall contain a callable STRS_GetSeconds method
as described in table 66, STRS_GetSeconds().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_GetTime, STRS_GetTimeWarp, STRS_GetNanoseconds
Example STRS_TimeWarp base,timx;

STRS_Seconds isec;
STRS_Result rtn;
STRS_HandleID fromWF = APP_GetHandleID();
STRS_Clock_Kind kx = 1;
rtn = STRS_GetTime(fromWF,toDev,*base,kx,*timx);
isec = STRS_GetSeconds(base);

7.85 STRS-85 STRS_GetTime

Requirement The STRS infrastructure shall contain a callable STRS_GetTime method as described

in table 67, STRS_GetTime().

Rationale For an open architecture to support portability, the architecture has to be standardized
across platforms and implementations. In particular, waveform applications and
services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

108 of 148

Use Case None
Applicable to OE developer: usually platform provider

Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_SetTime
Example STRS_Result rtn;

STRS_HandleID fromWF = APP_GetHandleID();
STRS_HandleID refDev = STRS_HandleRequest(fromWF,
 ”Name of Reference clock”);
STRS_HandleID tgtDev = STRS_HandleRequest(fromWF,
 ”Name of drifting clock”);
STRS_HandleID defDev = STRS_HandleRequest(fromWF,

STRS_DEFAULT_CLOCK_NAME);
STRS_Clock_Kind kRef = 1;
STRS_Clock_Kind kTgt = 1;
STRS_TimeWarp refbase, refkind, tgtbase, tgtkind;

rtn = STRS_GetTime(fromWF,refDev, refbase, kRef, refkind);
rtn = STRS_GetTime(fromWF,tgtDev, tgtbase, kTgt, tgtkind);
STRS_TimeWarp initial_difference = refkind – tgtkind;

while(TRUE)
{
 STRS_Sleep(fromWF, defDev, STRS_DEFAULT_CLOCK_KIND,

POLL_INTERVAL, false);
 rtn = STRS_GetTime(fromWF, refDev, refbase, kRef,
refkind);
 rtn = STRS_GetTime(fromWF, tgtDev, tgtbase, kTgt, tgtkind);
 STRS__TimeWarp drift = (refkind – tgtkind) –
 initial_difference;
 STRS_TimeAdjust tRate = drift * FEEDBACK_COEFFICIENT;

 rtn = STRS_SetTimeAdjust(fromWF, tgtDev, tRate);
}

7.86 STRS-86 STRS_GetTimeWarp

Requirement The STRS infrastructure shall contain a callable STRS_GetTimeWarp

method as described in table 69, STRS_GetTimeWarp().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

109 of 148

Verification Method Inspection using STRS compliance tool.
See Also STRS_GetNanoseconds, STRS_GetSeconds, STRS_SetTime
Example STRS_TimeWarp delta; 

STRS_Seconds isec = 1; /* Leap second. */ 
STRS_Nanoseconds nsec = 0; 
delta = STRS_GetTimeWarp(isec,nsec);

7.87 STRS-87 STRS_SetTime

Requirement The STRS infrastructure shall contain a callable STRS_SetTime method as

described in table 70, STRS_SetTime().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_GetTime, STRS_GetTimeWarp
Example STRS_TimeWarp delta;

STRS_Seconds isec = 1; /* Leap second */
STRS_Nanoseconds nsec = 0;
STRS_Result rtn;
STRS_HandleID fromWF = APP_GetHandleID();
STRS_Clock_Kind k1 = 1;
delta = STRS_GetTimeWarp(isec,nsec);
rtn = STRS_SetTime(fromWF,toDev,k1,delta);

7.88 STRS-88 STRS_TimeSynch

Requirement The STRS infrastructure shall contain a callable STRS_TimeSynch method

as described in table 73, STRS_TimeSynch().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

110 of 148

Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

qref = STRS_HandleRequest(fromWF,”ReferenceClock”);
iref = 0;
qtgt = STRS_HandleRequest(fromWF,”TargetClock”);
itgt = 0;
// To use previous technique, step max is
// defined as jump = 0.
STRS_TimeWarp jump = STRS_GetTimeWarp(0,0);
rtn = STRS_TimeSynch(fromWF,qref,iref,qtgt,itgt,

jump);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 “STRS_ Synch fails.”);
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 “STRS_ Synch fails.”, nb);
}

7.89 STRS-89 Provide STRS.h

Requirement The STRS platform provider shall provide an STRS.h file containing the

STRS predefined data shown in table 74, STRS Predefined Data.
Rationale For portability, standard names are defined for various constants and data

types.
Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using OE script and using STRS compliance tool.

7.90 STRS-90 Provide POSIX®

Requirement The STRS OE shall provide the interfaces described in POSIX® IEEE

Standard 1003.13 profile PSE51.
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. Rather than creating
many more APIs in STRS, the currently available POSIX® standard was
selected. Thus POSIX® subsets were chosen to implement certain OS
services missing from the list of STRS Application-provided methods. The
POSIX® subsets are widely available, are implemented by multiple OSs, and
are scalable. Layering of the architecture separates and encapsulates

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

111 of 148

functionality so that the parts are less influenced by changes to the other. This
separation of functionality promotes portability.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection

7.91 STRS-91 Use POSIX®

Requirement STRS applications shall use POSIX® methods except for the unsafe

functions listed in table 77, Replacements for Unsafe Functions.

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. Rather than creating
many more APIs in STRS, the currently available POSIX® standard was
selected. Thus POSIX® subsets were chosen to implement certain OS
services missing from the list of STRS Application-provided methods. The
POSIX® subsets are widely available, are implemented by multiple OSs, and
are scalable. Layering of the architecture separates and encapsulates
functionality so that the parts are less influenced by changes to the other. This
separation of functionality promotes portability.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes Table 2, STRS Architecture Standard, Table 77, Replacements for Unsafe

Functions, is a copy of table 77 of NASA-STD-4009A cited in the
requirement.

Verification Method Inspection using STRS compliance tool.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

112 of 148

Table 2—STRS Architecture Standard, Table 77,
Replacements for Unsafe Functions

Unsafe Function

Do Not Use!
Reentrant Counterpart

OK to Use
abort STRS_AbortApp
asctime asctime_r
atexit -
ctermid ctermid_r
ctime ctime_r
exit STRS_AbortApp
getlogin getlogin_r
gmtime gmtime_r
localtime localtime_r
rand rand_r
readdir readdir_r
strtok strtok_r
tmpnam tmpnam_r

7.92 STRS-92 Document HAL

Requirement The STRS platform provider shall provide STRS platform HAL

documentation that includes the following:

(1) For each method or function, its calling sequence, return values, an
explanation of its functionality, any preconditions for using the
method or function, and the postconditions after using the method or
function.

(2) Information required to address the underlying hardware, including
interrupt input and output, memory mapping, and the configuration
data necessary to operate in the STRS platform environment.

Rationale The HAL API is to be published so that specialized hardware made by one
company may be integrated with the STRS infrastructure made by a different
company.
The HAL API documentation is to include a description of each method or
function used, including its calling sequence, return values, an explanation of
its functionality, any preconditions before using the method/function, and the
status after using the method or function.
The HAL API documentation is to also contain information about the
underlying hardware such as address and data interfaces, interrupt input and
output, power connections, plus other control and data lines necessary to
operate in the STRS platform environment.

Category Reconfigurability, Adaptability, Extensibility
Traced-from 4.4, 4.5, 4.7, 4.8, 5.1, 5.2
Use Case None

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

113 of 148

Applicable to Platform
Notes See STRS-11
Verification Method Inspection of HAL document.
Example HAL API RESULT OPEN(HANDLE* resourceHandle,

RESOURCE_NAME resourceName)
Description Open a resource by name. If no errors are encountered, use the

resourceHandle to access the resource.
Parameters • resourceHandle - [out] A pointer to place the opened

handle into
• resourceName - [in] The name of the resource to open

Return A 32-bit signed integer used to determine whether an error has
occurred. Use TEST_ERROR to obtain a printable message.

• Zero - No errors or warnings.
• Positive – Warning.
• Negative – Error.

Precondition Resource is not open before executing this command.
Postcondition Resource will be open and ready for further access if no error

was encountered.
See Also READ, WRITE, CLOSE, TEST_ERROR
Example #include <HALResources.h>

 …
RESULT result;
HANDLE resourceHandle;
RESOURCE_NAME resourceName = "FPGA";
result = OPEN(&resourceHandle, resourceName)
if (result < 0) {
 cout << "Error: " << TEST_ERROR(result) << endl;
} else if (result > 0) {
 cout << "Warning: " << TEST_ERROR(result) << endl;
}

7.93 STRS-93 OE Uses HAL (Deleted)

Rationale This requirement was deleted because it was the same as STRS-11. STRS-11

stated the same thing, with only a few words different, so STRS-93 was
redundant. STRS-93 previously stated: The STRS infrastructure shall use the
HAL APIs to communicate with the specialized hardware via the physical
interface defined by the STRS platform provider.

7.94 STRS-94 External Commands

Requirement An STRS platform shall accept, validate, and respond to external commands.
Rationale To adapt to changing circumstances, an STRS radio has to accept external

commands from a ground station, another satellite, or another system on the
same satellite. The external commands have to be validated as required by the

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

114 of 148

mission. There has to be a way to determine whether or not the command
worked and, for some commands, the resulting values.

Category Adaptability
Traced-from 4.5, 5.4, 5.15
Use Case Waveform Upload, STRS OE Upload, Waveform Instantiation, Waveform

Start, Processor Resource Sharing with Flight Computer, Set Waveform
Parameter, Get Waveform Parameter, Transmit a Packet, Receive a Packet,
Waveform Stop, Waveform Deallocation, Waveform Abort, Waveform
Remove, Built-In-Test

Applicable to OE developer: usually platform provider
Notes None
Verification Method Observation of radio operation.

7.95 STRS-95 Use STRS APIs

Requirement An STRS platform shall execute external application control commands

using the standardized STRS APIs.
Rationale To promote portability and adaptability, the use of the standard STRS APIs

is required. One waveform should be able to control another waveform or
device in a portable manner.

Category Portability, Adaptability
Traced-from 4.1, 4.2, 4.3, 4.5, 4.9, 5.1, 5.2, 5.4, 5.6, 5.7
Use Case Waveform Upload, STRS OE Upload, Waveform Instantiation, Waveform

Start, Processor Resource Sharing with Flight Computer, Set Waveform
Parameter, Get Waveform Parameter, Transmit a Packet, Receive a Packet,
Waveform Stop, Waveform Deallocation, Waveform Abort, Waveform
Remove, Built-In Test

Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection using STRS compliance tool.

7.96 STRS-96 Use STRS_Query

Requirement The STRS infrastructure shall use the STRS_Query method to service

external system requests for information from an STRS application.
Rationale The only way to request information from an application is by means of data

values returned when an application method is invoked. The
STRS_Query/APP_Query methods are designed for this purpose. Although
STRS_RunTest/APP_RunTest could be used to request data values, they are
designed for testing.

Category Adaptability, Extensibility
Traced-from 4.4, 4.5, 5.1, 5.2

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

115 of 148

Use Case Get Waveform Parameter
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection

7.97 STRS-97 Use STRS_Log (Deleted)

Rationale This requirement was deleted because it was the same as STRS-57. STRS-97

previously stated: An STRS application shall use the STRS_Log and
STRS_Write methods to send STRS telemetry set information to the external
system. STRS-97 was less clear than STRS-57 because STRS-97 involved
the external interface, not just the application to infrastructure call. Also, in
some implementations, the application telemetry may not be sent directly to
the external interface but may be sent to a file from which the telemetry may
be downloaded as necessary.

7.98 STRS-98 Document Platform for XML (Project Option)

Requirement (Optional, OE-specific) The STRS platform provider shall document the

necessary platform information (including a sample file) to develop a
predeployed application configuration file in XML 1.0.

Rationale When functions, interfaces, components, and/or design rules are defined and
published, the architecture is open. Open architectures facilitate
interoperability among commercial and government developers and minimize
the operational impact of upgrading hardware and software components.
Leveraging the existing XML standard may reduce NASA’s costs and risks
by increasing reliability.

Category Reconfigurability, Adaptability, Extensibility
Traced-from 4.2, 4.4, 4.5, 4.7, 5.2, 5.4
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection of document and sample file.

7.99 STRS-99 Document WF for XML (Deleted)

Rationale This requirement was deleted because it is redundant. This requirement is

replaced by STRS-12 (3). STRS-99 previously stated: The STRS application
developer shall document the necessary application information to develop a
predeployed application configuration file in XML 1.0.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

116 of 148

7.100 STRS-100 Provide XML File (Project Option)

Requirement (Optional, OE-specific) The STRS integrator shall provide a predeployed

application configuration file in XML 1.0.
Rationale A waveform (STRS application) configuration file contains specific

information that (1) allows STRS to instantiate the application; (2) provides
default configuration values; and (3) provides connection references to ports
and services needed by the application. The format of the configuration files
has to be defined in XML using an XML schema. The XML should be
preprocessed to optimize space in the STRS radio memory while keeping the
equivalent content. Examples include platform configuration files, STRS
infrastructure configuration files as a XML schema, and waveform
configuration files that contain specific information that allows STRS to
instantiate the application, provide default configuration values, and provide
connection references to ports and services needed by the application.
Leveraging the existing XML standard may reduce NASA’s costs and risks
by increasing reliability.

Category Reconfigurability
Traced-from
Use Case

4.7, 5.3, 5.4
None

Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection using XMLSpy.

7.101 STRS-101 XML Content (Project Option)

Requirement (Optional, OE-specific) The predeployed STRS application configuration file

shall identify the following application attributes and default values:
(1) Identification.

A. Class name.
(2) State after processing the configuration file or equivalent.
(3) Any resources to be loaded separately.

A. Filename of loadable image.
B. Target on which to put loadable image file.
C. Target memory in bytes, number of gates, or logic elements.

(4) Initial or default values for all distinct operationally configurable
parameters.

Rationale A waveform (STRS application) configuration file contains specific
information that (1) allows STRS to instantiate the application; (2) provides
default configuration values; and (3) provides connection references to ports
and services needed by the application. The format of the configuration files
has to be defined in XML using an XML schema. The XML should be

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

117 of 148

preprocessed to optimize space in the STRS radio memory while keeping the
equivalent content. Examples include platform configuration files, STRS
infrastructure configuration files as a XML schema, and waveform
configuration files that contain specific information that allows STRS to
instantiate the application, provide default configuration values, and provide
connection references to ports and services needed by the application.

Category Reconfigurability
Traced-from 5.4
Use Case None

Applicable to Application developer
Notes None
Verification Method Inspection of delivered files and documentation.

7.102 STRS-102 Provide XML Schema (Project Option)

Requirement (Optional, OE-specific) The STRS platform provider shall provide an XML

1.0 schema definition (XSD) file to validate the format and data for
predeployed STRS application configuration files, including the order of the
tags, the number of occurrences of each tag, and the values or attributes.

Rationale A waveform (STRS application) configuration file contains specific
information that (1) allows STRS to instantiate the application; (2) provides
default configuration values; and (3) provides connection references to ports
and services needed by the application. The format of the configuration files
has to be defined in XML using an XML schema. Since the term XML
schema was variously interpreted to mean either a description or a file, the
requirement was clarified to specify that an XML schema definition (XSD)
file is required. The XML should be preprocessed to optimize space in the
STRS radio memory while keeping the equivalent content. Examples include
platform configuration files, STRS infrastructure configuration files as a
XML schema, and waveform configuration files that contain specific
information that allows STRS to instantiate the application, provide default
configuration values, and provide connection references to ports and services
needed by the application. Leveraging the existing XML standard may reduce
NASA’s costs and risks by increasing reliability.

Category Reliability
Traced-from 4.3, 4.7, 5.3, 5.4
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection using XMLSpy.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

118 of 148

7.103 STRS-103 Provide XML Transformation Tool (Project Option)

Requirement (Optional, OE-specific) The STRS platform provider shall document the

transformation (if any) from a predeployed application configuration file in
XML into a deployed application configuration file and provide the tools to
perform such transformation.

Rationale A waveform (STRS application) configuration file contains specific
information that (1) allows STRS to instantiate the application; (2) provides
default configuration values; and (3) provides connection references to ports
and services needed by the application. The format of the configuration files
has to be defined in XML using an XML schema. The XML should be
preprocessed to optimize space in the STRS radio memory while keeping the
equivalent content. Examples include platform configuration files, STRS
infrastructure configuration files as an XML schema, and waveform
configuration files that contain specific information that allows STRS to
instantiate the application, provide default configuration values, and provide
connection references to ports and services needed by the application.

Category Reconfigurability, Adaptability, Extensibility
Traced-from 4.4, 4.5, 5.2, 5.3, 5.4
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection of document and tools.

7.104 STRS-104 Provide XML Transformed (Project Option)

Requirement (Optional, OE-specific) The STRS integrator shall provide a deployed STRS

application configuration file for the STRS infrastructure to place the STRS
application in the specified state.

Rationale A waveform (STRS application) configuration file contains specific
information that (1) allows STRS to instantiate the application; (2) provides
default configuration values; and (3) provides connection references to ports
and services needed by the application. The format of the configuration files
has to be defined in XML using an XML schema. The XML should be
preprocessed to optimize space in the STRS radio memory while keeping the
equivalent content. Examples include platform configuration files, STRS
infrastructure configuration files as an XML schema, and waveform
configuration files that contain specific information that allows STRS to
instantiate the application, provide default configuration values, and provide
connection references to ports and services needed by the application.

Category Reconfigurability
Traced-from 5.4
Use Case None
Applicable to OE developer: usually platform provider

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

119 of 148

Notes None
Verification Method Inspection of delivered files and documentation.

7.105 STRS-105 OE Provides API in C

Requirement The STRS infrastructure APIs shall have an ISO/IEC C language compatible

interface.
Rationale Because portability is a basic goal but middleware is not required, a totally

language-independent solution was not available. The lowest common
denominator turns out to be a C language interface. Using a standard
ISO/IEC 9899 C or ISO/IEC 14882 C++ aids portability. The year is not
included in the requirement, so that obsolete compilers are not mandated.

Category Portability
Traced-from 4.1, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection using STRS compliance tool.

7.106 STRS-106 Use STRS.h

Requirement An STRS application shall use the appropriate constant, typedef, or struct

defined in table 74, STRS Predefined Data, when the data are used to interact
with the STRS APIs.

Rationale For portability, standard names are defined for various constants and data
types.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection

7.107 STRS-107 Document External Commands

Requirement An STRS platform provider shall document the external commands

describing their format, function, and any STRS methods invoked.
Rationale To adapt to changing circumstances, an STRS radio has to accept external

commands from a ground station, another satellite, or another system on the
same satellite. The external commands have to be validated as required by the
mission. There has to be a way to determine whether the command worked

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

120 of 148

and, for some commands, the resulting values. To promote portability and
adaptability, the use of the standard STRS APIs is required.

Category Adaptability
Traced-from 4.5, 5.1, 5.4, 5.5, 5.6, 5.7, 5.15
Use Case Waveform Upload, STRS OE Upload, Waveform Instantiation, Waveform

Start, Processor Resource Sharing with Flight Computer, Set Waveform
Parameter, Get Waveform Parameter, Transmit a Packet, Receive a Packet,
Waveform Stop, Waveform Deallocation, Waveform Abort, Waveform
Remove, Built-In-Test

Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection of documentation.

7.108 STRS-108 Document Thermal and Power Limits

Requirement The STRS platform provider shall describe, in the HID document, the

thermal and power limits of the hardware at the smallest modular level to
which power is controlled.

Rationale The power consumption and resulting heat generation of a reprogrammable
FPGA will vary according to the amount of logic used and the clock
frequency(s). The power consumption may not be constant for each possible
waveform that can be loaded on the platform. The STRS platform provider
should document the maximum allowable power available and thermal
dissipation of the FPGA(s) on the basis of the maximum allowable thermal
constraints of FPGA(s) of the platform. For human spaceflight environments,
touch temperature requirements may limit dissipation further; therefore, these
reductions are to be factored into the given dissipation limits.

Category Reliability, Adaptability
Traced-from 4.3, 4.7, 5.9, 5.10, 5.15, 5.16
Use Case None
Applicable to Platform provider
Notes See also STRS-9
Verification Method Inspection of HID document.

7.109 STRS-109 Provide General-Purpose Processing Module

Requirement An STRS platform shall have a GPM that contains and executes the STRS

OE and the control portions of the STRS applications and services software.

Rationale The GPM contains and executes the STRS OE, including POSIX®, STRS
interface code, and configuration file parsing, to support the corresponding
requirements. A layered hardware architecture augments the layered software

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

121 of 148

architecture by providing the ability to change portions without affecting
other portions to support extensibility, adaptability, and portability.

Category Portability, Adaptability
Traced-from 4.3, 4.4, 4.5, 4.6, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Platform provider
Notes None
Verification Method Inspection

7.110 STRS-110 Provide STRS_APIs.h

Requirement The STRS platform provider shall provide an “STRS_APIs.h” that contains

the method prototypes for the infrastructure APIs.
Rationale For portability, standard names are defined for various constants, data types,

and method prototypes in the API.
Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection

7.111 STRS-111 Include STRS_DeviceControl.h

Requirement Each STRS Device shall contain:

 #include "STRS_DeviceControl.h".
Rationale For portability, standard names are defined for various constants, data types,

and method prototypes in the API.
Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes None
Verification Method Inspection using STRS compliance tool.

7.112 STRS-112 Provide STRS_DeviceControl.h

Requirement The STRS platform provider shall provide an “STRS_DeviceControl.h” that

contains the method prototypes for each STRS Device and, for C++, the class

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

122 of 148

definition for the base class STRS_DeviceControl, which inherits from the
base class STRS_ApplicationControl.

Rationale For portability, standard names are defined for various constants, data types,
and method prototypes in the API.

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes None
Verification Method Inspection
Example None

7.113 STRS-113 STRS_DeviceControl Base Class

Requirement If the STRS Device-provided Device Control API is implemented in C++, the

STRS Device class shall be derived from the STRS_DeviceControl base
class.

Rationale For portability, standard names are defined for various constants, data types,
and method prototypes in the API.

Category Portability
Traced-from 4.9, 5.1, 5.2
Use Case None
Applicable to Device
Notes None
Verification Method Inspection
Example For example, the MyDevice.h file should contain a class definition of the

form:
class MyDevice: public STRS_DeviceControl

[, public STRS_Source]
[, public STRS_Sink]

{…};
 Note: [] indicates optional.

7.114 STRS-114 APP_Destroy

Requirement Each STRS application shall contain a callable APP_Destroy method as

described in table 6, APP_Destroy().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

123 of 148

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also APP_Instance
Example (C) /* Not a class method */

/* Called in OE as: */
ClassName_APP_Destroy(thisPtr);

/* Implemented in application as: */
void ClassName_APP_Destroy(
 STRS_Instance *thisPtr)
{
 free thisPtr; /* Non-standard */
}

Example (C++) // Not a class method
void ClassName::APP_ Destroy (

STRS_Instance *Obj)
{
 delete static_cast<ClassName *>(Obj);
}

7.115 STRS-115 APP_GetHandleID

Requirement The STRS infrastructure shall define a callable APP_GetHandleID method in

each application as described in table 7, APP_GetHandleID().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

124 of 148

Example if (! STRS_IsOK(rtn)) {
 int nb = sprint(buffer,
 “I found the error in %s at %s:%d\0”,
 APP_GetHandleName(), __FILE__,

__LINE__);
 STRS_Log(APP_GetHandleID(),

STRS_GetErrorQueue(rtn), buffer, nb);
 return rtn;
}

7.116 STRS-116 APP_GetHandleName

Requirement The STRS infrastructure shall define a callable APP_GetHandleName

method in each application as described in table 8, APP_GetHandleName().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example if (! STRS_IsOK(rtn)) _

 int nb = sprint(buffer,
 “I found the error in %s at %s:%d\0”,
 APP_GetHandleName(), __FILE__,

__LINE__);
 STRS_Log(APP_GetHandleID(),

STRS_GetErrorQueue(rtn), buffer, nb);
 return rtn;
}

7.117 STRS-117 STRS_GetHandleName

Requirement The STRS infrastructure shall contain a callable STRS_GetHandleName

method as described in table 29, STRS_GetHandleName().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

125 of 148

Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_HandleRequest
Example char toResourceName[STRS_MAX_HANDLE_NAME_SIZE+1];

STRS_HandleID fromWF = APP_GetHandleID();
STRS_Result rtn = STRS_GetHandleName(fromWF,

toID,
toResourceName);

If (! STRS_IsOK(rtn)) {
 STRS_HandleID errQ =

STRS_GetErrorQueue(rtn);
STRS_Buffer_Size nb = strlen(

"Did not find handle name.");
STRS_Log(fromWF,errQ,

"Did not find handle name.", nb);
} else {

std::cout << "Found Handle name "
<< toResourceName << " for ID "

 << toID << std::endl;
}

7.118 STRS-118 STRS_ValidateHandleID

Requirement The STRS infrastructure shall contain a callable STRS_ValidateHandleID

method as described in table 34, STRS_ValidateHandleID ().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_HandleRequest, STRS_FileOpen, STRS_InstantiateApp,

STRS_MessageQueueCreate, STRS_PubSubCreate, STRS_IsOK

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

126 of 148

Example STRS_HandleID tstID =
 STRS_HandleRequest(fromID, otherWF);
STRS_Result rtn = STRS_ValidateHandleID(tstID);
If (! STRS_IsOK(rtn)) {

STRS_Message msg = “Handle ID error.”;
STRS_HandleID errQ = STRS_GetErrorQueue(rtn);
STRS_Log (fromID, errQ, msg, (STRS_Buffer_Size)

sizeof(msg));
} else {

cout << “OK.” << endl;
}

7.119 STRS-119 STRS_ValidateSize

Requirement

The STRS infrastructure shall contain a callable STRS_ValidateSize method
as described in table 35, STRS_ValidateSize ().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_FileGetFreeSpace, STRS_FileGetSize, STRS_IsOK

Example STRS_File_Size tstSize =
 STRS_FileGetFreeSpace(fromID, NULL);
STRS_Result rtn = STRS_ValidateSize(tstSize);
If (! STRS_IsOK(rtn)) {

STRS_Message msg = “File size error.”;
STRS_HandleID errQ = STRS_GetErrorQueue(rtn);
STRS_Log (fromID, errQ, msg, (STRS_Buffer_Size)

sizeof(msg));
} else {

cout << “OK.” << endl;
}

7.120 STRS-120 DEV_Close

Requirement If the hardware is to be loaded by the STRS Device, the STRS Device shall

contain a callable DEV_Close method as described in table 45,
DEV_Close().

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

127 of 148

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Device
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using compliance tool.
See Also STRS_DeviceClose
Example STRS_Result DEV_Close() {

STRS_Result rtn = STRS_OK;
int ok = HAL_Close(myDev);
if (! HAL_Successful(ok)) {
 STRS_HandleID fromWF = APP_GetHandleID();
 STRS_Buffer_Size nb = strlen(

 "DEV_Close fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DEV_Close fails.", nb);
rtn = STRS_ERROR;

}
return rtn;

}

7.121 STRS-121 DEV_Flush

Requirement If the hardware is to be flushed by the STRS Device, the STRS Device shall

contain a callable DEV_Flush method as described in table 46, DEV_Flush().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Device
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_DeviceFlush

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

128 of 148

Example STRS_Result DEV_Flush() {
STRS_Result rtn = STRS_OK;
int ok = HAL_Flush(myDev);
if (! Hal_Successful(ok)){
 STRS_HandleID fromWF = APP_GetHandleID();
 STRS_Buffer_Size nb = strlen(

 "DEV_Flush fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,

 "DEV_Flush fails.", nb);
rtn = STRS_ERROR;

}
return rtn;

}

7.122 STRS-122 DEV_Load

Requirement If the hardware is to be loaded by the STRS Device, the STRS Device shall

contain a callable DEV_Load method as described in table 47, DEV_Load().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Device
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using compliance tool.
See Also STRS_DeviceLoad
Example STRS_Result DEV_Load(char *fileName) {

STRS_Result rtn = STRS_OK;
int ok = HAL_Load(myDev,fileName);
if (! Hal_Successful(ok)){
 STRS_HandleID fromWF = APP_GetHandleID();

STRS_Buffer_Size nb = strlen(
 "DEV_Load fails.");

STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DEV_Load fails.", nb);

rtn = STRS_ERROR;
}
return rtn;

}

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

129 of 148

7.123 STRS-123 DEV_Open

Requirement If the hardware is to be loaded by the STRS Device, the STRS Device shall

contain a callable DEV_Open method as described in table 48, DEV_Open().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Device
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_DeviceOpen
Example STRS_Result DEV_Open() {

STRS_Result rtn = STRS_OK;
myDev = HAL_Open("/dev/fpga1", O_RDWR);
if (myDev != NULL) {

STRS_HandleID fromWF = APP_GetHandleID();
STRS_Buffer_Size nb = strlen(
 "DEV_Open fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DEV_Open fails.", nb);
rtn = STRS_ERROR;

}
return rtn;

}

7.124 STRS-124 DEV_Reset

Requirement If the hardware is to be reset by the STRS Device, the STRS Device shall

contain a callable DEV_Reset method as described in table 49, DEV_Reset().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Device
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_DeviceReset

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

130 of 148

Example STRS_Result DEV_Reset() {
STRS_Result rtn = STRS_OK;
int ok = HAL_Reset(myDev);
if (! Hal_Successful(ok)){
 STRS_HandleID fromWF =APP_GetHandleID();
 STRS_Buffer_Size nb = strlen(

 "DEV_Reset fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DEV_Reset fails.", nb);
rtn = STRS_ERROR;

}
return rtn;

}

7.125 STRS-125 DEV_Unload

Requirement If the hardware is to be loaded by the STRS Device, the STRS Device shall

contain a callable DEV_Unload method as described in table 50,
DEV_Unload().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case Waveform Deallocation
Applicable to Device
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_DeviceUnload
Example STRS_Result DEV_Unload() {

STRS_Result rtn = STRS_OK;
int ok = HAL_Unload(myDev);
if (! Hal_Successful(ok)){
 STRS_HandleID fromWF =APP_GetHandleID();

STRS_Buffer_Size nb = strlen(
"DEV_Unload fails.");

STRS_Log(fromWF, STRS_ERROR_QUEUE,
"DEV_Unload fails.", nb);

rtn = STRS_ERROR;
}
return rtn;

}

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

131 of 148

7.126 STRS-126 STRS_MessageQueueCreate

Requirement The STRS infrastructure shall contain a callable STRS_MessageQueueCreate

method as described in table 58, STRS_ MessageQueueCreate().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Buffer_Size nbmax =
 STRS_MAX_LOG_MESSAGE_SIZE+1;
STRS_Queue_Max_Messages nmsgmax = 20;
if (nmsgmax > STRS_MAX_QUEUE_MESSAGES)
 nmsgmax = STRS_MAX_QUEUE_MESSAGES;
STRS_HandleID qX = STRS_MessageQueueCreate(fromWF,
 "QX", nbmax, nmsgmax);
STRS_Result rtn = STRS_ValidateHandleID(qX);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "Can’t create queue.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can't create queue.", nb).
 return STRS_ERROR;

}

7.127 STRS-127 STRS_MessageQueueDelete

Requirement The STRS infrastructure shall contain a callable STRS_MessageQueueDelete

method as described in table 59, STRS_ MessageQueueDelete().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

132 of 148

Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn =
 STRS_MessageQueueDelete(fromWF,qX);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "Can't delete queue.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can’t delete queue.", nb);
 return STRS_ERROR;
}

7.128 STRS-128 STRS_PubSubCreate

Requirement The STRS infrastructure shall contain a callable STRS_PubSubCreate method

as described in table 60, STRS_PubSubCreate().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_Register
Example STRS_HandleID psX;

STRS_HandleID fromWF = APP_GetHandleID();
psX = STRS_PubSubCreate(fromWF, "PSX");
STRS_Result rtn = STRS_ValidateHandleID(psX);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "Can’t create Pub/Sub.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can't create Pub/Sub.", nb).
 return STRS_ERROR;
}

7.129 STRS-129 STRS_PubSubDelete

Requirement The STRS infrastructure shall contain a callable STRS_PubSubDelete

method as described in table 61, STRS_PubSubDelete().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

133 of 148

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_Result rtn = STRS_PubSubDelete(fromWF,psX);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "Can't delete Pub/Sub.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can’t delete Pub/Sub.", nb);
}

7.130 STRS-130 Document STRS Clock/Timer

Requirement The implementer of an STRS clock/timer software component for use with

STRS_GetTime shall document it to include handle name, kind, epoch,
resolution, use of leap seconds, and whether it should match a time
somewhere else, as further described in table 64, Document STRS
Clock/Timer.

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to

STRS clock/timer developer, which may be platform provider or application
developer.

Notes None
Verification Method Inspection

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

134 of 148

Example Sample documentation:
Clock/timer Name Monotonic from Power On
Clock/timer Handle name sysTime
Clock/timer Base Same as kind = 0
 Purpose Be synch-able to flight computer.
 Epoch Power On
 Resolution 100 microseconds
 Leap Seconds None
 Matches None
Clock/timer kind 1
 Purpose Keep up with other computers in the

system. Timestamp.
 Epoch 1/1/1970 GMT
 Resolution Same
 Leap Seconds None
 Matches System time

7.131 STRS-131 STRS_GetTimeAdjust

Requirement The STRS infrastructure shall contain a callable STRS_GetTimeAdjust

method as described in table 68, STRS_GetTimeAdjust().

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.

Verification Method Inspection using STRS compliance tool.
See Also STRS_SetTimeAdjust
Example STRS_HandleID fromWF = APP_GetHandleID();

STRS_HandleID clkDev = STRS_HandleRequest(fromWF,
 "Name of clock observed");
STRS_TimeAdjust tRate;
tRate = STRS_GetTimeAdjust(fromWF, clkDev);
STRS_TimeWarp drift = tRate / FEEDBACK_COEFFICIENT;

7.132 STRS-132 STRS_SetTimeAdjust

Requirement The STRS infrastructure shall contain a callable STRS_SetTimeAdjust method as

described in table 71, STRS_SetTimeAdjust().

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

135 of 148

Rationale For an open architecture to support portability, the architecture has to be standardized
across platforms and implementations. In particular, waveform applications and services
have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Applicable to OE developer: usually platform provider
Use Case None
Notes The table in the requirement is in NASA-STD-4009A.
Verification
Method

Inspection using STRS compliance tool.

See Also STRS_GetTimeAdjust
Example STRS_Result rtn;

STRS_HandleID fromWF = APP_GetHandleID();
STRS_HandleID refDev = STRS_HandleRequest(fromWF,

”Name of Reference clock”);
STRS_HandleID tgtDev = STRS_HandleRequest(fromWF,

”Name of drifting clock”);
STRS_HandleID defDev = STRS_HandleRequest(fromWF,

STRS_DEFAULT_CLOCK_NAME);
STRS_Clock_Kind kRef = 1;
STRS_Clock_Kind kTgt = 1;
STRS_TimeWarp refbase, refkind, tgtbase, tgtkind;

rtn = STRS_GetTime(fromWF, refDev, refbase, kRef,
 refKind);
rtn = STRS_GetTime(fromWF, tgtDev, tgtbase, kTgt,
 tgtkind);
STRS_TimeWarp initial_difference = refkind – tgtkind;

while(TRUE)
{
 STRS_Sleep(fromWF, defDev, STRS_DEFAULT_CLOCK_KIND,

POLL_INTERVAL, false);

 rtn = STRS_GetTime(fromWF, refDev, refbase,
 kRef, refkind);
 rtn = STRS_GetTime(fromWF, tgtDev, tgtbase,
 kTgt, tgtkind);
 STRS_TimeWarp drift = (refkind – tgtkind) –
 initial_difference;
 STRS_TimeAdjust tRate = drift *
FEEDBACK_COEFFICIENT;
 rtn = STRS_SetTimeAdjust(fromWF, tgtDev,tRate);
}

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

136 of 148

7.133 STRS-133 STRS_Sleep

Requirement The STRS infrastructure shall contain a callable STRS_Sleep method as

described in table 72, STRS_Sleep().
Rationale For an open architecture to support portability, the architecture has to be

standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE developer: usually platform provider
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection using STRS compliance tool.
See Also STRS_GetTimeWarp
Example STRS_TimeWarp delta;

STRS_Seconds isec = 1;
STRS_Nanoseconds nsec = 0;
delta = STRS_GetTimeWarp(isec,nsec);
STRS_Result ret = STRS_ERROR;
ret = STRS_Sleep(fromID, clockID, 0, delta, false);
// Let’s try again with absolute time.
STRS_TimeWarp nowT, nowK;
ret = STRS_GetTime(fromID,clockID,nowt,0,nowK);
isec += STRS_GetSeconds(nowT);
nsec += STRS_GetNanoseconds(nowT);
nowK = STRS_GetTimeWarp(isec,nsec);
ret = STRS_Sleep(fromID, clockID, 0, nowK, true);

7.134 STRS-134 STRS Platform Queryable Parameters

Requirement The STRS infrastructure shall have the queryable parameter names in table

75 for which values may be obtained using STRS_Query with the handle ID
corresponding to the handle name STRS_OE_HANDLE_NAME.

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to OE
Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection and Test.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

137 of 148

Example STRS_Result rtn;
STRS_HandleID fromWF = APP_GetHandleID();
char name1[] = "STRS_OE_VERSION";
char value1[STRS_MAX_PROPERTY_VALUE_SIZE+1];
char name2[] = "STRS_PLATFORM_PROVIDER ";
char value2[STRS_MAX_PROPERTY_VALUE_SIZE+1];
STRS_HandleID oeID =
 STRS_HandleRequest(fromWF,STRS_OE_HANDLE_NAME);
rtn = STRS_ValidateHandleID(oeID);
if (STRS_IsOK(rtn)) {
 rtn = STRS_Query(fromWF, oeID, name1, value1,
 STRS_MAX_PROPERTY_VALUE_SIZE);
 if (STRS_IsOK(rtn)) {
 print ("%s = %s\n", name1,value1);
 } else {
 print("STRS_Query OE error: %s\n",
 name1);
 }
 rtn = STRS_Query(fromWF, oeID, name2, value2,
 STRS_MAX_PROPERTY_VALUE_SIZE);
 if (STRS_IsOK(rtn)) {
 print ("OK: %s = %s\n", name2, value2);
 } else {
 print("STRS_Query OE error: %s\n",
 name2);
 }

} else {
 // ERROR
 print(
 "STRS_HandleRequest did not work
 for %s.\n",STRS_OE_HANDLE_NAME);
 return STRS_ERROR;

}

7.135 STRS-135 STRS Application Queryable Parameters

Requirement An STRS application shall have the queryable parameter names in table 76

for which values may be obtained using STRS_Query with the handle ID of
the application.

Rationale For an open architecture to support portability, the architecture has to be
standardized across platforms and implementations. In particular, waveform
applications and services have to use standard interfaces across all platforms.

Category Portability
Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2
Use Case None
Applicable to Application developer

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

138 of 148

Notes The table in the requirement is in NASA-STD-4009A.
Verification Method Inspection and Test.
Example STRS_Result rtn;

STRS_HandleID fromWF = APP_GetHandleID();
char name1[] = "STRS_APP_VERSION";
char value1[STRS_MAX_PROPERTY_VALUE_SIZE+1];
char name2[] = " STRS_APP_DEVELOPER";
char value2[STRS_MAX_PROPERTY_VALUE_SIZE+1];
char name3[] = “STRS_APP_STATE”;
char value3[STRS_MAX_PROPERTY_VALUE_SIZE+1];
STRS_HandleID wfID =
 STRS_HandleRequest(fromWF,”WF1”);
rtn = STRS_ValidateHandleID(wfID);
if (STRS_IsOK(rtn)) {
 rtn = STRS_Query(fromWF, wfID, name1, value1,
 STRS_MAX_PROPERTY_VALUE_SIZE);
 if (STRS_IsOK(rtn)) {
 print ("OK: %s = %s\n", name1,value1);
 } else {
 print("STRS_Query WF error: %s\n",
 name1);
 }
 rtn = STRS_Query(fromWF, wfID, name2, value2,
 STRS_MAX_PROPERTY_VALUE_SIZE);
 if (STRS_IsOK(rtn)) {
 print (OK: "%s = %s\n", name2, value2);
 } else {
 print("STRS_Query WF error: %s\n",
 name2);
 }
 rtn = STRS_Query(fromWF, wfID, name3, value3,
 STRS_MAX_PROPERTY_VALUE_SIZE);
 if (STRS_IsOK(rtn)) {
 print ("OK: %s = %s\n", name3, value3);
 } else {
 print("STRS_Query WF error: %s\n",
 name3);
 }

} else {
 // ERROR
 print(
 "STRS_HandleRequest did not work for %s.\n",
 “WF1”);
 return STRS_ERROR;
}

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

139 of 148

APPENDIX A

EXAMPLE CONFIGURATION FILES

A.1 STRS Platform Configuration File Hardware Example

Appendix A introduces examples of platform and application configuration files, necessary for
application execution and platform initialization. Appendix A also describes example
configuration file formats. STRS configuration files contain platform- and application-specific
information for the customization of installed applications. These examples are not required
formats. They are intended to illustrate some considerations that STRS platform providers and
STRS application developers should take into account when designing their configuration file
formats.

An example of the format of the portion of an STRS platform configuration file that deals with
hardware is implemented in an XML schema. This format is shown in figure 14, Example of
Hardware Portion of STRS Platform Configuration File.

Figure 14—Example of Hardware Portion of STRS Platform Configuration File

For any GPP, the memory size and memory location should be specified in bytes. Rationale for
International Standard—Programming Languages—C states the following:

(1) “All objects in C must be representable as a contiguous sequence of bytes, each of
which is at least 8 bits wide.”

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

140 of 148

(2) “Any object can be treated as an array of characters, the size of which is given by
the sizeof operator with that object’s type as its operand.”

(3) “It is fundamental to the correct usage of functions, such as malloc and fread that
sizeof(char) be exactly one.”

Therefore, for consistency across C and C++ implementations, bytes are used.

MODULE list A list of hardware modules having memory able to contain data and executable software.

• MODULENAME The unique name for each hardware module accessible from the current GPP. The
current GPP is denoted by SELF.

• MODULETYPE The name of the hardware type. The hardware module types may be GPP, RF,
FPGA, DSP, ASIC, and so forth.

• MEMORY list A list of memory areas of various types. See below for further information.

o MEMORYTYPE Memory type may be RAM, EEPROM, etc.
o MEMORYSIZE The number of memory units.
o MEMORYUNITS Memory units may be BYTES or GATES. For any GPP, the size is to be

in BYTES.
o MEMORYACCESS Memory access for the memory. Access may be READ, WRITE, or

BOTH.
• MEMORYMAP list This list provides the base addresses and memory size of regions of the current GPP

RAM (SELF) that are memory mapped to the module: that is, memory mapped to an
external device. There may be more than one item in the list when different parts of
memory are either not contiguous or are used for different purposes. See section A.2,
under DEVICE list, in ATTRIBUTE list, for memory offsets specific to the device
associated with a name.

o MEMORYBASENAME A unique identifier for the portion of memory mapped to the module.
o MEMORYBASEADDRESS The starting byte address reserved for memory mapping.
o MEMORYSIZE Number of bytes starting at the base address reserved for memory

mapping.
o MEMORYACCESS Memory access for the portion of memory mapped to the module.

Access may be READ, WRITE, or BOTH. The access defined here may
be different from the memory access defined in the previous section
when part of the memory is used for one purpose and another part is
used for a different purpose.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

141 of 148

A.2 STRS Platform Configuration File Software Example

An example of the format of the portion of an STRS platform configuration file that deals with
software is implemented in an XML schema. This format is shown in figure 15, Example of
Software Portion of STRS Platform Configuration File.

Figure 15—Example of Software Portion of STRS Platform Configuration File

FILE list A list of files to read, write, both, or append from multiple locations using a
handle ID.

• FILENAME Storage area name or fully qualified file name.
• FILETYPE The file type may be TEXT or BINARY.
• FILEACCESS The file access may be READ, WRITE, BOTH, or APPEND. BOTH implies

update: that is, READ and WRITE.
W_HANDLE list This is a list of unique STRS handle names and corresponding objects.
• HANDLENAME A unique shortened form of the Device, Waveform, Queue, Pub/Sub name to use

as a character identifier to be used in messages and for obtaining the handle ID.
• DEVICE OE-specific name to instantiate the device. A device is software that acts as a

proxy for some hardware connection.
• WAVEFORM OE-specific name to instantiate the application.
• QUEUE list The information necessary to create a FIFO queue.

o BUFFERSIZE The maximum size of messages in queue.
o BUFFERNOS The maximum number of messages in queue.

• PUBSUB list OE-specific name for the Pub/Sub..

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

142 of 148

REGISTER list The correspondences between queues and subscribers. This couples publishers
and subscribers. UNREGISTER is the same as REGISTER except it decouples
publishers from subscribers.

• PUBLISHER The name of the queue that the publisher uses to send data to the subscribers. Used
in messages and for obtaining the handle ID.

• SUBSCRIBER A handle name for a subscriber. Used in messages and for obtaining the handle
ID.

MONITOREDITEM list A list of monitored items that are tested to indicate the health of the system.
• ATTRIBUTENAME The name of the property whose value is to be tested in a monitored component.
• HANDLENAME The handle name defines the monitored component from which to obtain the value

corresponding to the attributeName.
• DELAY A positive value represents the nominal time delay between successive automated

tests of the monitored component. A nonpositive value indicates that the test is to
be requested.

• TESTTYPE The type of test to apply to the property to ascertain whether the value indicates
the monitored component is healthy. Examples include testing for exact values,
within ranges, or by use of operations in Reverse Polish Notation (RPN).

o EXACT Monitored value is to be one of the values in the value list.
o EXCLUDE Monitored value is not to be in the value list.
o BETWEENII Monitored value is to be between the pairs of values in the value list including

both end points.
o BETWEENIX Monitored value is to be between the pairs of values in the value list including the

low end point and excluding the high end point.
o BETWEENXI Monitored value is to be between the pairs of values in the value list excluding the

low end point and including the high end point.
o BETWEENXX Monitored value is to be between the pairs of values in the value list excluding

both end points.
o RPN The attributeName, values to be tested, and operators are to appear in the value list

using RPN. RPN uses sequences of one or two arguments followed by an
operator. The result of applying the operator replaces the original sequence used,
and the process is repeated until there are no more operators. The attributeName
for the monitored value is replaced, in the RPN formula, by the corresponding
property value. For example, the sequence of data and operators in the VALUE
list for testing the property named D in RPN—0;D;LT;D;500;LE;AND—is
equivalent to (0<D && D≤500)

The current set of operators includes the following: AND, OR, XOR, NOT, EQ,
NE, GT, GE, LT, LE, PLUS, MINUS, MULTIPLY, DIVIDE, MOD, MIN, MAX.
If floating point is required or allowed, the set of operators could be augmented
with the following: SIN, COS, TAN, ASIN, ACOS, ATAN1, ATAN2, SINH,
COSH, TANH, ABS, EXP, LOG10, LN, SQRT, FLOOR, CEIL, ROUND, POW.

• VALUE list A list of values and possibly operations used corresponding to the value of
TESTTYPE.
o For example, if TESTTYPE is EXACT, the VALUE list will contain

{512,1024,2048,4096} if those are the allowed values.
o If TESTTYPE is EXCLUDE and odd numbers between 1 and 10 are not

allowed, the VALUE list will contain {1,3,5,7,9}.
o If TESTTYPE is BETWEENII and the attribute D is allowed between 0 and

500, inclusive (0 ≤ D ≤ 500), the VALUE list will contain {0,500}. Because
the TESTTYPE is BETWEENII, the lower limit, 0, is included and the
upper limit, 500, is included.

o If TESTTYPE is BETWEENIX and the attribute D is allowed between 0
and 500 (0 ≤ D < 500), the VALUE list will contain {0,500}. Because the

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

143 of 148

TESTTYPE is BETWEENIX, the lower limit, 0, is included and the upper
limit, 500, is excluded.

o If TESTTYPE is BETWEENXI and the attribute D is allowed between 0
and 500 (0 < D ≤ 500), the VALUE list will contain {0,500}. Because the
TESTTYPE is BETWEENXI, the lower limit, 0, is excluded and the upper
limit, 500, is included.

o If TESTTYPE is BETWEENXX and the attribute D is allowed between 0
and 500, exclusive (0 < D < 500), the VALUE list will contain {0,500}.
Because the TESTTYPE is BETWEENXX, the lower limit, 0, is excluded
and the upper limit, 500, is excluded.

o If TESTTYPE is RPN and the attribute D is allowed between 0 and 500 (0 <
D ≤ 500), the VALUE list will contain {0,D,LT,D,500,LE,AND}.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

144 of 148

A.3 STRS Application Configuration File Example

An example of the format of an independent STRS application configuration file in XML is
shown in Figure 16, Example of STRS Waveform Configuration File.

Figure 16—Example of STRS Waveform Configuration File

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

145 of 148

WAVEFORM list

• WFNAME If coded in C++, this is the application class name. If coded in C, this is an equivalent
class name.

• WFACCESS The access to the application may be specified as READ, WRITE, BOTH, or NONE.
READ indicates that the application implements APP_Read(). WRITE indicates that
the application implements APP_Write().

• WFSTATE The state at which the application is left after processing the configuration file. The
state may be INSTANTIATED, STOPPED, or RUNNING.

• LOADFILE list A list of files to be loaded for execution if not already loaded. Usually, the software
for the application on the current GPP (SELF) should be loaded before the
configurable hardware design so that the software can load and configure the
software or configurable hardware design as necessary.

o LOADFILENAME Storage area name or fully qualified file name
o LOADTARGET Module name for the device on which the file is instantiated. The load

process is determined by the corresponding MODULE information (see
A.1).

o LOADMEMORY
• MEMORYSIZE The number of memory units.
• MEMORYUNITS Memory units may be BYTES or, GATES. For any GPP, the size is to be

in BYTES.
o LOADTHREADTYPE
o LOADTHREADTAG
o LOADTHREADPRIORITY

• ATTRIBUTE list A list of properties set as default during initialization.

o NAME Name of the attribute
o VALUE Value of the attribute

The format of an independent STRS device configuration file in XML would be similar. An
example of the format of an independent STRS application configuration file in XML is shown
in Figure 17, Example of STRS Device Configuration File.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

146 of 148

Figure 17—Example of STRS Device Configuration File

The difference being that the ATTRIBUTE tag could have additional parameters describing
memory mapping.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

147 of 148

• ATTRIBUTE list A list of properties set as default during initialization.

o NAME Name of the attribute.

o VALUE Value of the attribute.

o MAPVALUE list Location in memory of the attribute when memory mapped.
A location is to be unique to the associated device.

 MAPVALUEBASENAME

A unique identifier for the portion of memory mapped to the
module. This is to match a MEMORYBASENAME value
defined in section A.1, under MODULE list in the
MEMORYMAP list.

 MAPVALUEOFFSET

Offset from the address of baseName as defined in the
module list's memory map list.

 MAPVALUEBITOFFSET Bit offset from the high order position to begin.

 MAPVALUESIZE Number of bits in which to store the value.

 MAPVALUEACCESS Memory access may be READ, WRITE, or BOTH.

NASA-HDBK-4009A

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

148 of 148

APPENDIX B

REFERENCES

B.1 Purpose and/or Scope

This Appendix provides reference documents that provide additional information relative to this
NASA Technical Handbook.

B.2 References

 Rationale for International Standard—Programming
Languages—C

XML 1.0, XML 1.1 W3C

DO-178

Software Considerations in Airborne Systems and Equipment
Certification (RTCA, Incorporated)

http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://www.w3.org/

	RATIONALE
	DOCUMENT HISTORY LOG
	Requests for information should be submitted via “Feedback” at https://standards.nasa.gov. Requests for changes to this NASA Technical Handbook should be submitted via MSFC Form 4657, Change Request for a NASA Engineering Standard.

